Original Article TGF-β1 C-509T and T869C polymorphisms and cancer risk: a meta analysis

You-You Gu1*, Huan Wang2,3*, Su Wang1

¹Department of Endocrinology, The Fifth Central Hospital of Tianjin, China; ²Community Health Service Center of Hu Jiayuan Street, Binhai New District, Tianjin, China; ³Graduate School of Tianjin Medical University, China. ^{*}Equal contributors.

Received March 24, 2015; Accepted October 14, 2015; Epub October 15, 2015; Published October 30, 2015

Abstract: Objective The association between polymorphism of TGF-β1 and cancer risk has been discussed. Method A comprehensive electronic search was performed to identify articles published up until 12 December 2014 in Medline and Embase databases. The statistical analysis was performed by STATA 11.0 software and Review Manager 5.1 software. Results: In the present meta analysis, for C-509T (31 studies, 12944 cases and 15530 controls), no significant cancer risk was found in the overall analysis. In subgroup analysis, C-509T polymorphism was associated with decreased cancer risk in Asian population (OR=0.73 and 95% CI=0.59-0.90 for CT vs. CC), and there were no significant risks in gastric cancer, breast cancer, and other cancers. For T869C (11 studies, 2730 cases and 2973 controls), significantly increased risks of cancer were observed, and the ORs (95% CI) were 1.81 (1.18-2.78) for CC vs. TT, 1.50 (1.07-2.09) for TC vs. TT, 1.61 (1.13-2.30) for TC+CC vs. TT and 1.38 (1.11-1.73) for C-allele vs. T-allele, respectively. Subgroup analyses stratified by ethnicity and types of cancer were also performed, and the results indicated that T869C polymorphism was associated with cancer risk in Caucasion [1.93 (1.52-2.46) for TC vs. TT], but not in Asian [1.23 (0.80-1.90) for TC vs. TT]. We also observed that the T869C was associated with increased risk of squamous cell cancer of head and neck (SCCHN) [1.34 (1.07-1.67) for TC vs. TT]. Conclusion Decreased cancer risk association was observed in Asian for C-509T and significantly increased risk of cancer was observed for T869C.

Keywords: TGF-β1, polymorphism, cancer, meta-analysis

Introduction

Cancer is thought to be a multifactorial, multigenetic, and multistage disease resulting from complex interactions between environmental and genetic factors. Transforming growth factor beta-1 (TGF- β 1), as a multifunctional cytokine, it influences the process of cell cycle regulation, cell differentiation, migration and vascularization, which has been extensively studied for many years. The TGF-β1 gene is located at 19q13.1-q13.3, and contains several single nucleotide polymorphisms (SNPs), which affect the gene function [1]. The commonly studied C-509T and T869C polymorphisms, which are located in the promoter region of TGF-β1 gene, may directly influence the expression profiles. The relationship between TGF-B1 polymorphism and risk of cancer remains inconclusive [2]. Therefore, we chose to perform a meta analysis to assess the association between TGF-β1 polymorphism and cancer risk.

Materials and methods

Search strategy, inclusion criteria, exclusion criteria, and information extracted

A comprehensive electronic search was performed to identify articles published up until 12 December 2014 in Medline and Embase databases by two investigators (Y. Gu and H. Wang). The keywords we used were: "TGF-\beta1", "C-509T", "T869C", "polymorphism", "cancer", "neoplasm", "carcinoma", "tumor", and references of all the included articles were also hand searched. Studies included in our meta analysis had to meet the following inclusion criteria: 1) prospective cohort or case control studies, 2) studies investigating with TGF-B1 polymorphism and cancer risk, and 3) containing available genotype frequency. The exclusion criteria: 1) no control group, 2) duplicate Publication, 3) no available data, 4) low quality research. Information regarding the following

TGF-B1 polymorphism and cancer risk

						Gen	otype	distrib	ution		T al	lele	Quality - score	HWE
Author	Years	Country	Ethnicity	Type of cancer		case			contro	ol	(frequ	iency)		
					TT	СТ	CC	TT	СТ	CC	case	control	Score	
Amirghofran	2009	Iran	Asian	Colorectal cancer	29	54	51	41	64	33	41.79%	52.90%	9	0.41
Babyshkina	2011	Siberian	Caucasian	Breast cancer	21	108	89	54	133	103	34.40%	41.55%	7	0.34
Berndt	2007	America	Caucasian	Colorectal cancer	74	319	340	52	345	356	31.86%	29.81%	5	0.01
Bhayal	2011	India	Caucasian	Gastric cancer	9	35	26	6	42	52	37.86%	27.00%	5	0.51
Chung	2007	Korea	Asian	Colorectal cancer	30	69	53	53	137	60	42.43%	48.60%	9	0.13
Cingeetham	2013	India	Caucasian	Breast cancer	23	66	64	22	36	70	36.60%	31.25%	5	0.00
Crivello	2006	Italy	Caucasian	Colorectal cancer	14	29	19	22	58	44	45.97%	41.13%	6	0.70
David	2007	America	Caucasian	Breast cancer	89	506	600	154	723	786	28.62%	31.00%	6	0.51
Dunning	2003	UK	Caucasian	Breast cancer	328	1391	1617	284	1441	1727	30.68%	29.10%	8	0.49
Falleti	2008	Italy	Caucasian	Hepatocellular cancer	53	85	50	22	61	57	50.80%	37.50%	7	0.40
Gu	2010	China	Asian	Gastric cancer	132	250	202	133	225	110	44.01%	52.46%	5	0.43
Hu	2012	China	Asian	Nasopharyngeal cancer	80	224	208	172	337	203	37.50%	47.82%	5	0.17
Jin	2007	China	Asian	Esophageal cancer	47	57	119	156	321	119	33.86%	53.10%	9	0.05
JinG	2007	China	Asian	Gastric cancer	161	228	247	156	321	199	43.24%	46.82%	9	0.23
Kang	2005	Korea	Asian	Lung cancer	104	197	131	105	223	104	46.88%	50.12%	8	0.50
Li	2008	China	Asian	Gastric cancer	49	87	31	51	76	66	55.39%	46.11%	5	0.00
Lin	2010	China	Asian	Gastric cancer	61	119	94	60	139	78	43.98%	46.75%	7	0.90
Peng	2009	China	Asian	Hepatocellular cancer	92	198	89	93	156	50	50.40%	57.19%	5	0.26
Qi	2009	China	Asian	Colorectal cancer	45	69	36	140	257	106	53.00%	53.38%	6	0.55
Qianren	2004	Germany	Caucasian	Breast cancer	26	161	204	38	214	256	27.24%	28.54%	6	0.46
Quarmby	2002	UK	Caucasian	Breast cancer	7	45	49	9	37	56	29.21%	26.96%	6	0.43
Shin	2005	China	Asian	Breast cancer	299	559	260	318	628	260	51.74%	52.40%	8	0.13
Singh	2009	India	Caucasian	Cervical cancer	34	65	51	28	81	53	44.33%	42.28%	8	0.76
Vishnoi	2008	India	Caucasian	Gallbladder cancer	24	72	30	34	96	60	47.62%	43.16%	8	0.68
Wei	2007	China	Asian	Esophageal cancer	69	122	56	63	124	73	52.63%	48.08%	5	0.47
WeiY	2007	China	Asian	Nasopharyngeal cancer	45	46	17	31	60	29	62.96%	50.83%	9	0.99
WU	2010	China	Asian	Pancreatic cancer	16	63	78	9	53	55	30.25%	30.34%	9	0.44
Wu	2009	China	Asian	Colorectal cancer	8	40	24	9	53	55	38.89%	30.34%	8	0.44
Yan	2007	China	Asian	Gastric cancer	63	90	103	76	149	78	42.19%	49.67%	6	0.77
Zhang	2009	China	Asian	Colorectal cancer	50	91	65	278	391	168	46.36%	56.57%	7	0.15
Zhang	2008	China	Asian	Gastric cancer	92	200	122	99	209	106	46.38%	49.15%	7	0.84

Table 1. Characteristics of primary studies for C-509T in the meta-analysis

HWE P value for Hardy-Weinberg equilibrium in controls.

aspect was carefully retrieved from each study by two reviewers (Y. Gu and H. Wang): author name, year and country of the study, and ethnicity, type of cancer, genotyping method and numbers of genotyped cases and controls, and the evidence of Hardy-Weinberg equilibrium (HWE) in the controls.

The New castle Ottawa scale (NOS) was used for quality evaluation of all included articles, and the articles were graded by two researchers independently. Quality scores ranged from 0 to 9, with a higher score indicating better quality [3].

Statistic analyses

The odds ratio (OR) and its 95% confidence interval (95% CI) were used to investigate the

strength of the association. The significance of pooled ORs was tested by Z test (P<0.05 was considered significant). The heterogeneity between the individual studies was calculated by Q test, and the significance was P<0.05 level. We also calculated the f^2 that represents the percentage of total variation across studies.

We used the fixed effects model when no heterogeneity of the results of studies; otherwise, the random effects model was adopted. The departure of frequencies from those expected under Hardy-Weinberg equilibrium was assessed by chi-square goodness-of-fit tests in control subjects. The potential publication bias was estimated by Egger's linear regression test and Begg and Mazumdar adjusted rank correlation test, and we adopt sensitivity analyses to assess the stability of the results. The statisti-

						Geno	otype (distrib	ution					
Author	Years	Country	Ethnicity	Type of cancer		case		(contro	I		llele Jency)	Quality score	HWE
					CC	тс	TT	CC	TC	TT	case	control	-	
Carneiro	2012	Brazil	Caucasian	SCCHN	22	29	11	20	19	23	58.87%	47.58%	5	0.00
Crivello	2006	Italy	Caucasian	Digestive tract cancer	35	23	4	41	61	22	75.00%	57.66%	7	0.93
Gu	2010	China	Asian	Digestive tract cancer	137	257	190	135	229	104	45.46%	53.31%	8	0.71
Hu	2012	China	Asian	SCCHN	127	266	129	171	354	187	49.81%	48.88%	5	0.89
Kang	2005	Korea	Asian	Lung cancer	107	200	125	108	218	106	47.92%	50.23%	6	0.85
Li	2008	China	Asian	Digestive tract cancer	55	89	23	46	82	65	59.58%	45.08%	5	0.05
Poonam	2011	India	Caucasian	SCCHN	31	58	51	11	39	70	42.86%	25.42%	6	0.12
Quarmby	2002	UK	Caucasian	Breast cancer	9	48	44	7	41	54	32.67%	26.96%	9	0.84
Teixeira	2011	Portugal	Caucasian	Lung cancer	53	165	87	44	166	170	44.43%	33.42%	8	0.72
Wei	2007	China	Asian	Digestive tract cancer	77	123	47	64	114	82	56.07%	46.54%	9	0.06
WeiY	2007	China	Asian	SCCHN	43	49	16	29	61	30	62.50%	49.58%	6	0.85

Table 2. Characteristics of primary studies for T869C in the meta-analysis

HWE P value for Hardy-Weinberg equilibrium in controls, SCCHN squamous cell cancer of head and neck.

cal analysis was performed by STATA 11.0 software (College Station, TX) and Review Manage 5.1 software (The Cochrane Collaboration, Oxford, UK).

Results

Eligible studies

A total of 31 studies for C-509T [4-34] and 11 ones for T869C [10, 14, 15, 18, 19, 24, 28, 29, 35-37] met the inclusion criteria. For C-509T, these studies encompassed 19 with Asian and 12 with Caucasian; and each subgroup (including breast cancer, colorectal cancer, gastric cancer) had 7 studies and other cancers had 10 studies. Six studies with Asian and 5 studies with Caucasian were included in the analysis for T869C polymorphism, and there were 4 studies focused on digestive tract cancer, 4 on SCCHN and 3 on other cancers (**Tables 1-3**).

TGF-β1 C-509T

We did not find significant association between cancer risk and TGF- β 1 C-509T. Pooled ORs were 0.90 (95% CI=0.75-1.07, P_h<0.00001, l^2 =79%), 0.86 (95% CI=0.75-1.00, P_h<0.00001, l^2 =83%), 0.88 (95% CI=0.76-1.02, P_h<0.00001, l^2 =85%) and 0.95 (95% CI=0.86-1.03, P_h<0.00001, l^2 =82%), respectively, for TT vs. CC, CT vs. CC, TT+CT vs. CC and T-allele vs. C-allele comparisons. We used subgroup analyses for ethnic group and cancer type to avoid heterogeneity influence. In the stratified analysis, C-509T polymorphism was associated with decreased cancer risk in Asian population (OR=0.73 and 95% CI=0.59-0.90 for CT vs. CC), but not in Caucasion (OR=1.03 and 95%

CI=0.96-1.10 for CT vs. CC). And there were no significantly risks with gastric cancer, breast cancer, and other cancers. Three studies were found with significant deviation from HWE (Berndt 2007, Cingeetham 2013, Li 2008) (Table 3; Figure 1).

TGF-β1 T869C

We observed significantly increased risk of cancer with TGF-B1 T869C, and the Ors (95% CI) were 1.81 (1.18, 2.78) for CC vs. TT, 1.50 (1.07, 2.09) for TC vs. TT, 1.61 (1.13, 2.30) for TC+CC vs. TT, 1.38 (1.11, 1.73) for C-allele vs. T-allele. And, in the stratified analysis, robust increased risk of SCCHN was observed (OR= 2.14, 95% CI=1.07-4.29, P_b=0.004, I²=77% for CC vs. TT; OR=1.34, 95% CI=1.07-1.67, P_= 0.05, l²=62% for TC vs. TT; OR=1.81, 95% CI=1.08-3.04, P_b=0.008, *I*²=75% for TC+CC vs. TT; OR=1.54, 95% CI=1.03-2.29, P_b=0.0006, I²=83% for C-allele vs. T-allele). But it conferred no significant risks with digestive tract cancer and other cancers. In the subgroup analysis by ethnicity, T869C were estimated as 1.93 (95% CI=1.52-2.46, P_b=0.70, *I*²=0%) for TC vs. TT in Caucasion, which showed significant association of the T869C with increased cancer risk in Caucasion, but not in Asian One study was found with significant deviation from HWE (Carneiro 2012). The results of the meta analysis were not altered after exclusion of studies of HWD (Table 3; Figure 2).

Publication bias, sensitivity analyses

Sensitivity analyses indicated that no individual study significantly alter the pooled ORs, demon-

TGF- β 1 polymorphism and cancer risk

C-509T		Sample size	TT vs. CC				CT vs	TT+CT vs. CC				T-allele vs. C-allele						
		Case/control	OR (95% CI)	Ρ	$P_{\rm h}$	² (%)	OR (95% CI)	Ρ	$P_{\rm h}$	² (%)	OR (95% CI)	Ρ	$P_{\rm h}$	l² (%)	OR (95% CI)	Ρ	$P_{\rm h}$	² (%)
Total	31	12944/15530	0.90 [0.75, 1.07] R	0.24	<0.01	79	0.86 [0.75, 1.00] R	0.05	<0.01	83	0.88 [0.76, 1.02] R	0.08	<0.01	85	0.95 [0.86, 1.03] R	0.22	<0.02	1 82
Ethnicities																		
Asian	19	6221/7918	0.77 [0.63, 0.96] R	0.02	<0.01	77	0.73 [0.59, 0.90] R	<0.01	<0.01	83	0.75 [0.61, 0.92] R	<0.01	<0.01	85	0.86 [0.77, 0.97] R	0.02	<0.02	1 82
Caucasian	12	6723/7612	1.16 [0.90, 1.50] R	0.25	<0.01	67	1.03 [0.96, 1.10] F	0.48	0.09	38	1.09 [0.96, 1.24] R	0.17	0.01	53	1.08 [0.97, 1.21] R	0.15	<0.02	1 66
Type of cancer																		
Breast cancer	7	6512/7349	0.89 [0.70, 1.14] R	0.36	<0.01	66	1.00 [0.93, 1.07] F	0.99	0.09	45	1.00 [0.93, 1.07] F	0.8	0.06	51	1.02 [0.92, 1.13] R	0.67	0.03	58
Colorectal cancer	7	1594/2722	0.84 [0.55, 1.28] R	0.41	<0.01	74	0.81 [0.70, 0.93] F	0.01	0.11	42	0.77 [0.59, 1.00] R	0.05	<0.01	66	0.88 [0.73, 1.07] R	0.2	<0.02	1 72
Gastric cancer	7	2401/2431	0.89 [0.65, 1.22] R	0.47	<0.01	73	0.83 [0.58, 1.17] R	0.28	<0.01	84	0.86 [0.62, 1.18] R	0.35	<0.01	84	0.86 [0.74, 1.00] R	0.04	<0.0	1 69
Other cancer ^a	10	2437/3028	1.02 [0.64, 1.61] R	0.95	<0.01	87	0.87 [0.57, 1.33] R	0.52	<0.01	90	0.93 [0.61, 1.42] R	0.74	<0.01	91	1.00 [0.78, 1.30] R	0.98	<0.02	1 90
HWE	28	11891/14456	0.85 [0.71, 1.02] R	0.07	<0.01	79	0.81 [0.70, 0.94] R	<0.01	<0.01	82	0.83 [0.72, 0.96] R	0.01	<0.01	84	0.91 [0.88, 0.95] R	<0.01	<0.0	1 82
Publication bias tests																		
Begg and Mazumdar's I	P		0.592				0.103				0.002				0.541			
Egger's P			0.558				0.299				0.345				0.928			
T869C	869C N Sample size		CC vs. TT				TC vs. TT				TC+CC vs. TT				C-allele vs. T-allele			
		Case/control	OR (95% CI)	Р	P _h	2 (%)	OR (95% CI)	Ρ	$P_{\rm h}$	² (%)	OR (95% CI)	Р	P _h	² (%)	OR (95% CI)	Ρ	$P_{\rm h}$	² (%)
Total	11	2730/2973	1.81 [1.18, 2.78] R	<0.01	<0.01	85	1.50 [1.07, 2.09] R	0.02	<0.01	83	1.61 [1.13, 2.30] R	<0.01	<0.01	87	1.38 [1.11, 1.73] R	0.005	<0.02	1 87
Ethnicities																		
Asian	6	2060/2185	1.39 [0.82, 2.35] R	0.22	<0.01	88	1.23 [0.80, 1.90] R	0.35	<0.01	87	1.30 [0.82, 2.06] R	0.27	<0.01	90	1.18 [0.90, 1.54] R	0.23	<0.0	189
Caucasian	5	670/788	2.67 [1.91, 3.72] F	<0.01	0.54	0	1.93 [1.52, 2.46] F	<0.01	0.7	0	2.09 [1.66, 2.62] F	<0.01	0.57	0	1.70 [1.46, 1.98] F	<0.01	0.31	. 16
Type of cancer																		
Digestive tract cancer	4	1060/1045	1.95 [0.70, 5.46] R	0.2	<0.01	93	1.59 [0.67, 3.76] R	0.34	<0.01	91	1.76 [0.70, 4.43] R	0.23	<0.01	93	1.40 [0.83, 2.37] R	0.21	<0.0	1 93
SCCHN	4	832/1014	2.14 [1.07, 4.29] R	0.03	<0.01	77	1.34 [1.07, 1.67] F	0.01	0.05	62	1.81 [1.08, 3.04] R	0.02	<0.01	75	1.54 [1.03, 2.29] R	0.03	<0.02	1 83
Other cancer ^b	3	838/914	1.43 [0.66, 3.10] R	0.37	<0.01	82	1.29 [0.69, 2.40] R	0.05	<0.01	87	1.32 [0.70, 2.51] R	0.39	<0.01	89	1.23 [0.82, 1.84] R	0.31	<0.02	1 86
HWE	10	2668/2911	1.78 [1.14, 2.79] R	0.01	<0.01	86	1.42 [1.01, 1.99] R	0.04	<0.01	84	1.55 [1.07, 2.24] R	0.02	<0.01	88	1.08 [1.08, 1.74] R	<0.01	<0.0	1 88
Publication bias tests																		
Begg and Mazumdar's I	P		0.755				0.436				0.161				0.640			
Egger's P			0.291				0.803				0.040				0.838			

Table 3. Meta-analysis of the associations between TGF-B1 C-509T and T869C polymorphisms and cancer risk

P_h: P Values for heterogeneity from Q test, P: P values for pooled ORs tested by Z test; R: random-effect model, F: fixed-effect model; SCCHN squamous cell cancer of head and neck; ^aOther cancer including hepatocellular cancer, nasopharyngeal cancer, esophageal cancer, lung cancer, cervical cancer, gallbladder cancer, pancreatic cancer; ^bOther cancer including breast cancer and lung cancer.

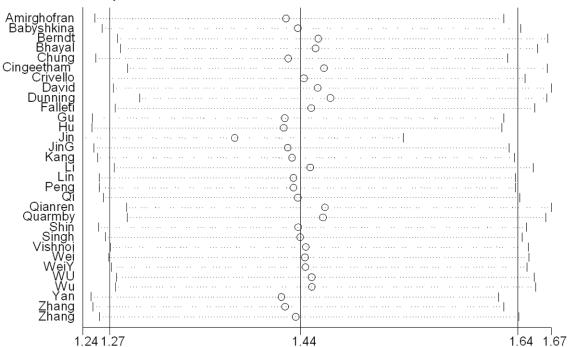
TGF-B1 polymorphism and cancer risk

Official and other strength	case		Conti		14/	Odds Ratio	Odds Ratio
Study or Subgroup Amirghofran2009	Events 83	<u>1 otal</u> 134	Events 105	1000 138	2.7%	M-H, Random, 95% Cl 0.51 [0.30, 0.86]	M-H, Random, 95% Cl
Babyshkina2011	03 129	218	105	290	3.4%	0.80 [0.56, 1.15]	
Berndt2007	393	733	397	290 753	3.4% 3.9%	1.04 [0.85, 1.27]	
Bhayal2011	595 44	733	397 48	100	3.9% 2.4%	1.83 [0.98, 3.42]	
Chung2007	44 99	152	40 190	250	2.4%	0.59 [0.38, 0.92]	
Cingeetham 2013	99 89	152	58	128	3.0% 2.9%	1.68 [1.05, 2.70]	
Crivello2006	43	62	80	120	2.3%	1.24 [0.65, 2.39]	
David2007	43 595	02 1195	877	1663	2.3% 4.1%	0.89 [0.77, 1.03]	
Dunning2003	1719	3336	1725	3452	4.1%	1.06 [0.97, 1.17]	<u> </u>
Falleti2008	138	3330 188	83	3452 140	4.2% 2.9%	1.90 [1.19, 3.02]	
Gu2010	382	584	358	468	2.9% 3.7%	0.58 [0.44, 0.76]	
Hu2012	302 304	504 512	509	400 712	3.8%	0.58 [0.44, 0.76]	
Jin2007	304 104	223	477	596	3.5%	0.22 [0.16, 0.30]	←
JinG2007	389	636	477	676	3.9%	0.66 [0.52, 0.83]	
Kang2005	305	432	328	432	3.6%	0.73 [0.54, 0.98]	
Li2008	136	432 167	127	432 193	2.8%	2.28 [1.40, 3.72]	
Lin2010	180	274	127	277	2.0% 3.4%	0.75 [0.52, 1.08]	
Peng2009	290	379	249	299	3.4% 3.3%	0.65 [0.44, 0.96]	
Qi2009	290 114	150	249 397	299 503	3.3% 3.1%	0.85 [0.44, 0.96]	
Qianren2004	114	391	397 252	503 508	3.7%	0.83 [0.55, 1.50]	
Quarmby2002	52	101	202 46	102	2.6%	1.29 [0.74, 2.24]	
Shin2005	858	1118	40 946	1206	2.0% 4.0%	0.91 [0.75, 1.10]	
Singh2009	606 99	150	940 109	1206	4.0% 2.9%	0.94 [0.59, 1.51]	
Vishnoi2008	99 96	126	130	192	2.9%	1.48 [0.89, 2.46]	
Wei2007	90 191	247	187	190 260	2.0% 3.2%	1.33 [0.89, 1.99]	<u> </u>
WeiY2007	91	247 108	91	120	3.2% 2.2%	1.33 [0.88, 3.32]	
Wu2009	79	108	62	120	2.2%	• • •	
WU2009	79 48	72	62	117	2.9%	0.90 [0.56, 1.45] 1.77 [0.96, 3.26]	<u> </u>
Yan2007	40 153	256	225	303	2.4% 3.4%	• • •	
Zhang2008	153 292	206 414	225 308	303 414	3.4% 3.6%	0.51 [0.36, 0.74] 0.82 [0.61, 1.12]	
-	292 141	414 206	508 669	414 837	3.6% 3.5%		
Zhang2009	141	200	009	03/	3.3%	0.54 [0.39, 0.76]	
Total (95% CI)		12944		15530	100.0%	0.88 [0.76, 1.02]	•
Total events	7819		9958				
Heterogeneity: Tau ² =	0.12; Chi ²	= 198.4	9, df = 30	(P < 0.0	00001); l²	= 85%	0.2 0.5 1 2 5
Test for overall effect:							U.2 U.5 1 2 5 Favours [case] Favours [control]

Figure 1. Forest plot of the meta-analysis for TGF-β1 C-509T polymorphism associated with overall cancer risk (TT+CT vs. CC). Random effect model was made.

strating the results of this meta analysis were stable (**Figures 3, 4**). The results of Begg and Egger's test did not identify obvious publication bias for C-509T and T869C (**Table 3**).

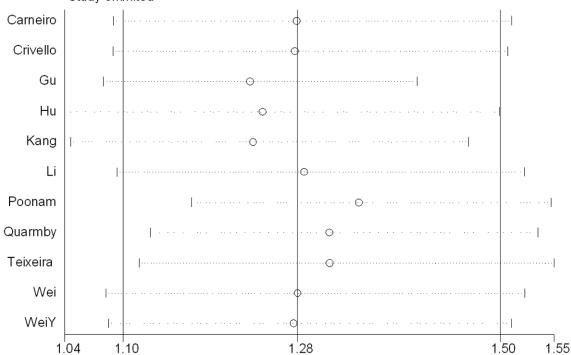
Discussion


It is well recognized that there is individual susceptibility to cancer risk even with the same environmental exposure. Host factors, including polymorphisms of genes involved in cancer, may have accounted for this difference [34]. Therefore, genetic factors are considered to be strong disease determinants, and this has encouraged researchers to search for the responsible genes. In recent years, constant efforts have been made for TGF- β 1 gene. As we know, TGF- β 1 plasma concentrations have been correlated with the development of several diseases. Polymorphisms in the TGF- β 1 gene may alter the mRNA expression levels and influence the plasma protein concentration. Thus, all of these render TGF- β 1 a particularly interesting candidate gene.

In the present meta analysis, we combined the evidence on the association of the TGF- β 1 gene C-509T and T869C promoter polymorphisms and susceptibility to cancer risk. The results exhibited no significant cancer risk in cancer patients compared with normal controls between for TGF- β 1 C-509T polymorphism. When

TGF-β1 polymorphism and cancer risk

	case		Contr	ol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Carneiro2012	51	62	39	62	7.0%	2.73 [1.19, 6.27]	
Crivello2006	58	62	102	124	5.4%	3.13 [1.03, 9.52]	
Gu2010	394	584	364	468	10.6%	0.59 [0.45, 0.78]	
Hu2012	393	522	525	712	10.7%	1.09 [0.84, 1.41]	
Kang2005	307	432	326	432	10.5%	0.80 [0.59, 1.08]	
Li2008	144	167	128	193	9.1%	3.18 [1.87, 5.41]	
Poonam2011	89	140	50	120	9.3%	2.44 [1.48, 4.03]	
Quarmby2002	57	101	48	102	8.9%	1.46 [0.84, 2.53]	
Teixeira 2011	218	305	210	380	10.4%	2.03 [1.47, 2.79]	
Wei2007	200	247	178	260	9.9%	1.96 [1.30, 2.96]	
WeiY2007	92	108	90	120	8.1%	1.92 [0.98, 3.76]	
Total (95% CI)		2730		2973	100.0%	1.61 [1.13, 2.30]	•
Total e∨ents	2003		2060				
Heterogeneity: Tau ² =	0.29; Chi ²	= 77.2	0, df = 10	(P < 0.	00001); l ²	= 87% —	
Test for overall effect:				-	,.		0.2 0.5 1 2 5 Favours [case] Favours [control]


Figure 2. Forest plot of the meta-analysis for TGF- β 1 T869C polymorphism associated with overall cancer risk (TC+CC vs. TT). Random effect model was made.

Meta-analysis random-effects estimates (exponential form) Study ommited

Figure 3. One-way sensitivity analysis of the pooled ORs and 95% Cl for TGF- β 1 C-509T (TT+CT vs. CC), omitting each dataset in the meta-analysis. Random effect model was made.

stratified by race, decreased cancer risk association was observed only in Asian population, but not in Caucasians. These discrepancies might be due to the different ethnicities. Additionally, we did not detect an association between TGF- β 1 C-509T polymorphism and gastric cancer, breast cancer, and other cancers. For T869C, significantly increased risk of cancer was observed. Subgroup analyses stratified by ethnicity and types of cancer were also performed, and results indicated that T869C polymorphism was associated with risk of can-

Meta-analysis random-effects estimates (exponential form) Study ommited

Figure 4. One-way sensitivity analysis of the pooled ORs and 95% CI for TGF-β1 T869C (TC+CC vs. TT), omitting each dataset in the meta-analysis. Random effect model was made.

cer in Caucasion, but not in Asian. And we also observed that the T869C was associated with increased risk of SCCHN.

There were some limitations to this meta analysis. Firstly, the value of this meta analysis was limited by the small number of included studies that addressed the effect of TGF- β 1 C-509T and T869C polymorphisms with cancer, and it is possible that some related unpublished studies were missed. Secondly, publication bias might have been present, even though statistical analysis indicated this not to be the case. Thirdly, our results were based on unadjusted estimates and a more precise analysis could have been conducted if individual data were available, which would allow for adjustment by other covariates such as age, ethnicity, environmental factors, and life style.

To further evaluate gene-to-gene and gene-toenvironment interactions on TGF- β 1 C-509T and T869C polymorphism and cancer risk, more well designed studies based on larger sample size are needed to verify our findings.

Disclosure of conflict of interest

None.

Address correspondence to: Su Wang, Department of Endocrinology, The Fifth Central Hospital of Tianjin, Zhejiang road 41, Binhai New Area of Tianjin, Tianjin 300450, China. Tel: +86-18722002011; E-mail: wsrealm@126.com

References

- [2] Wang Y, Chu X, Meng X, Zou F. Association of TGF-β1-509C/T polymorphisms with breast cancer risk: evidence from an updated metaanalysis. Tumour Biol 2014; 35: 935-942.
- [3] Shea BJ, Grimshaw JM, Wells GA, Boers M, Andersson N, Hamel C, Porter AC, Tugwell P, Moher D, Bouter LM. Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol 2007; 15: 10.

- [4] Amirghofran Z, Jalali SA, Ghaderi A, Hosseini SV. Genetic polymorphism in the transforming growth factor beta1 gene (-509 C/T and -800 G/A) and colorectal cancer. Cancer Genet Cytogenet 2009; 190: 21-25.
- [5] Babyshkina N, Malinovskaya E, Stakheyeva M, Volkomorov V, Slonimskaya E, Maximov V, Cherdyntseva N. Association of functional -509C>T polymorphism in the TGF-β1 gene with infiltrating ductal breast carcinoma risk in a Russian Western Siberian population. Cancer Epidemiol 2011; 35: 560-563.
- [6] Berndt SI, Huang WY, Chatterjee N, Yeager M, Welch R, Chanock SJ, Weissfeld JL, Schoen RE, Hayes RB. Transforming growth factor beta 1 (TGFβ1) gene polymorphisms and risk of advanced colorectal adenoma. Carcinogenesis 2007; 28: 1965-1970.
- [7] Bhayal AC, Prabhakar B, Rao KP, Penchikala A, Ayesha Q, Jyothy A, Nallari P, Venkateshwari A. Role of transforming growth factor-β1-509 C/T promoter polymorphism in gastric cancer in south Indianpopulation. Tumour Biol 2011; 32: 1049-1053.
- [8] Chung SJ, Kim JS, Jung HC, Song IS. Transforming growth factor-[beta]1-509T reduces risk of colorectal cancer, but not adenoma in Koreans. Cancer Sci 2007; 98: 401-404.
- [9] Vinod C, Jyothy A, Vijay Kumar M, Raghu Raman R, Nallari P, Venkateshwari A. Heterozygosity for TGF β1-509C/T Polymorphism is associated with risk for breast cancer in South Indianpopulation. Tumour Biol 2013; 34: 99-105.
- [10] Crivello A, Giacalone A, Vaglica M, Scola L, Forte GI, Macaluso MC, Raimondi C, Di Noto L, Bongiovanni A, Accardo A, Candore G, Palmeri L, Verna R, Caruso C, Lio D, Palmeri S. Regulatory Cytokine gene polymorphisms and risk of colorectal carcinoma. Ann N Y Acad Sci 2006; 1089: 98-103.
- [11] Cox DG, Penney K, Guo Q, Hankinson SE, Hunter DJ. TGFB and TGFBR1 polymorphisms and breast cancer risk in the Nurses' Health Study. BMC Cancer 2007; 7: 175.
- [12] Dunning AM, Ellis PD, McBride S, Kirschenlohr HL, Healey CS, Kemp PR, Luben RN, Chang-Claude J, Mannermaa A, Kataja V, Pharoah PD, Easton DF, Ponder BA, Metcalfe JC. A transforming Growth Factor beta1 signal peptide variant increases secretion in vitro and associate with increased incidence of invasive breast cancer. Cancer Res 2003; 63: 2610-2615.
- [13] Falleti E, Fabris C, Toniutto P, Fontanini E, Cussigh A, Bitetto D, Fornasiere E, Avellini C, Minisini R, Pirisi M. TGF-beta1 genotypes in cirrhosis: relationship with the occurrence of liver cancer. Cytokine 2008; 44: 256-261.

- [14] Guo W, Dong Z, Guo Y, Chen Z, Yang Z, Kuang G, Shan B. Polymorphisms of transforming growth factor-β1 associated with increased risk of gastric cardia adenocarcinoma in north China. Int J Immunogenet 2011; 38: 215-224.
- [15] Hu S, Zhou G, Zhang L, Jiang H, Xiao M. The effects of functional polymorphisms in the TGF β 1 gene on nasopharyngeal carcinoma susceptibility. Otolaryngol Head Neck Surg 2012; 146: 579-584.
- [16] Jin G, Deng Y, Miao R, Hu Z, Zhou Y, Tan Y, Wang J, Hua Z, Ding W, Wang L, Chen W, Shen J, Wang X, Xu Y, Shen H. TGFB1 and TGFBR2 functional polymorphisms and risk of esophageal squamous cell carcinoma: a case-control analysis in a Chinese population. J Cancer Res Clin Oncol 2008; 134: 345-351.
- [17] Jin G, Wang L, Chen W, Hu Z, Zhou Y, Tan Y, Wang J, Hua Z, Ding W, Shen J, Zhang Z, Wang X, Xu Y, Shen H. Variant alleles of TGFB1 and TGFBR2 are associated with a decreased risk of gastric cancer in a Chinese population. Int J Cancer 2007; 120: 1330-1335.
- [18] Kang HG, Chae MH, Park JM, Kim EJ, Park JH, Kam S, Cha SI, Kim CH, Park RW, Park SH, Kim YL, Kim IS, Jung TH, Park JY. Polymorphisms in TGF-beta1 gene and the risk of lung cancer. Lung Cancer 2006; 52: 1-7.
- [19] Li T, Cao BW, Dai Y, Cui H, Yang HL, Xu CQ. Correlation of transforming growth factor beta-1 gene polymorphisms C-509T and T869C and the risk ofgastric cancer in China. J Gastroenterol Hepatol 2008; 23: 638-642.
- [21] Qi P, Chen YM, Wang H, Fang M, Ji Q, Zhao YP, Sun XJ, Liu Y, Gao CF. -509C>T polymorphism in the TGF-beta1 gene promoter, impact on the hepatocellular carcinoma risk in Chinese patients with chronic hepatitis B virus infection. Cancer Immunol Immunother 2009; 58: 1433-1440.
- [22] Qi P, Ruan CP, Wang H, Zhou FG, Zhao YP, Gu X, Gao CF. -509C>T polymorphism in the TGF-β1 gene promoter is not associated with susceptibility to and progression of colorectal cancer in Chinese. Colorectal Dis 2010; 12: 1153-1158.
- [23] Jin Q, Hemminki K, Grzybowska E, Klaes R, Söderberg M, Zientek H, Rogozinska-Szczepka J, Utracka-Hutka B, Pamula J, Pekala W, Försti A. Polymorphisms and haplotype structures in genes for transforming growth factor beta1 and its receptors in familial and unselected breast cancers. Int J Cancer 2004; 112: 94-99.

- [24] Quarmby S, Fakhoury H, Levine E, Barber J, Wylie J, Hajeer AH, West C, Stewart A, Magee B, Kumar S. Association of transforming growth factor beta-1single nucleotide polymorphisms with radiation induced damage to normal tissues in breast cancer patients. Int J Radiat Biol 2003; 79: 137-143.
- [25] Shin A, Shu XO, Cai Q, Gao YT, Zheng W. Genetic polymorphisms of the transforming growth factor-beta1 gene and breast cancer risk: a possible dual role at different cancer stages. Cancer Epidemiol Biomarkers Prev 2005; 14: 1567-1570.
- [26] Singh H, Jain M, Mittal B. Role of TGF-beta1 (-509C>T) promoter polymorphism in susceptibility to cervical cancer. Oncol Res 2009; 18: 41-45.
- [27] Vishnoi M, Pandey SN, Modi DR, Kumar A, Mittal B. Genetic susceptibility of epidermal growth factor +61A>G and transforming growth factor beta1-509C>T gene polymorphisms with gallbladder cancer. Hum Immunol 2008; 69: 360-367.
- [28] Wei YS, Xu QQ, Wang CF, Pan Y, Liang F, Long XK. Genetic variation in transforming growth factor-beta1 gene associated with increased risk of esophagealsquamous cell carcinoma. Tissue Antigens 2007; 70: 464-469.
- [29] Wei YS, Zhu YH, Du B, Yang ZH, Liang WB, Lv ML, Kuang XH, Tai SH, Zhao Y, Zhang L. Association of transforming growth factor-beta1 gene polymorphisms with genetic susceptibility tonasopharyngeal carcinoma. Clin Chim Acta 2007; 380: 165-169.
- [30] Wu GY, Hasenberg T, Magdeburg R, Bönninghoff R, Sturm JW, Keese M. Association between EGF, TGF-beta1, VEGF gene polymorphism and colorectal cancer. World J Surg 2009; 33: 124-129.

- [31] Wu GY, Lu Q, Hasenberg T, Niedergethmann M, Post S, Sturm JW, Keese M. Association between EGF, TGF-{beta}1, TNF-{alpha} gene polymorphisms and cancer of the pancreatic head. Anticancer Res 2010; 30: 5257-5261.
- [32] Zhou Y, Jin GF, Jiang GJ, Wang HM, Tan YF, Ding WL, Wang LN, Chen WS, Ke Q, Shen J, Xu YC, Shen HB. {Correlations of polymorphisms of TGFB1 and TGFBR2 genes to genetic susceptibility to gastric cancer}. Ai Zheng 2007; 26: 581-585.
- [33] Zhang P, Di JZ, Zhu ZZ, Wu HM, Wang Y, Zhu G, Zheng Q, Hou L. Association of transforming growth factor-beta 1 polymorphisms with genetic susceptibility to TNM stage I or II gastric cancer. Jpn J Clin Oncol 2008; 38: 861-866.
- [34] Zhang Y, Liu B, Jin M, Ni Q, Liang X, Ma X, Yao K, Li Q, Chen K. Genetic polymorphisms of transforming growth factor-beta1 and its receptors and colorectal cancer susceptibility: a population-based case-control study in China. Cancer Lett 2009; 275: 102-108.
- [35] Teixeira AL, Araújo A, Coelho A, Ribeiro R, Gomes M, Pereira C, Medeiros R. Influence of TGFB1+869T>C functional polymorphism in non-small cell lung cancer (NSCLC) risk. J Cancer Res Clin Oncol 2011; 137: 435-439.
- [36] Carneiro NK, Oda JM, Losi Guembarovski R, Ramos G, Oliveira BV, Cavalli IJ, de S F Ribeiro EM, Gonçalves MS, Watanabe MA. Possible association between TGF-β1 polymorphism and oral cancer. Int J Immunogenet 2013; 40: 292-298.
- [37] Gaur P, Mittal M, Mohanti BK, Das SN. Functional genetic variants of TGF-β1 and risk of tobacco-related oral carcinoma in high-risk Asian Indians. Oral Oncol 2011; 47: 1117-1121.