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Abstract: Stroke, either ischemic or hemorrhagic, is the leading cause of death and morbidity worldwide. Identifying 
the risk factors is a prerequisite step for stroke prevention and treatment. It is believed that a major portion of the 
currently unidentified risk factors is of genetic origin. Consistent with this idea, numerous potential risk alleles for 
stroke have been reported, however, the genetic evidence so far is not conclusive. The major goal of this review is to 
update the current knowledge about the genetic predisposition to the common multifactorial stroke, and to provide 
a bird’s-eye view of this fast moving field. We selectively review and meta-analyze the related English literatures 
in public domain (PubMed) from 2000 onward, including the original reports and meta-analyses, to evaluate the 
genetic risk factors of common multifactorial stroke. The results indicated that we reviewed and meta-analyzed origi-
nal reports and existing meta-analyses that studied the genetic predisposition to the common multifactorial stroke. 
Some original reports and meta-analyses were specific for ischemic stroke and others were for hemorrhagic stroke 
only. We also evaluated the major evolving issues in this field and discussed the future directions. In conclusion, 
strong evidences suggest that genetic risk factors contribute to common multifactorial stroke, and many genetic 
risk genes have been implicated in the literatures. However, not a single risk allele has been conclusively approved.
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Introduction

A stroke, either ischemic or hemorrhagic, is 
commonly defined as a sudden loss of neuro-
logical function resulting from focal disturbance 
of cerebral blood flow [1], while World Health 
Organization defines stroke as “rapidly develop-
ing clinical signs of focal (or global) disturbance 
of cerebral function, with symptoms lasting 24 
hours or longer or leading to death, with no 
apparent cause other than of vascular origin” 
[2]. Regardless the semantic differences of the 
definitions, it is commonly accept that stroke is 
itself a syndrome cause by a number of differ-
ent disease processes, not a single homoge-
nous disease. 

Numerous epidemiological studies have identi-
fied many risk factors for stroke [3, 4], including 
medical factors such as previous stroke, isch-
emic heart disease [5], atrial fibrillation [6], 
hypertension and glucose intolerance [7]. 
Other risk factors could be inherent biological 

traits such as age and sex [8], physiological 
characteristics such as serum cholesterol [9], 
and fibrinogen [10]; behaviors such as smoking, 
diet, alcohol consumption and physical inactiv-
ity [11]; social characteristics such as educa-
tion, social class and ethnicity; or geographical 
factors such as altitude and temperature [12, 
13]. Overall, more than 300 risk factors have 
been associated with stroke, and these factors 
are generally classified as either modifiable 
(e.g., environmental and behavioral factors) or 
non-modifiable (e.g., genetic and age). 

Many of the common modifiable risk factors of 
stroke have been identified [14], however, the 
identified factors so far explain only about 60% 
of the attributable risk, and up to 40% of stroke 
risk can be attributed to currently unknown fac-
tors [4]. A major portion of these unknown fac-
tors is believed to be of genetic origin. 
Consistently, evidence of genetic risk factors 
comes from numerous studies. For example, it 
has been noticed for centuries that stroke 
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tends to run in families [15, 16]. A three-fold 
increased incidence has been reported in the 
risk of stroke in men whose mothers had died 
of stroke in comparison with men without a 
maternal history of stroke [17]. It is also report-
ed that stroke in a first-degree relative increas-
es a subject’s odds by as much as 2- to 6-fold 
[18]. The contribution of genetic factors also 
has been increasingly recognized from findings 
in twin studies [19]. In addition, a number of 
monogenic disorders cause stroke, such as 
cerebral autosomal dominant arteriopathy with 
subcortical infarcts and leukoencephalopathy 
(CADASIL) [20], even though common stroke is 
thought to be a polygenic multifactorial dis-
ease. Animal model studies also provided st- 
rong genetic evidence that certain lines of ani-
mals have predisposition to stroke [21, 22]. 
Nevertheless, the exact loci or alleles that are 
responsible for the common polygenic stroke 
risk are still largely unknown. 

Numerous studies have been carried out to 
investigate the genetic risk genes, but many 
confounding factors contributed to the pro-
found confusion in the field, such as, 1) some 
investigators chose to investigate only genetic 
risk for the hemorrhagic stroke (HS), but the 
majority of reports so far studied the genetic 
risk of ischemic stroke (IS); 2) the method of 
genetic risk factor identification evolved with 
technical progresses, 3) each study followed its 
own unique design and protocol, even its own 
classification. For these reasons, a single meta-
analysis of the pooled data from different origi-
nal studies is often not accurate because of the 
confounding effects. 

Furthermore, specific meta-analyses that fo-
cused exclusively on certain specific risk alleles 
can’t provide the overall picture of the field. 
Therefore, in this study, we try to address this 
issue through a combinational approach, i.e., 
through meta-analyzing both the existing origi-
nal reports and meta-analyses. We argue that 
this approach may provide a balanced view and 
minimize the inherited confounding effects of 
single meta-analysis.

Our major intention is to integrate and update 
knowledge in the field and provide a better 
overall understanding of the evolving land-
scape of this fast moving field, not just on cer-
tain risk alleles. To accomplish this seemly 
ambitious goal in a regular review, we have to 
dependent heavily on the existing meta-analy-
ses. We argue that even though it unpractical 
to exhaustively re-analyze all the original re- 

ports, it is possible to re-analyze the existing 
meta-analyses. This approach may also help to 
integrate the existing data and provide a better 
overview of the field.

The other focus of this review would be discuss-
ing the major evolving, sometimes thorny 
issues, in this field, such as classification and 
methodology. These issues have been noticed 
for a long period time, but have not been sys-
tematically dealt with. Current review hopefully 
will clarify the profound confusions and put the 
data in the right perspective. In the end, we will 
also briefly discuss the future opportunities. 
We hope this review may foster a healthier 
growth of the field. 

Materials and methods

Data sources and search strategy

The literature selection and systematic review 
was generally performed in accordance with 
the Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses (PRISMA) state-
ment (http://www.prisma-statement.org/state-
ment.htm). Search terms included: genetic pre-
disposition/genetic risk factors, ischemic st- 
roke, hemorrhagic stroke and meta-analyses. 
Only English reports published in PubMed in 
full manuscript form were selected. 

Inclusion criteria

1) We know there may be over a hundred alleles 
have been implicated, but in this Meta-analysis, 
only the candidate alleles that have reasonable 
supports from literatures were selected. 

2) For each selected candidate allele, only the 
solid recent reports, both original studies and 
the representative meta-analyses were sele- 
cted. 

3) From each report, we only extracted the 
number of participants (cases and controls), 
the odds ratios along with appropriate 95% CIs 
and P values. 

Statistical methods

Odds ratio (OR) and 95% confidential interval 
(CIs) were used to assess the association 
between all kinds of risk alleles and common 
multifactorial stroke risk. Even though all sub-
group analyses followed the same meta-analy-
sis procedure, due to the way we address the 
question and the nature of the question we 
would like to address, the selection bias is 
unavoidable. Therefore, we made use of Begg’s 
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Table 1. The association studies between selected candidate genes and IS
Category/gene Risk alleles Patients/controls OR (95% CI) *P<0.05 References
Renin-angiotensin 
    ACE DD vs I 108/79 (Turkish) 0.949 (0.69-1.3) [24]

DD vs I 10070/22103 (meta) 1.37* (1.22-1.53) [25]
DD vs I 5870/4850 (meta, Chinese) 2.30* (1.84-2.89) [26]

II, ID, DD 162/150 (South Indian) 1.88* (1.15-3.07) for D [27]
    AGT (M235T) TT vs. MM 1298/1094 (meta, Chinese) 2.65* (1.89-3.71) [26]

T vs M 3842/12188 (meta) 1.447* (1.207-1.735) [28]
    CYP11B2 (C344T) TT vs C 332/250 (north Chinese) 1.572* (1.095-2.258) [29]

T vs C 3620/4090 (meta) 1.19 (0.95-1.49) [30]
Coagulation/fibrinolysis
    TPA TT vs C 2299/1948 (meta) 2.42* (1.07-5.48) [31]

TT vs C 516/513 1.37 (0.883-2.127) [32]
    PAI-1 4G/4G 127/201 (Brazilian) 0.41 (0.24-0.68) [33]

4G/4G 388/775 (2 studies) 1.79/1.60* (1.01-3.19) [34]
4G/4G 600/600 0.84 (0.64 to 1.11) [35]

    factor VII 670C 150/150 2.00* (1.29-3.10) [36]
IVS7>7 150/150 1.93* (1.20-3.09)
R353Q 81/149 1.78 (0.88-3.66) [37]

Antioxidation 
    GCH1 rs841 GA+AA 558/557 1.73* (1.27-2.35) [38]
    GPx-3 H2 haplotype 123/123 2.07* (1.03-4.47) [39]
 Lipid
    apoE ε4 vs ε3 166/192 1.16 (0.68-1.98) [40]

ε4 vs ε3 3814/3425 (meta ) 2.34* (1.91-2.86)
ε4 vs ε3 72/171 NA [41]

    PON1 192 R vs Q 85/71 1.41 (0.8-2.47) [42]
107 TT 172/105 1.973* (1.014-3.839) [43]

    APOA5 -1131 CC vs TT 2294/1858 (meta) 4.47* (1.33-15.06) [44]
-1131 C vs T 302/289 2.1* (1.3-4.7) [45]
IVS3+G476A 378/131 2.844* (1.320-6.124) [46]
-1131 C vs T 378/131 2.214* (1.158-4.235)

Inflammation 
    IL1 IL1α-889C/T 846/1223 (meta) 1.21 (0.86-1.70) [47]

IL1β-511C/T 133 4/1594 (meta) 1.22 (0.85-1.87)
    IL6 IL6-147G/C 1879/2092 (meta) 1.56 (0.61-3.99)
    TNFa -308G/A 2349/1848 (2 studies) 1.30*/1.46* (1.02-1.96) [48]

-1031T/C 7106/7853 (meta) 1.43* (1.21-1.69)
-308G/A 3515/3949 (meta) 0.822 (0.648-1.042) [49]

    E-selectin S128R AC vs AA 610/610  5.47* (3.25-9.21) [50]
A561C 314/389 2.73* (1.29-5.76) [51]

    ALOX5AP SG13S114A/T 5361/5676 (meta) 1.47* (1.13-1.91) [52]
SG13S114A/T 1092/781 (meta) 1.22* (1.06-1.40) [53]

Others
    NOS1 G894T T vs GG 6537/6475 (meta) 1.60* (1.38-1.79) for Asians [54]

T-786C 2125/2673 (meta) 1.14 (0.95-1.37) for Asians
4b/a, a vs bb 3459/3951 (meta) 1.60* (1.30-1.97) for Asians

T-786C 2836/ 3354 (meta) 1.14 (1.02-1.28) for Asians [55]
    TGFB1 -509 T vs C 312/5558 1.29* (1.03-1.61) [56]

P10L LP vs LL 312/5558 1.24* (1.03-1.50)
P10L LL vs P 271/207 1.63* (1.06-2.49) [57]

    MTHFR C677T T vs C 2223/2936 1.28* (1.17-1.40) [58]
A1298C C vs T 2133/2572 1.227* (1.062-1.416) [59]
C677/1298C 92/259 3.463* (1.699-7.058) [60]

*P<0.05 and #P<0.05 represent the comparison between the risk alleles.
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funnel plot to examine the underlying publica-
tion bias. The data analysis was performed 
using RevMan 5.2 statistical software. *P<0.05 
represents the difference significant. 

Results

The current status of genetic risk identification 
for common stroke 

One of our focuses of this review is to summa-
rize the overall status of genetic risk identifica-
tion for common stroke. Many studies have 
combined ischemic and hemorrhagic strokes. 
We reasoned that it is unlikely that these very 
different pathological conditions are under the 
same genetic influences. To reduce the con-
founding effects, we analyze the genetic risk 
factors for IS and HS separately.

Genetic risk factors for IS: About 80% of all 
strokes are IS [23]. There is a long list of candi-
date gene pathways and genes that have been 
studied for a possible association with IS. The 
most widely investigated genes are those 
involved in the inflammation, lipid metabolism, 
nitric oxide release, and extracellular matrix 
hemostasis. In most cases, however, findings 
were either negative or could not be replicated 
in subsequent studies. Based on our primary 
study we chose to summarize stroke related 
genes that are involved in inflammation, the 
renin-angiotensin system, and atherosclerosis 
and lipid metabolism. Unsurprisingly, not all 
associations have been consistently replicated. 
Table 1 summarized the major findings about 
the selected candidate risk alleles. 

Genetic risk factors for HS: In contrast, to IS, 
only about 20% of strokes are HS, therefore, 
few systematic studies have been focused on 
HS. Yet, through similar approaches, we revi- 
ewed the risk alleles in genes of Renin-an- 
giotensin-aldosterone, blood coagulation, lipid 
metabolism-related, homocysteine metaboli- 
sm-related, inflammation-related, extracellular 
matrix (ECM) degradation, and antioxidant sys-
tems. Unfortunately, current data for the genet-
ic risk factors for HS are even less conclusive. 

The angiotensin-converting enzyme (ACE) gene 
has an insertion (I)/deletion (D) polymorphism 
in Intron 16, which has been associated with 
variations in ACE activity. The DD genotype has 
been associated with HS in Polish and Indian 
populations, and a meta-analysis of 744 cases 
and 1289 controls revealed significant associa-
tions of homozygosity for the ACE/I allele with 
hemorrhagic stroke (1.48*, 95% 1.20-1.83) 

[24]. However, no differences in genotype fre-
quency were observed between controls and 
subjects with HS in Japanese [25] or Greek 
cohorts [26].

Fewer studies have specifically addressed the 
relationship between genes of coagulation/
fibrinolysis and HS. For example, frequency of 
the prothrombin 20210A/G genotype was lower 
in patients than in controls, whereas there was 
no significant difference in the prevalence of 
the V GI691A Leiden mutation [27], however, 
this conclusion has not been independently 
repeated. Similarly, association studies of the 
polymorphisms of Factor XIII [28-30] and Factor 
VII [27, 31] genes also have generated conflict-
ing results.  

Apolipoprotein E (ApoE) [32-34], ApoH [35] and 
Apo(a) [36] play major roles in lipid transport 
and metabolism. Studies have produced con-
flicting results regarding the influence of ApoE 
alleles on predisposition to HS. Several studies 
have reported an association between the ∈4 
allele and HS risk [32, 37]. However, a meta-
analysis of 31 studies (5961 cases, 17,965 
controls) showed that the ∈2+ genotype, but 
not the ∈4+ genotype, was associated with HS 
[33]. In addition, a prospective study of 5671 
patients suggested that both the ∈2 and ∈4 
alleles were associated with an increased risk 
of HS [38]. 

Similarly, four polymorphisms of ApoH were 
examined in 140 HS patients in a Chinese pop-
ulation [35]. Frequencies of the A allele of 
G341A were significantly higher in HS patients 
than in controls, especially in HS patients with 
hypertension and a family history of stroke. No 
differences in the genotype frequencies of the 
G817T, G1025C, and C1080T polymorphisms 
were found. Similarly, polymorphisms of Apo(a) 
has been associated with HS [36]. Unfortunately, 
the data of ApoH and Apo(a) have not been 
independently repeated.

Two polymorphisms in the methylenetetrahy-
drofolate reductase (MTHFR) gene, C677T and 
A1298C, have been shown to reduce enzyme 
activity and elevate plasma homocysteine lev-
els. These polymorphisms were also found to 
be genetic risk factors for hemorrhagic and is- 
chemic stroke, respectively, in a Turkish Cau- 
casian population [23]. In a case-control study 
of Mongolian patients with HS, the C677T poly-
morphism TT genotype was more common in 
patients with HS and was associated with 
reduced plasma folate levels [39]. However, no 
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association of the C677T polymorphism with 
HS was observed in two other studies [40, 41].

Inflammation-related genes have also been 
implied in literatures, for example, the -572G>C 
polymorphism of the IL6 gene was examined in 
3151 Japanese individuals. Analysis revealed 
that the -572G>C polymorphism was signifi-
cantly associated with HS [42]. However, the 
-74G>C polymorphism of IL6 showed no asso-
ciation with HS [43]. Similarly, associations of 
spontaneous deep HS with four single-nucleo-
tide polymorphisms (T-1031C, C-863A, C-857T, 
and G-308A) within the Tumor necrosis factor-
alpha (TNF-α) gene promoter were examined in 
a Taiwanese population. The risk was positively 
associated with minor alleles -1031C and -30- 
8A in men, but inversely associated with -863A 
in females, which indicated that the associa-
tions were gender-dependent [44]. However, 
none of the data have been independently 
repeated. 

The evolving issues 

The issues of methodology: The method of 
genetic risk factor identification evolves with 
technical progress. Most early studies use the 
genetic lineage or candidate gene approaches, 
but the high efficient genome-wide association 
studies (GWAS) and Next generation sequenc-
ing (NGS) gained momentum recently. In addi-
tion, cutting edge gene expression profiling, 
proteomic and metabolomics approaches offer 
new hope for risk assessment.  

1) Genetic linkage approach. This technique 
examines genetic variants through multiple 
generations of the same family and examines 
incidence with disease status. This is a power-
ful technique for Mendelian diseases where a 
single gene controls the phenotype, but it has 
had relatively little success in identifying the 
risk factors of stroke due to the late age of 
onset and lack of large pedigrees with multiple 
affected individuals. Thus, this approach offers 
little help in identify the genetic risk factors for 
polygenic multifactorial disease, such as str- 
oke.

2) Candidate gene approach. This is a strictly 
hypothesis driven approach.

For above-mentioned limitations, most pub-
lished studies have taken a candidate gene 
approach using case-control methodologies. 
Candidate genes are typically chose on the 
basis of biological plausibility for the disease in 
question, and then the genetic variants (poly-

morphisms) at that one locus are subjected to 
classic association test. Many potential risk 
polymorphisms have been identified though 
this approach. However, further study with this 
approach is greatly limited by the lack of deep 
understanding the underlying molecular mech-
anisms of disease process, and this approach 
is also incompetent to identify the potential 
gene-gene interactions. In addition, any given 
genetic variant has a low pre-test probability of 
being truly associated with a phenotype. To be 
reliably detected, small relative risks require 
large sample sizes, probably in the order of 
1,000 patients or more. Few studies have ac- 
hieved such numbers. This difficulty, together 
with the mediocre success of candidate-gene 
studies provides support to alternative system-
atic hypothesis-free approaches, such as 
genome-wide linkage and genome-wide asso-
ciation studies (GWASs).

3) The Genome Wide Association study (GWAS) 
approach is not strictly hypothesis driven, thus 
it is not limited by the lack of understanding of 
the disease process. GWAS studies could be 
retrospective case-control, prospectively col-
lected cohorts or family-based association stu- 
dies. This technique looks at multiple genetic 
variants (typically up to 1 million) at a time. The 
genetic variants are spread throughout the 
genome at random and allow systematic unbi-
ased investigation of a large number of regions 
in cases and controls. Although complex and 
expensive, this technique provides unprece-
dented power to identify multiple risk alleles in 
one experiment. Over the past several years, 
GWAS have succeeded in identifying hundreds 
of genetic markers associated with common 
diseases. Furthermore, at least theoretically, 
this approach is competent to identify the po- 
tential gene-gene interaction. However, the lim-
itations of this approach are also obvious: simi-
lar to candidate approach, individuals are not 
related, thus requiring large, typically several 
thousand, cases and controls for comparison, 
and due to the large population, it requires 
strong efforts for quality assurance concerning 
patient recruiting, subtyping and data process-
ing. Any inconsistency in these procedures may 
cause undesired noises, which can easily dilute 
the weak signals from relatively rare risk alleles. 
Consistent with this idea, the first genome-wide 
association study in stroke in 2007 found no 
genetic locus specifically and robustly associ-
ated with the disease [45].

Similarly, genome-wide linkage studies utilize 
family structure and large numbers of tagging 
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SNPs to track the inheritance of stroke risk with 
the transmission of the SNP alleles. Although 
genome-wide linkage studies have the ability to 
detect single risk loci with relatively large effect, 
success has been limited. For example, a whole 
genome linkage scan of 109 families from a 
genetically homogeneous region of Northern 
Sweden failed to identify any new major loci for 
ischemic stroke [46]. 

4) Next generation sequencing (NGS) approach. 
NGS is currently the cutting edge technology 
available for direct sequencing of DNA, allowing 
determination of the entire exome (coding por-
tion) or the entire human genome in a single 
experiment [47]. Because of its unparalleled 
efficiency and resolution, far fewer individuals 
are required for identifying the potential risk 
factors. In fact, at least theoretically, NGS can 
exhaust all potential genetic risk factors in 
selected populations in one experiment. Thus, 
NGS has been used predominantly to examine 
the Rare Variant, Common Disease (RVCD) hy- 
pothesis. The only limitation is that high-cover-
age whole-genome sequencing remains costly 
and time-consuming, even though current ad- 
vances in multiplexing of samples by labeling 
with genetic tags before sequencing allows a 
reduction in cost.

5) Gene expression profiling, proteomic and 
metabolomics approaches. Studies of mRNA 
expression and candidate proteomic approach-
es have also shown promise for risk assess-
ment and the development of signatures for 
stroke classification. mRNA profiling of the 
peripheral blood has been used to investigate 
stroke risk factors. For example, using periph-
eral blood mononuclear cells, a validated and 
replicated gene expression signature of isch-
emic stroke within the first 72 h has been iden-
tified [21], i.e., a panel of 22 genes was about 
80% accurate for the detection of ischemic 
stroke in an external sample [21]. Another gr- 
oup found this panel to be over 85% accurate, 
using whole-blood profiling [20]. 

Overall, the evolving of the methodology is a 
normal, self-perfection process, and it brings 
more options and opportunities to further 
probe the genetic risk factors, however, this 
natural process did create a problem for meta-
analysis, because it is impossible to simply 
pool the data from different studies that using 
different methods together. 

The issues of classification: The remarkable 
heterogeneity of stroke highlights the impor-

tance of the accurate classification. The careful 
classification has been also driven by the needs 
of both clinical trials and epidemiological stud-
ies, and the ultimate goal of classification 
should be to categorize the heterogeneous 
population into a manageable number of dis-
crete, more or less homogenous subtypes/sub-
populations, because different subtypes may 
differ significantly in their causes, pathophysi-
ology, treatments, and outcomes. 

The ideal classification should not only be con-
sistent, precise, reliable, universally accepted, 
and ease to use, but also integrate the clinical 
features, diagnostic tests, knowledge about 
potential etiologic factors. Unfortunately, even 
though there are many different classification 
systems and they are evolving rapidly over time, 
none of them have met the above-mentioned 
criteria yet. 

For example, the representative  classification 
systems include the Stroke Data Bank classifi-
cation (published in 1978), the Lausanne Stro- 
ke Registry Classification (published in 1988), 
the Oxfordshire Community Stroke Project Su- 
btype Classification (OSCP, published in 1991), 
the Trial of Org 10172 in acute stroke treatment 
(TOAST, published in 1997) classification, the 
GÉNIC classification (published in 2000), the 
causative classification system (CCS, published 
in 2007), the A-S-C-O (Atherosclerosis, Small 
vessel disease, Cardiac source, Other cause) 
phenotypic classification (published in 2009), 
and the recent Chinese ischemic stroke sub-
classification (CISS, published in 2011). As 
expected, none of them are prefect, and each 
has its own limitations. 

Even though it is not our intention to extensively 
comparing the advantages and shortcomings 
of each individual classification system, this 
review does want to summarize some of the 
general trend, i.e., 1) the old classification sys-
tems are generally easier to use and tend to be 
more reliable; 2) but the more recent classifica-
tion systems can accommodate the new find-
ings from the emerging new imaging and diag-
nostic technologies. 3) therefore, the more re- 
cent classification systems allow more detailed 
classification, however the reliability of the new 
classification systems have not been extensive-
ly tested. 

Overall, even though the improvement of clas-
sification systems is a necessary, self-perfec-
tion process, we believe that the co-existing of 
multiple, competing classification systems is 
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currently a major contribution to the confusion 
in the field. Furthermore, without a universally 
accepted standard classification system, it is 
impossible to directly compare the data from 
different studies. In fact, we believe that a sub-
stantial portion of the current conflicting data 
may simply reflect the inconsistency in the cri-
teria of stroke classification in different study. 
For this reason, a universally accepted, precise 
classification of stroke subtypes is urgently 
needed.

These studies in stroke genetics have been 
largely disappointing, especially the inconsis-
tency in replicating the initial findings. The po- 
tential reasons are many, and some are seemly 
legitimate reasons, but others are not. For 
example, the sample sizes, the different sex 
and ethnic origin, and the variable robustness 
of different alleles are all legitimate reasons of 
the conflicting results. In contrast, inconsistent 
in genotyping, phenotypes and classification 
are the major illegitimate reasons that will cre-
ate noises that will eventually mask the co- 
rrelation. 

The ultimate goal of genetic risk identification 
is to establish the correlation of specific genetic 
trait (polymorphism) with certain disease phe-
notype. Any future genetic study, whether 
hypothesis driven or non-hypothesis driven, 
should address the above-mentioned issues, 
especially the proposed illegitimate reasons 
have to be controlled carefully. Power calcula-
tions demonstrating the number of cases re- 
quired for confirmation or refutation of a finding 
should be included to allow an estimate of the 
significance and robustness of the findings 
presented. 

Increasing evidence suggests genetic risks dif-
fer depending on stroke subtype. Future genet-
ic studies should therefore include reference to 
subtypes and subtype specific risks. These 
measures will, of cause, depend heavily on a 
consistent and accurate classification system, 
and may lead to increased cost and complexity 
of studies, but we argue that only through such 
robust experimental procedures that we will 
truly begin to understand the genetic risks of 
stroke.

In the long-term, to fully understand the risk 
factors of stroke, it is necessary to further 
understand how different polymorphisms dif-
ferentially influence the gene-gene and gene-
environment interactions, and eventually lead 
to predisposition to stroke. Unfortunately, the 
study of allele specific gene-gene and gene-

environment interactions, in vivo or in vitro, is 
still in its infancy, and there is currently no easy 
and valid way to dissect and gouge the predis-
position of specific allele in the context of gene-
gene and gene-environment interactions. 
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