Original Article Association between nonalcoholic fatty liver disease and colorectal adenoma: a systematic review and meta-analysis

Wenjin Ding¹, Jiangao Fan¹, Jianjun Qin²

¹Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; ²Shanghai Institute of Disaster Prevention and Relief, Tongji University, Shanghai, China

Received October 16, 2014; Accepted January 5, 2015; Epub January 15, 2015; Published January 30, 2015

Abstract: Background and Aims: Several existing studies indicated that nonalcoholic fatty liver disease (NAFLD) may be associated with colorectal adenoma, but the results and risk factors are controversial. A systematic review of studies was conducted to explore these issues by meta-analysis. Methods: We searched the Pubmed, Embase, Cochrane library, Medline and Web of Science databases for studies published before May 30th, 2014. A statistical analysis was performed using RevMan 5.2 software. Results: Seven studies involving 11,905 participants from different regions were included. Among them, five trials carried out subgroup of NAFLD patients in colorectal adenoma population. The result showed NAFLD was significantly correlated with adenoma of colon (Odds ratio [OR] = 1.56, 95% confidence interval [CI]: 1.22-1.99, P = 0.0003). It could be found in stratified analysis that patients had more chance to get multiple adenomas when they suffered NAFLD (Rate ratio [RR]: 1.52, 95% CI: 1.08-2.13, P = 0.02). Such risk factors of NAFLD as age, waist circumference, body mass index (BMI), disorder of lipid metabolism, hyperglycemia and high blood pressure (HBP) increased risk of colorectal adenoma (Age: mean difference [MD]: 2.81, 95% CI: 0.33-5.28; Waist: MD: 2.84, 95% CI: 2.14-3.54; BMI: MD: 0.85, 95% CI: 0.69-1.01; High-density lipoprotein: MD: -2.46, 95% CI: -3.68 to -1.24; Triglyceride: MD: 16.12, 95% CI: 8.89-23.36; Low-density lipoprotein: MD: 6.04, 95% Cl: 3.60-8.48; Cholesterol: MD: 4.25, 95% Cl: 0.87-7.63; Fasting glucose: MD: 2.27, 95% Cl: 1.24-3.30; HBP: OR = 1.51, 95% CI: 1.22-1.88), while diabetes had no significant association with it (OR = 1.43, 95% CI: 0.94-2.17, P = 0.09). Besides, NAFLD didn't affect the location, size and advanced type of colorectal adenoma (P > 0.05). Conclusion: The present systematic review and meta-analysis demonstrated NAFLD was closely associated with great risk of colorectal adenoma and its number, but not with its location, size and advanced type. Waist, obesity, lipid profiles, glucose, hypertension played roles in the process of colorectal adenoma.

Keywords: Nonalcoholic fatty liver disease, colorectal adenoma, risk factors, meta-analysis

Introduction

Nonalcoholic fatty liver disease (NAFLD) is the commonest chronic liver disease in Western population and becomes a burgeoning health problem of developing countries due to high prevalence [1]. It represents a spectrum of diseases associated with excessive fat accumulation in the liver in the absence of excessive alcohol consumption. NAFLD ranges from simple steatosis to nonalcoholic steatohepatitis (NASH), through to advanced fibrosis, cirrhosis and even hepatocellular carcinoma [2]. The underlying mechanisms of disease progression are poorly understood. The classical supporting theory is the "multi-hit hypothesis", in which insulin resistance (IR) and oxidative stress play an important role. And then, mitochondrial fatty acids oxidation, nuclear-factor-kappaB (NF κ B)dependent inflammatory cytokine expression as well as adipocytokines are lead to dysregultion, resulting hepatocellular damage, inflammation, fibrosis and progressive liver disease [3]. Generally, obesity, diabetes (DM), and hyperlipidemia are regarded as common risk factors for acquiring NAFLD [4]. Besides, the gradual shift of high blood pressure (HBP) is likely to increase the prevalence of NAFLD [5]. NAFLD is also associated with greater waist circumference, mainly dependent on dietary and exercise [6].

Liver has close relationship with intestine for the same origin in embryology. Colorectal cancer (CRC) is one of the commonest cancers worldwide and the second of cancer deaths [7].

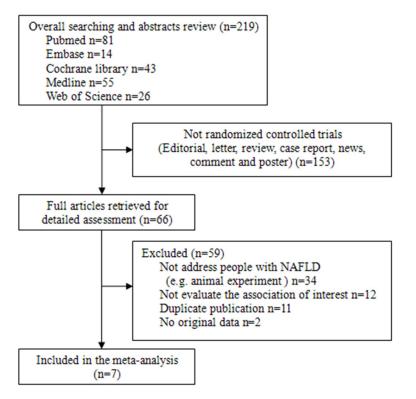


Figure 1. Flow diagram of study identification.

It established risk factors include increased age, black race, smoking and low-fiber diet. Given the shared features between NAFLD and CRC, it becomes hot research interest whether NAFLD is an independent risk factor for increased colon events. In fact, recent clinical studies have already found NAFLD patients had a higher prevalence of colorectal adenoma and advanced neoplasm, and then developing into colorectal cancer (adenoma-carcinoma sequence) if untreated [8, 9]. Suggestions from data now point out NAFLD might be a potential risk factor. However, this point is still controversial [10].

Therefore, the aim of this study was to conduct a meta-analysis of the pooled data from the existing clinical studies to assess the relationship between NAFLD and colorectal adenoma.

Materials and methods

Search strategy

A comprehensive, computerized literature search was conducted in Pubmed, Embase, Cochrane library, Medline and Web of Science from the beginning of indexing for each database to May 30th, 2014, by two independent investigators (D.W.J. and Q.J. J.). The conference proceedings and reference lists of reviews were searched manually for additional relevant studies. Search items included "NAFLD" or "NASH" or "nonalcoholic steatohepatitis" or "nonalcoholic fatty liver disease" or "fatty liver" and "colorectal adenoma" or "colonic adenoma" or "colorectal neoplasia" or "colorectal neoplasm" or "colorectal malignant neoplasm" or "colorectal cancer" or "CRC" or "adenoma of colon". No language restrictions were imposed.

Inclusion and exclusion criteria

Three investigators (D.W.J., F.J.G. and Q.J.J.) determined the inclusion and exclusion criteria, and reviewed the titles and abstracts of the studies identified. Inclusion

criteria were: (a) published as an original article; (b) used cohort or cross-sectional design; (c) Random controlled trials (RCTs) with participants of any sex or ethnic origin with colorectal adenoma on the basis of histological evidence, and with NAFLD/NASH diagnosed by imaging examination or histology; (d) had objective outcome measures, at least one of the following items: body mass index (BMI), waist circumference, HBP, fasting plasma glucose (FPG), alanine aminotransferase (ALT), aspartate transaminase (AST), cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL), triglycerides and DM; or included characteristics of colorectal adenoma, like location, size, number and histological type. Exclusion criteria were as follows: (a) non-human studies or nonrandomized trials; (b) other causes of fatty liver disease such as viral, alcoholic, drug-induced, autoimmune and genetic liver injury; (c) patients suffered colorectal cancer before trials. Discrepancies between three reviewers were solved by discussion.

Definition

Locations of colorectal adenoma were categorized as proximal colon (including the cecum, ascending colon, or transverse colon) and/or

Table 1. Characteristics of Studies in Meta-analysis

		•	subgroup (number of ases)		Diagnostic	Adjustments				
Study author	Region/Country	Adenoma/nonad- enoma group	NAFLD/non-NAFLD group of colorectal adenoma population	Study design	method of fatty liver	Basic data	Characteristics of colorectal adenoma	- NOS score		
Huang et al, 2013	Taipei/China	1522 (216/1306)	216 (120/96)	Cohort	Ultrasonography	Gender, age, BMI, waist, FPG, ALT, AST, cholesterol, HDL, LDL, triglycerides, HBP, DM, smoking, NAFLD	Location, size, number, histological type	8		
Hwang et al, 2010	Seoul/Korea	2917 (556/2361)	556 (231/325)	Cross-sectional	Ultrasonography	Gender, age, BMI, waist, HBP, FPG, ALT, AST, cholesterol, HDL, LDL, triglycerides, DM, smoking, NAFLD	Location, size, number, histological type	8		
Kang et al, 2010	Seoul/Korea	2244 (1122/1122)	NA	Cross-sectional	NA	Age, gender, smoking, DM, HBP, BMI, waist, cholesterol, triglycerides, HDL, FPG	NA	7		
Kim et al, 2010	Seoul/Korea	1316 (263/1053)	NA	Cross-sectional	NA	Gender, age, smoking, DM, BMI, HBP, FPG, cholesterol, triglycerides, HDL, LDL	NA	8		
Lin et al, 2014	Wenzhou/China	2315 (1946/369)	1946 (216/1730)	Cohort	Ultrasonography	FPG, BMI, HDL, HBP, TC	Histological type	7		
Stadlmayr et al, 2011	Oberndorf/Austria	1211 (341/870)	331 (215/126)	Cross-sectional	Ultrasonography	Age, BMI, waist, cholesterol, triglycerides, HDL, FPG, AST, ALT	Location, size, histological type	8		
Wong et al, 2011	Hongkong/China	NA	380 (199/181)	Cohort	Histology	Age, gender, smoking, BMI, waist, FPG, cholesterol, triglycerides, HDL, LDL, AST, ALT, DM, HBP	Location, histological type	7		

A NAFLD	Adenom	a group	Nonade	noma group			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Tot	al Even	ts Total	Weigh	t M-	H, Random, 95% C	M-H, Random, 95% Cl
Huang 2013	120	21	6 50	0 1306	19.2%	6	2.02 [1.51, 2.69]]
Hwang 2010	231	55	6 7	3 2361	22.8%	6	1.64 [1.36, 1.99]	j +
Kim 2010	141	26	3 43	37 1053	19.9%	6	1.63 [1.24, 2.14]	1 -
Lin 2014	216	194	6	17 369	17.5%	6	0.86 [0.61, 1.20]] —
StadImayr 2011	215	34	1 41	17 870	20.5%	6	1.85 [1.43, 2.40]	1 –
Total (95% CI)		332	2	5959	100.0%	6	1.56 [1.22, 1.99]	, ♦
Total events	923		211	4				
Heterogeneity: Tau ² =	= 0.06; Chi ²	² = 17.01	df = 4 (P =	0.002); $I^2 = 76$	6%			
Test for overall effect	Z = 3.59 (F	P = 0.00	03)					0.01 0.1 1 10 100 Favours (Nonadenoma) Favours (Adenoma)
								Favours (Nonadenoma) Favours (Adenoma)
B Liver enzymes								
ALT	Adenon	na grou	n Nona	denoma grou	ID		Mean Difference	Mean Difference
Study or Subgroup	Mean	-	otal Mea	-	-	eight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Huang 2013	29.7	17.6	556 26.	2 17.4	2361 7	5.5%	3.50 [1.88, 5.12]	
Hwang 2010	33.1	19.6	216 29.	7 20.7 1	1306 2	4.5%	3.40 [0.56, 6.24]	_ _
Total (95% CI)			772		3667 10	0.0%	3.48 [2.07, 4.88]	•
Heterogeneity: Chi ² =	0.00 df-				1007 10	0.070	5.40 [2.07, 4.00]	
Test for overall effect		•						-10 -5 0 5 10
rescion overall effect	. 2 - 4.00 (- 0.00	001/					Favours [Nonadenoma] Favours [Adenoma]
AST	Adenom	a group	Nonad	lenoma grouj	р	1	Mean Difference	Mean Difference
Study or Subgroup	Mean	SD To	tal Mean	SD T	otal We	ight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Huang 2013	24.3	8.4	16 23.5	9.3 1	306 37	.5%	0.80 [-0.43, 2.03]	+=-
Hwang 2010	27.4	10 5	56 25.8	11.5 2	361 62	.5%	1.60 [0.65, 2.55]	
Total (95% CI)		7	72	3	667 100	0.0%	1.30 [0.55, 2.05]	•
Heterogeneity: Chi ² =	1 02 df=1							
Test for overall effect:		•						-10 -5 0 5 10
Cottor overall ellect.	2 - 0.00 (1	- 0.000	.,				1	Favours [Nonadenoma] Favours [Adenoma]

Figure 2. Forrest plot of NAFLD and colorectal adenoma. A. NAFLD; B. Liver enzymes.

distal colon (including the splenic flexure, descending colon, sigmoid colon, or rectum). Histopathologically, colorectal adenoma referred to an adenoma in the colorectum regardless of grading or amount of villous component. Hyperplastic and inflammatory polyps were excluded. Advanced adenoma was defined as adenoma with high-grade dysplasia or containing > 25% villous features.

Data extraction and methodological quality

Data were abstracted independently by two reviewers and included: author, publication year, country, participants and subgroup, study design and outcomes. The quality of the studies was assessed by Newcastle-Ottawa scale (NOS) score, of which 1-3 for low-quality, 4-6 for intermediate and 7-9 for high-quality. All included studies scored \geq 7.

Statistical analysis

The analyses were conducted using the Review Manager (RevMan Version 5.2). Some outcomes (HBP, NAFLD, DM, BMI etc.) were assessed as a dichotomous variable (presented as odds ratio [OR] with 95% confidence

interval [CI]). Other outcomes like ALT, AST, HDL and LDL etc. were presented as continuous variables (mean difference [MD] with 95% Cl). Subgroup analyses of association of colorectal adenoma with NAFLD were calculated by RR (rate ratio) on lesion location, size, number and type. The preferred method of data presentation was the calculated RR compared with the general population. Mantel-Haenszel chi-square tests were used to determine significant level of difference. If the chi-square test was significant below P = 0.05, the amount of heterogeneity using I² statistics was quantified. If there was obvious heterogeneity (over 50%), the random effects model was chosen; Otherwise, the fixed effects model was adopted.

Results

Search results

The literature search yielded a total of 219 potentially publications (**Figure 1**). Full text articles were retrieved only for 66 publications and assessed for eligibility. Among these 66 publications, 59 were excluded because they did not address people with NAFLD, or not assess the association between colorectal adenoma and

Nonalcoholic fatty liver and colorectal adenoma

A Age <u>Study or Subgroup</u> Huang 2013 Hwang 2010 Kang 2010 Stadimayr 2011 Total (95% Cl) Heteropeneity Tay ² =	Mean 56.1 50.6 56 63.96	na group <u>SD</u> Tot 9 21 9.2 55 7.8 112 9.56 34 223 - 9250 4	al Mea 6 53. 6 46. 2 5 1 59.9 5	3 9.8 1 8.7 6 7.8 6 9.88	Tot 13 23 11 8 56	06 24.3 61 25.4 22 25.7 70 24.6 59 100.0	% 4.50 [3.66, 5.34 % 0.00 [-0.65, 0.65 % 4.00 [2.79, 5.21	-		B Waist circumfere Study or Subgroup Huang 2013 Hwang 2010 Kang 2010 Total (95% Cl) Heterogeneity: Tau ² =	Adenor Mean 87 84.3 88.1	8.2 7.4 1	otal 216 556 122 894	Nonadeno Mean 83.4 81.3 85.8 (P = 0.12);	<u>SD</u> To 9.4 13 8.4 23 8 11 47	tal We 06 22 61 36	ight 1 .0% .3% .7%	Mean Difference V. Random, 95% 3.60 (2.39, 4.6 3.00 (2.24, 3.7 2.30 (1.66, 2.9 2.84 (2.14, 3.5	CI IV. Ra [1] [6] [4]	n Difference	
Test for overall effect.				0.00001)				-4 -2 0 2 Favours [Nonadenoma] Favours	2 4 s [Adenoma]	Test for overall effect	Z=7.97	(P < 0.00	001)						Favours (Nonadeno	ma] Favours	(Adenoma)
C Gender	Adenom	a group	Nonade	enoma gre	0110		Odds Ratio	Odds Ratio		D BMI	Adeno Mean	ma grou SD T		Nonadeno Mean				lean Difference IV, Fixed, 95% Cl		Difference ed. 95% CI	
Study or Subgroup	Events					Woight	M-H, Random, 95% CI	M-H, Random, 95% Cl	1	Study or Subgroup									IV, FDO	a, 95% CI	
Huang 2013 Hwang 2010 Kang 2010	59 432 866	216 556 1122	1 14 8	60 79 66	1306 2361 1122	18.5% 20.7% 21.0%	2.69 [1.91, 3.79] 2.08 [1.67, 2.58] 1.00 [0.82, 1.22]			Huang 2013 Hwang 2010 Kang 2010	24.8 24.5 24.5	2.8 2.7 1		23.7 23.8 23.6	2.8 23 2.6 11	61 36 22 51	.7% .1%	1.10 [0.65, 1.55] 0.70 [0.44, 0.96] 0.90 [0.68, 1.12]			
Kim 2010 Lin 2014 Total (95% CI)	200 1170		2	00	369	19.1% 20.6% 100.0%	1.86 [1.36, 2.53] 1.27 [1.02, 1.59] 1.65 [1.17, 2.35]	•		Total (95% CI) Heterogeneity: Chi ² = Test for overall effect		2 (P = 0			47	89 100	0.0%	0.85 [0.69, 1.01]	-2 -1 Favours (Nonadenoma	0 1] Favours (A	2 denoma]
Total events	2727		33	69							Adeno	ma grou	p N	onadenom	na group		0	Odds Ratio	Odds	Ratio	
Heterogeneity: Tau ² =	0.14; Chi	² = 40.06,	df = 4 (P <	0.00001)); I² = 9	0%		0.01 0.1 1	10 100	Study or Subgroup	Event	s To	tal	Events	Total	Weigh	t M-H	I, Fixed, 95% CI	M-H, Fixe	d, 95% Cl	
Test for overall effect	Z = 2.82 (P = 0.005)						avours (Nonadenoma) Favours (Kim 2010 Lin 2014	9 31	-	63 146	316 42	1053 369			1.21 [0.91, 1.62] 1.51 [1.07, 2.13]		₽- 	
										Total (95% CI) Total events Heterogeneity: Chi ² Test for overall effec		16 = 1 (P = (358 ° = 0%	1422	100.09	6 1		0.02 0.1 avours [Nonadenoma]		+

Figure 3. Forrest plot of basic data of colorectal adenoma patients. A. Age; B. Waist circumference; C. Gender; D. BMI.

NAFLD, or duplicated. Overall, we identified and included 7 publications that met the inclusion criteria in the systematic review [8, 9, 11-15]. Among them, 6 articles showed basic data and risk factors related to NAFLD of individuals between colorectal adenoma and non-adenoma group. 5 of 7 studies recorded characteristics of colorectal adenoma among NAFLD patients.

Characteristics of the studies

The main adjustments of the studies included in this analysis are provided in **Table 1**. Among them, one study was originated from Austria, three from China (different regions) and three from Korea (conducted by different research groups), with a total of 11,905 participants. According to the NOS score, all seven studies were of high quality.

NAFLD and colorectal adenoma

Five studies recorded on NAFLD with 9281 participants totally in trials. Random effects model was used because of high heterogeneity ($I^2 =$ 76%). A statistically significant association was observed between NAFLD and colorectal adenoma. OR was 1.56 (95% CI: 1.22-1.99, P =0.0003) (**Figure 2A**). Only two studies showed the activities of liver enzymes (ALT and AST) in the included analysis. Heterogeneity was low (I^2 : 0% and 2%, respectively). Modest but statistically significant elevation was observed in colorectal adenoma group (ALT: MD: 3.48, 95% CI: 2.07-4.88, P < 0.00001; AST: MD: 1.30, 95% CI: 0.55-2.05, P = 0.0007) (**Figure 2B**).

Risk factors of NAFLD and colorectal adenoma

Basic data: Three RCTs were analyzed the effect of age on colorectal adenoma, and showed difference in the experiments group compared with control group. (MD: 2.81, 95% Cl: 0.33-5.28, l²: 96%, P: 0.03) (Figure 3A). Three RCTs provided sufficient data of waist circumference. As shown in Figure 3B, the length of waist had a significant elevation between these two groups (MD: 2.84, 95% CI: 2.14-3.54, I²: 53%, P < 0.00001). Five studies provided gender and BMI information of the participants. Significant difference was found on gender with high heterogeneity (OR: 1.85, 95% CI: 1.17-2.35, I²: 90%, P = 0.005) (Figure 3C). Three research papers recorded BMI as mean \pm SD, while others were in the forms of "BMI \geq 25 kg/m²". Therefore, they were analyzed in the subgroup, and found high BMI had an obvious effect during the process of colorectal adenoma (MD: 0.85, 95% CI: 0.69-1.01, I^2 : 26, *P* < 0.00001; OR = 1.34, 95% CI: 1.07-1.66, I^2 : 0%, *P* = 0.009) (**Figure 3D**).

Lipid profiles: HDL and triglyceride were reported in six studies. However, they were assessed by different forms ("mean ± SD" in three articles and "Yes/No" in others). In order to get accurate results, we analysis them in subgroup by different methods. Overall, colorectal adenoma patients showed obvious reduction in HDL (MD: -2.46, 95% CI: -3.68 to -1.24, I²: 64%, P < 0.0001) and increase in serum triglyceride (MD: 16.12, 95% CI: 8.89-23.36, I²: 63%, P < 0.0001), compared with the control group. The patients with low plasma HDL ($\leq 1.03 \text{ mmol/L}$) for men or \leq 1.29 mmol/L for women) or hypertriglyceridemia (\geq 1.7 mmol/L) seemed to get more chance of colorectal adenoma than others. OR was 1.33 of HDL (95% CI: 1.13-1.58, I²: 0%, P = 0.0008) and 1.67 of triglyceride (95%) CI: 1.67-2.55, I^2 : 83%, P = 0.02) (Figure 4A, 4B). Two RCTs provided LDL data and three recorded serum cholesterol. Colorectal adenoma was significantly related to increasing LDL and cholesterol (MD: 6.04, 95% CI: 3.60-8.48, I²: 0%, P < 0.00001; MD: 4.25, 95% CI: 0.87-7.63, I²: 64%, P = 0.01; respectively) (Figure 4C, 4D).

Glucose and HBP: FPG was reported in six studies in different ways (three in "mean ± SD" [8, 9, 11], two in "FPG \geq 5.6 mmol/l" [12, 13] and one "FPG \geq 6.1 mmol/l" [14]). The one in "FPG \geq 6.1 mmol/l" was excluded and subgroup analysis showed significant increased FPG in the experimental group (MD: 2.27, 95% CI: 1.24-3.30, I²: 49%, P < 0.0001). OR was 1.31 (95% CI: 1.13-1.61, I²: 0%, P = 0.0009). The included studies were homogeneous (Figure **5A**). However, diabetes reported in four trials had no significant relation to colorectal adenoma (OR = 1.43, 95% CI: 0.94-2.17, P = 0.09) with high heterogeneity (I²: 77%) (Figure 5B). Among the seven studies, six provided the number of HBP patients, which showed a great difference in experiment group compared to control one. OR was 1.51 (95% CI: 1.22-1.88, I2: 78%, *P* = 0.0002) (Figure 5C).

Characteristics of colorectal adenoma and NAFLD: When combining the results on studies of the population with colorectal adenoma, the RR of adenoma number was much stronger in NAFLD patients than in non-NAFLD population

Nonalcoholic fatty liver and colorectal adenoma

A HDL Study or Subgroup	Adenom Mean			Nonaden Mean		-	Weight	Mean Difference IV, Random, 95% C	Mean Difference I IV. Random, 95% CI	B Triglyceride Study or Subgroup	Adenor Mean	0	*	Nonaden Mean			Weight	Mean Difference IV, Random, 95% C	Mean Difference IV. Random, 95% Cl	
Huang 2013	49.1	13.4	216	53.5	16.1	1306	22.1%	-4.40 [-6.39, -2.41		Huang 2013	150.6			123.9			22.8%	26.70 [15.19, 38.21]		
Hwang 2010	47.5	10.4	556	49.6	11.1	2361	40.0%	-2.10 -3.07, -1.13		Hwang 2010	130.1						37.4%			
Kang 2010	51	12.8 1	122	52.7	13.2	1122	37.9%	-1.70 [-2.78, -0.62	g 	Kang 2010	124.7	74.1 1	1122	113.4	68	1122	39.8%	11.30 [5.42, 17.18]		
Total (95% CI) Heterogeneity: Tau ^a = Test for overall effect :		= 5.57,		(P = 0.06)			100.0%	-2.46 [-3.68, -1.24	J -10 Favours [Nonadenoma] Favours [Adenoma]	Total (95% Cl) Heterogeneity: Tau ^z = Test for overall effect:		ni² = 5.4		2 (P = 0.07			100.0%	16.12 [8.89, 23.36]	-50 -25 0 25 Favours INonadenomal Favours IAdenomal	50
	Adenom	na grou	No	nadenor	na group)		Odds Ratio	Odds Ratio		Adenor	na grou	IP N	onadenon	a group			Odds Ratio	Odds Ratio	
Study or Subgroup	Events	To	tal	Events	To	al W	leight M	H, Fixed, 95% Cl	M-H, Fixed, 95% Cl	Study or Subgroup	Events	s To	otal	Events	Tot	al We	ight M	-H, Random, 95% Cl	M-H, Random, 95% CI	
Kim 2010	203	3 2	63	767	10	53 2	8.7%	1.26 [0.92, 1.73]	+	Kim 2010	10	3 3	341	206	87	0 34	.1%	1.39 [1.06, 1.84]	-	
Lin 2014	1243	34	46	104	3	69 4	9.3%	1.44 [1.13, 1.82]	-	Lin 2014	55	5 19	946	49	38	39 32	.8%	2.61 [1.90, 3.58]	-	
StadImayr 2011	51	3	41	112	8	70 2	2.0%	1.19 [0.83, 1.70]	+	Stadimayr 2011	7:	2 2	263	237	105	3 33	.1%	1.30 [0.95, 1.76]	-	
Total (95% CI) Total events Heterogeneity: Chi [#] = Test for overall effect		2 (P = 0).64); I²	983 '= 0%	22	92 10	00.0%		1 0.2 0.5 1 2 5 10 rours (Nonadenoma) Favours (Adenoma)	Total (95% CI) Total events Heterogeneity: Tau [#] : Test for overall effect		0 i ² = 11.9		492 2 (P = 0.0		9 2 10 (33%).0%		0.02 0.1 1 10 5 avours [Nonadenoma] Favours (Adenoma)	
C LDL										Cholesterol	Adeno	ma gro	up	Nonader	oma gro	un		Mean Difference	Mean Difference	
	Adenor			Nonader				Mean Difference	Mean Difference	Study or Subgroup	Mean		Total	Mean			Weight	IV. Random, 95% C		
Study or Subgroup	Mean	SD 1		Mean				IV, Fixed, 95% CI	IV, Fixed, 95% Cl	Huang 2013		34.3	216	205.1		1306				_
Huang 2013	139.6			133.2		1306		6.40 [1.76, 11.04]		Hwang 2010	199.9	32.9	556	193.5	32.3	2361	37.1%			
Hwang 2010	124	31.3	556	118.1	29.8	2361	72.4%	5.90 [3.03, 8.77]		Kang 2010	196.6	34.1	1122	195.1	35.2	1122	38.3%			
Total (95% CI) Heterogeneity: Chi [#] = Test for overall effect		1 (P = 0		= 0%		3667	100.0%	6.04 [3.60, 8.48]	-20 -10 0 10 20 Favours (Nonadenoma) Favours (Adenoma)	Total (95% CI) Heterogeneity: Tau ² Test for overall effect		ii²= 5.5%	1894 9, df = 1			4789	100.0%			i a]

Figure 4. Forrest plot of lipid profiles of colorectal adenoma patients. A. HDL; B. Triglyceride; C. LDL; D. Cholesterol.

Nonalcoholic fatty liver and colorectal adenoma

A Fasting glucose	Adeno	ma group	Nonade	noma gro	oup		Mean Difference	Mean Difference	B Diabetes	Adenoma	group	Nonadenoma	group		Odds Ratio	Odds Ratio
Study or Subgroup	Mean	SD Tot	al Mean	SD	Total	Weight	IV, Fixed, 95%	I IV, Fixed, 95% CI	Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
Huang 2013	91	14.9 21	6 88.3	17.1	1306	21.9%	2.70 [0.51, 4.8	I	Huang 2013	26	216	68	1306	23.2%	2.49 [1.55, 4.01]	-
Hwang 2010	95.7	18.9 55	6 92.3	17.3	2361	35.6%	3.40 [1.68, 5.1	j –	Hwang 2010	26	556	66	2361	23.6%	1.71 [1.07, 2.71]	
Kang 2010	100.8	18.2 112	2 99.7	19.8	1122	42.5%	1.10 -0.47, 2.6	i + - -	Kang 2010	136	1122	134	1122	29.6%	1.02 [0.79, 1.31]	+
									Kim 2010	25	263	95	1053	23.6%	1.06 [0.67, 1.68]	+
Total (95% CI)		189	4		4789	100.0%	2.27 [1.24, 3.3	1 ◆								
Heterogeneity: Chi ² =	3.93. df=	2 (P = 0.14); P= 49%					+ + + + + +	Total (95% CI)		2157		5842	100.0%	1.43 [0.94, 2.17]	•
Test for overall effect								-10 -5 0 5 10	Total events	213		363				
	-		·					Favours [Nonadenoma] Favours [Adenoma]	Heterogeneity: Tau ² =	0.14: Chi ² =	12.82. dt	f = 3 (P = 0.005)); I ² = 779	6		
	Adenom	a group	Nonadenon	na group		0	dds Ratio	Odds Ratio	Test for overall effect.				//			0.01 0.1 1 10 100
Study or Subgroup	Events		Events			ht M-H.	Fixed, 95% CI	M-H, Fixed, 95% Cl			,					Favours [Nonadenoma] Favours [Adenoma]
Kim 2010	88	263	275	105			42 [1.06, 1.90]		C Hypertension	Adenoma	arous	Nonadenoma	aroun		Odds Ratio	Odds Ratio
Lin 2014	1076	1946	179	36			31 [1.05, 1.64]		Study or Subgroup	Events	Total	Events		Weight	M-H, Random, 95% CI	
									Huang 2013	86	216	251		15.3%	2.78 [2.05, 3.77]	
Total (95% CI)		2209		142	2 100.0	6 13	35 [1.13, 1.61]	•	Hwang 2010	83	556	255	2361		1.45 [1.11, 1.89]	
Total events	1164	2200	454	112					Kang 2010	392	1122	337		19.1%	1.25 [1.05, 1.49]	
TOTAL CACINO		1/0 - 0.67							Kim 2010	67	263	243		15.1%	1.14 [0.83, 1.56]	
Hotorogonoity Chi?-										1161	1946	187	369	17.8%	1.44 [1.15, 1.80]	
Heterogeneity: Chi ² =		• •	,1 - 0 %					.01 0.1 1 10 100	Lin 2014							
Heterogeneity: Chi ² = Test for overall effect :		• •	,1 - 0.0					.01 0.1 1 10 100 vours (Nonadenoma) Favours (Adenoma)	Stadimayr 2011	243	341	538	870		1.53 [1.17, 2.01]	
•		• •	,1 - 0.0						Stadimayr 2011		341		870	16.3%	1.53 [1.17, 2.01]	•
•		• •								243		538	870			•
•		• •	,1 - 0.0						Stadimayr 2011		341		870	16.3%	1.53 [1.17, 2.01]	•
•		• •	,1 - 0.0						Stadimayr 2011 Total (95% CI)	243 2032	341 4444	538	870 7081	16.3% 100.0%	1.53 [1.17, 2.01]	* *
•		• •	,1 - 0 %						Stadimayr 2011 Total (95% CI) Total events	243 2032 0.06; Chi ² =	341 4444 = 22.62, d	538 1811 If = 5 (P = 0.000	870 7081	16.3% 100.0%	1.53 [1.17, 2.01] 1.51 [1.22, 1.88]	•

Figure 5. Forrest plot of glucose and hypertension of colorectal adenoma patients. A. Fasting glucose; B. Diabetes; C. Hypertension.

Characteristic	n of studies	References		Heterog	P	
	n of studies	References	RR (95% CI)	P value	l² (%)	P _{difference}
Location	4	Huang, Hwang				
Distal		St, Wong	0.90 [0.75, 1.07]	0.05	61	0.24
Proximal			1.10 [0.92, 1.31]	0.07	58	0.29
Size	2	Huang, Hwang				
< 10 mm			1.0 [0.97, 1.04]	0.19	41	0.98
≥ 10 mm			0.99 [0.56,1.75]	0.23	32	0.98
Number	3	Huang, Hwang				
< 3		St	0.95 [0.91, 0.99]	0.91	0	0.02
≥3			1.52 [1.08, 2.13]	0.54	0	0.02
Advanced adenoma	5	Huang, Hwang				
No		St, Wong,	1.12 [0.71, 1.76]	0.003	75	0.64
Yes		Lin	0.99 [0.92, 1.06]	0.0004	81	0.83

Table 2. Stratified Analysis of Characteristics of Colorectal Adenoma in NAFLD Patients

(l²: 0%, *P* = 0.02). Further analysis found that NAFLD patients had a higher risk to get multiple adenomas of colon (n ≥ 3) (RR: 1.52, 95% CI: 1.08-2.13, *P* = 0.02). However, the results showed no significant association between NAFLD and location/size of colorectal adenoma (Location: distal: RR: 0.90, 95% CI: 0.75-1.07, *P* = 0.24, proximal: RR: 1.10, 95% CI: 0.92-1.31, P = 0.29; Size: < 10 mm: RR: 1.0, 95% CI: 0.97-1.04, *P* = 0.98, ≥ 10 mm: RR: 0.99, 95% CI: 0.56-1.75, P = 0.98). Besides, NAFLD patients had a similar chance to get advanced adenoma in colorectal adenoma population (RR: 0.99, 95% CI: 0.92-1.06, l²: 81%, *P* = 0.83) (**Table 2**).

Discussion

NAFLD is a popular issue in public health due to its epidemiologic burden. It is now recognized to represent the hepatic manifestation of the metabolism syndromes, which is closely associated with obesity, hyperlipidemia, hyperglycemia, and lifestyle such as dietary and exercises. It is well known there is strong relationship between the intestine and liver [16]. Not only they have the same origin in embryology the foregut, but also the liver continuously receives intestinal blood through the portal system. Several existing studies have demonstrated that the patients with NAFLD have higher rates of prevalent colonic diseases than their counterparts without NAFLD [8, 9, 11-15, 17], though NAFLD has no influence on the prognosis in CRC patients [18]. In addition, modulation of gut microbiota could reduce clinical symptoms of NAFLD [16, 19, 20]. As mentioned above, the well-known risk factors of CRC, a common cancer in the world, are high-fat, lowfiber intake, less physical activity, alcoholic drinking and a family history of CRC21. Interestingly, it shared several aforementioned risks of NAFLD. Colorectal adenoma is recognized as a precursor of CRC through the adenoma-carcinoma sequence [22, 23]. It is necessary to detect and treat colorectal adenoma, and then CRC could be prevented as early as possible.

To provide a objective basis for clinical recommendations, a meta-analysis was conducted, which recruited a total of 11,905 individuals from four cross-sectional and three cohort studies. To our knowledge, this is the first metaanalysis on this topic to assess the association between NAFLD and colorectal adenoma. Using the NOS, it could be found that seven studies included in this meta-analysis were of high quality. NAFLD was a predictor of colorectal adenoma with OR of 1.56 (95% CI: 1.22-1.99, P = 0.0003). Its relevant conditions (overweight, impaired fasting glucose, hyperlipidemia and hypertension) increased the risk of colorectal adenoma (P < 0.05). Besides, elevated ALT and AST reflecting the severity of liver injury were found to be associated with colorectal adenoma in NAFLD patients (P < 0.05).

In our meta-analysis, some clinical studies in this field were excluded due to the different way of group division. Actually, most of them shared similar opinions. Kim et al. [24] detected fast-

ing serum insulin and homeostasis model assessment (HOMA)-IR of 3,606 participants with histologically confirmed colorectal adenoma and 6.019 controls with no abnormal findings on colonoscopy. They confirmed fasting serum insulin and HOMA-IR were significantly higher in colorectal adenoma population compared with controls. Multivariate regression analysis was used and revealed the experimental participants with higher quartiles of fasting serum insulin levels (P < 0.05) as well as HOMA-IR (P < 0.05). A retrospective cohort study of 375 patients undergoing index colonoscopy was conducted in the United States to determine the association between DM and colorectal adenoma [25]. The result showed colorectal adenoma was higher in those ages 40-49 years with DM than that of the participants at the same age but without DM (OR = 3.1; 95% CI: 1.5-6.4; P = 0.002). Besides, obesity-related disorders were also ascertained as a direct and independent risk for colorectal events [26]. In contrast, Touzin's publication has vielded diverse result [10]. After performing a retrospective cohort observational study on 233 patients, they found no significant increase in incidence of colorectal adenomas in NASH patients.

The underlying mechanism of "NAFLD-colorectal adenoma relationship" was complex and still unclear. One of the possibilities is considered to be the growth promoting effects of adipokines [27]. Leptin expression, decreased in liver tissues of NAFLD individual [28], was more frequently observed in colonic adenomas, especially in larger adenocarcinoma in situ, which might affect colonic tumorigenesis and progression, especially to obese patients.

However, the present meta-analysis has several limitations. First, only one study diagnosed NAFLD by histology, the others were based on ultrasonography and the exclusion of known causes of chronic liver disease. Although the gold standard for NAFLD evaluation remains liver biopsy, it is difficult to carry out invasive operation in large populations. Ultrasound and computed tomography are the commonest ways in clinical practice due to certain sensitivity and specificity in detecting steatosis [29, 30]. Second, NAFLD ranges from simple steatosis to NASH. The latter is related to fibrosis, cirrhosis and even hepatocellular carcinoma [31, 32]. In the present meta-analysis, NAFLD histological subtypes were not taken into account. Despite these limitations, the present metaanalysis also has notable strengths. Firstly, pooling data from a number of clinical trials were obtained. To some indexes recorded by different ways ("mean ± SD" or "Yes/No"), we assessed both by Revman 5.2. Therefore, statistical power of the analysis was more accurate compared with a single study. Secondly, we not only analyzed the association among NAFLD, its risk factors and colorectal adenoma, but also studied the effect of NAFLD on the characteristics of colorectal adenoma. Thirdly, all studies in this meta-analysis scored 7 or more by NOS, which meant they were of high quality. Last but not least, seven studies originated from seven different research groups in five regions and a variety of ethnic background was included.

In conclusion, the present systematic review and meta-analysis revealed that NAFLD is significantly associated with increased risk of colorectal adenoma, especially with its number. These two diseases shared the common risks like obesity (BMI ≥ 25 kg/m²), dysfunction of lipid profiles and HBP. Although there is no significant association between DM and colorectal adenoma in the present meta-analysis, it could be found hyperglycemia (FPG ≥ 5.6 mmol/l) patients got more chance of colorectal adenoma. Therefore, once NAFLD is diagnosed, the individual colorectal risk factor profile should be reviewed and modified appropriately.

Acknowledgements

Supported by National Natural Science Foundation of China (No. 81400610, No. 514084-38); The Project-sponsored by SRF for ROCS, SEM; Shanghai Pujiang Program (No. 14PJ140-8300); Program of Shanghai Municipal Commission of Health and Family Planning for Youth (No. 20134Y043) and Li Jieshou Academician Foundation (No. LJS_201319).

Disclosure of conflict of interest

N/A.

Abbreviations

ALT, alanine aminotransferase; AST, aspartate transaminase; BMI, body mass index; CI, confi-

dence interval; DM, diabetes; FPG, fasting plasma glucose; HBP, high blood pressure or hypertension; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MD, mean difference; NAFLD, nonalcoholic fatty liver disease; NOS, Newcastle-Ottawa Scale; OR, odds ratio; RR, rate ratio.

Address correspondence to: Jianjun Qin, Shanghai Institute of Disaster Prevention and Relief, Tongji University, 1239 Siping Rd, Shanghai 200092, China. Fax: +86 21 65987989; E-mail: 137742857-74@163.com

References

- [1] Chalasani N, Younossi Z, Lavine JE, Dieh AM, Brunt EM, Cusi K, Charlton M, Sanyal AJ; American Association for the Study of Liver Diseases; American College of Gastroenterology; American Gastroenterological Association. The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology 2012; 142: 1592-609.
- [2] Pan JJ, Fallon MB. Gender and racial differences in nonalcoholic fatty liver disease. World J Hepatol 2014; 6: 274-283.
- [3] Polyzos SA, Kountouras J, Zavos C. Nonalcoholic fatty liver disease: the pathogenetic roles of insulin resistance and adipocytokines. Curr Mol Med 2009; 9: 299-314.
- [4] Hui E, Xu A, Bo Yang H, Lam KS. Obesity as the common soil of non-alcoholic fatty liver disease and diabetes: Role of adipokines. J Diabetes Investig 2013; 4: 413-425.
- [5] Ryoo JH, Suh YJ, Shin HC, Cho YK, Choi JM, Park SK. Clinical association between non-alcoholic fatty Liver disease and the development of hypertension. J Gastroenterol Hepatol 2014; [Epub ahead of print].
- [6] Kargulewicz A, Stankowiak-Kulpa H, Grzymisławski M. Dietary recommendations for patients with nonalcoholic fatty liver disease. Prz Gastroenterol 2014; 9: 18-23.
- [7] Sawbridge D, Probert C. Population-based screening in colorectal cancer - current practice and future developments: faecal biomarkers review. J Gastrointestin Liver Dis 2014; 23: 195-202.
- [8] Huang KW, Leu HB, Wang YJ, Luo JC, Lin HC, Lee FY, Chan WL, Lin JK, Chang FY. Patients with nonalcoholic fatty liver disease have higher risk of colorectal adenoma after negative baseline colonoscopy. Colorectal Dis 2013; 15: 830-835.

- [9] Hwang ST, Cho YK, Park JH, Kim HJ, Park DI, Sohn CI, Jeon WK, Kim BI, Won KH, Jin W. Relationship of non-alcoholic fatty liver disease to colorectal adenomatous polyps. J Gastroenterol Hepatol 2010; 25: 562-567.
- [10] Touzin NT, Bush KN, Williams CD, Harrsion SA. Prevalence of colonic adenomas in patients with nonalcoholic fatty liver disease. Therap Adv Gastroenterol 2011; 4: 169-176.
- [11] Kang HW, Kim D, Kim HJ, Kim CH, Kim YS, Park MJ, Kim JS, Cho SH, Sung MW, Jung HC, Lee HS, Song IS. Visceral obesity and insulin resistance as risk factors for colorectal adenoma: a cross-sectional, case-control study. Am J Gastroenterol 2010; 105: 178-187.
- [12] Kim KS, Moon HJ, Choi CH, Baek EK, Lee SY, Cha BK, Lee HW, Kim HJ, Do JH, Chang SK. The Frequency and Risk Factors of Colorectal Adenoma in Health-Check-up Subjects in South Korea: Relationship to Abdominal Obesity and Age. Gut Liver 2010; 4: 36-42.
- [13] Lin XF, Shi KQ, You J, Liu WY, Luo YW, Wu FL, Chen YP, Wong DK, Yuen MF, Zheng MH. Increased risk of colorectal malignant neoplasm in patients with nonalcoholic fatty liver disease: a large study. Mol Biol Rep 2014; 41: 2989-2997.
- [14] Stadlmayr A, Aigner E, Steger B, Scharinger L, Lederer D, Mayr A, Strasser M, Brunner E, Heuberger A, Hohla F, Steinwendner J, Patsch W, Datz C. Nonalcoholic fatty liver disease: an indepent risk factor for colorectal neoplasia. J Intern Med 2011; 270: 41-49.
- [15] Wong VW, Wong GL, Tsang SW, Fan T, Chu WC, Woo J, Chan AW, Choi PC, Chim AM, Lau JY, Chan FK, Sung JJ, Chan HL. High prevalence of colorectal neoplasm in patients with non-alcoholic steatohepatitis. Gut 2011; 60: 829-836.
- [16] Miele L, Marrone G, Lauritano C, Cefalo C, Gasbarrini A, Day C, Grieco A. Gut-liver axis and microbiota in NAFLD: insight pathophysiology for novel therapeutic target. Curr Pharm Des 2013; 19: 5314-5324.
- [17] Muhidin SO, MAgan AA, Osman KA, Syed S, Ahmed MH. The relationship between nonalcoholic fatty liver disease and colorectal cancer: the future challenges and outcomes of the metabolic syndrome. J Obes 2012; 2012: 637538.
- [18] Min YW, Yun HS, Chang WI, Kim JY, Kim YH, Son HJ, Kim JJ, Rhee JC, Chang DK. Influence of non-alcoholic fatty liver disease on the prognosis in patients with colorectal cancer. Clin Res Hepatol Gastroenterol 2012; 36: 78-83.
- [19] Eslamparast T, Eghtesad S, Hekmatdoost A, Poustchi H. Probiotics and Nonalcoholic Fatty liver Disease. Middle East J Dig Dis 2013; 5: 129-136.
- [20] Mouzaki M, Comelli EM, Arendt BM, Bonengel J, Fung SK, Fischer SE, McGilvray ID, Allard JP.

Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology 2013; 58: 120-127.

- [21] Zhu JZ, Wang YM, Zhou QY, Zhu KF, Yu CH, Li YM. Systematic review with meta-analysis: alcohol consumption and the risk of colorectal adenoma. Aliment Pharmacol Ther 2014; [Epub ahead of print].
- [22] Yamada A, Minamiguchi S, Sakai Y, Horimatsu T, Muto M, Chiba T, Boland CR, Goel A. Colorectal Advanced Neoplasms Occur through Dual Carcinogenesis Pathways in Individuals with Coexisting Serrated Polyps. PLoS One 2014; 9: e98059.
- [23] Alecu M, Simion L, Straja N, Brătucu E. Multiple Polyps and Colorectal Cancer. Chirurgia (Bucur) 2014; 109: 342-346.
- [24] Kim EH, Kim HK, Bae SJ, Chang HS, Park HW, Do MY, Kim KJ, Jung CH, Lee WJ, Park JY, Choe J. Fasting serum insulin levels and insulin resistance are associated with colorectal adenoma in Koreans. J Diabetes Investig 2014; 5: 297-304.
- [25] Vu HT, Ufere N, Yan Y, Wang JS, Early DS, Elwing JE. Diabetes mellitus increases risk for colorectal adenomas in younger patients. World J Gastroenterol 2014; 20: 6946-6952.
- [26] Riondino S, Roselli M, Palmirotta R, Della-Morte D, Ferroni P, Guadagni F. Obesity and colorectal cancer: role of adipokines in tumor initiation and progression. World J Gastroenterol 2014; 20: 5177-5190.

- [27] Oh JS, Kim HH, Hwang HS, Yun DY, Kim BS, Lee CH, Han J, Kim HG, Jung JT, Kwon JG, Kim EY. Comparison of blood leptin concentration and colonic mucosa leptin expression in colon adenoma patients and healthy control. Korean J Gastroenterol 2014; 63: 354-360.
- [28] Ding WJ, Wang Y, Fan JG. Regulation of adipokines by polyunsaturated fatty acids in a rat model of non-alcoholic steatohepatitis. Arch Iran Med 2014; 17: 563-567.
- [29] Bora A, Alptekin C, Yavuz A, Batur A, Akdemir Z, Berköz M. Assessment of liver volume with computed tomography and comparison of findings with ultrasonography. Abdom Imaging 2014; [Epub ahead of print].
- [30] Khov N, Sharma A, Riley TR. Bedside ultrasound in the diagnosis of nonalcoholic fatty liver disease. World J Gastroenterol 2014; 20: 6821-6825.
- [31] Amarapurkar DN, Dharod M, Gautam S, Patel N. Risk of development of hepatocellular carcinoma in patients with NASH-related cirrhosis. Trop Gastroenterol 2013; 34: 159-63.
- [32] Shibahara J, Ando S, Sakamoto Y, Kokudo N, Fukayama M. Hepatocellular carcinoma with steatohepatitic features: a clinicopathological study of Japanese patients. Histopathology 2014; 64: 951-962.