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Abstract: The reported association of the CDKAL1 rs7754840 G/C gene polymorphism with T2DM susceptibility re-
mains controversial. In this study, this association was further investigated using a meta-analysis of 33,149 patients 
and 36,992 controls from 32 independent studies. The random-effect models were used in order to evaluate the 
pooled odds ratios (ORs) and their 95% confidence intervals (CIs). A significant relationship between the CDKAL1 
rs7754840 G/C gene polymorphism and T2DM was observed under allelic (OR: 1.37, 95% CI: 1.22, 1.55, P < 
0.001), recessive (OR: 1.58, 95% CI: 1.20-2.08, P < 0.001), dominant (OR: 1.13, 95% CI: 1.21-1.33, P = 0.01), and 
homozygous (OR: 1.27, 95% CI: 1.21-1.33, P < 0.001), and heterozygous (OR: 0.83, 95% CI: 0.75-0.93, P < 0.001). 
Overall, the CDKAL1 rs7754840 G/C gene polymorphism was found to be significantly associated with an increased 
T2DM risk; the C allele of the CDKAL1 rs7754840 G/C gene polymorphism may confer susceptibility to T2DM.
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Introduction

Type 2 diabetes mellitus (T2DM) is a complex 
multifactorial metabolic disease characterized 
by hyperglycemia, with a varying degree of insu-
lin resistance, impaired insulin secretion and 
increased hepatic glucose production [1]. Using 
data from the International Diabetes Federation 
(IDF) it is speculated that the number of 
patients with diabetes mellitus will continually 
increase, reaching up to 552 million by 2030, 
of which 90-95% will be due to T2DM [2]. In 
China, it is estimated that the number of 
patients with diabetes will increase from 20.8 
million in 2000 to 42.3 million in 2030 [3]. The 
large increase coincides with a higher preva-
lence of obesity and reduced levels of physical 
activity. 

T2DM is the most common form of diabetes 
and has been shown to be caused by the inter-
play of multiple genes as well as environmental 
factors [4]. The well-established heritability of 
T2DM has resulted in intense efforts in deter-
mining genetic risk factors for this disease. 

Currently, 91 loci have been reported to be 
closely associated with T2DM susceptibility 
[5-16], however, the most commonly reported 
variants found within these loci account for only 
a small proportion of the heritability of T2DM 
and the functional role of the majority of these 
variants remains unclear. At least 16 candidate 
loci have been unequivocally associated with 
T2DM. One of the most reproducible risk genes 
for diabetes identified across different ethnic 
populations is Cyclin dependent kinase 5 (CDK), 
which regulates protein subunit 1 homolog 1 
(CDKAL1) [17]. The CDK gene spans approxi-
mately 37 kb on chromosome 6p22.3 and 
encodes for 579 amino acids. CDKAL1 has 
been shown to have enzymatic activity and cat-
alyzes the ms2t6A modification in tRNALys 
(UUU) in mammalian cells [18]. The functional 
loss of CDKAL1 affects the accuracy of protein 
translation, causing the synthesis of abnormal 
insulin which triggers endoplasmic reticulum 
stress in β cells.

In 2007, using the results obtained from the 
GWA studies of the Diabetes Genetic Initiative 
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(DGI) [19], Finland-United States Investigation 
of Non-Insulin-Dependent Diabetes Mellitus 
Genetics (FUSION) [20], Wellcome Trust Case 
Control Consortium (WTCCC), and the United 
Kingdom Type 2 Diabetes Genetics Consortium 
(UKT2D) [21] the rs7754840 G/C polymor-
phism in the CDKAL gene was reported for the 
first time to be strongly associated with T2DM. 

Despite the multiple published studies on the 
relationship between the CDKAL1 gene 
rs7754840 G/C polymorphism and T2DM, the 
results remain controversial. Replicate studies 
reproducibly evaluated the association in mul-
tiple European and Asian populations. In the 

present study, a meta-analysis including 
European, Asian, African, Arab and Mexican 
population studies was performed in an effort 
to strengthen the association between T2DM 
and the rs7754840 SNP within the CDKAL1 
gene.

Materials and methods

Publication search and inclusion criteria

A systematic search of electronic databases 
including Pub Med, Embase, Web of Science, 
China National Knowledge Infrastructure, and 
China Biological Medicine Database was done 

Table 1. Characteristics of the included studies regarding the association of CDKAL1 rs7754840 G/C 
gene polymorphism and T2DM

Author Year Study 
design Subgroup Source of 

controls NOS Score
T2DM Control

Case/control
GG GC CC GG GC CC

Scott [20] 2007 Case-control Caucasian PB 7 867 1094 344 957 1078 304 2305/2339

Saxena [21]a 2007 Case-control Caucasian PB 8 1237 1231 307 1616 1496 346 2775/3458

Saxena [21]b 2007 Case-control Caucasian PB 8 542 520 124 534 515 125 1186/1174

Saxena [21]c 2007 Case-control Caucasian PB 8 409 445 120 443 436 108 974/987

Zeggini [25]a 2007 Case-control Caucasian PB 6 399 1439 1304 345 1523 1690 3142/3558

Zeggini [25]b 2007 Case-control Caucasian PB 6 118 414 368 96 426 399 900/921

Zeggini [25]c 2007 Case-control Caucasian PB 6 41 169 197 66 290 322 407/678

Zeggini [25]d 2007 Case-control Caucasian PB 6 87 247 179 54 205 199 513/458

Herder [26] 2008 Case-control Caucasian PB 5 177 200 56 746 611 126 433/1483

Horikawa [27] 2008 Case-control Asian HB 5 543 881 446 538 781 262 1861/1581

Lee [28] 2008 Case-control Asian HB 6 221 402 262 170 260 70 885/500

Lewis [29] 2008 Case-control African PB 6 155 499 400 161 453 319 933/1054

Liu [30] 2008 Case-control Asian PB 6 574 862 402 720 923 314 1838/1957

Ng [31]a 2008 Case-control Asian PB 5 498 722 261 631 703 196 1481/1530

Ng [31]b 2008 Case-control Asian PB 5 176 380 205 182 314 136 761/632

Ng [31]c 2008 Case-control Asian PB 5 177 398 224 429 755 332 799/1516

Sanghera [32] 2008 Case-control Asian PB 6 281 196 46 203 134 31 523/368

Wu [33] 2008 Case-control Asian PB 6 106 212 106 316 921 671 424/1908

van Hoek [34] 2008 Case-control Caucasian PB 6 1533 958 149 1592 960 144 2640/2696

Kirchhoff [35] 2008 Case-control Caucasian HB 7 13 17 6 397 370 87 36/854

Hu [36] 2009 Case-control Asian PB 6 358 911 580 302 864 619 1849/1785

Rong [37] 2009 Case-control Asian PB 7 750 495 132 959 660 116 1377/1735

Tabara [38] 2009 Case-control Asian PB 7 149 225 117 137 203 57 491/397

Takeuchi [39]a 2009 Case-control Asian PB 6 96 180 86 181 238 78 362/497

Takeuchi [39]b 2009 Case-contro Asian PB 6 279 504 228 425 546 175 1011/1146

Ren [40] 2009 Case-control Asian PB 5 116 182 102 113 132 55 264/300

Chidambaram [41] 2010 Case-control Asian PB 8 408 279 45 420 229 25 732/674

Cruz [42] 2010 Case-control Mexican PB 6 243 224 52 267 230 50 519/547

Bao [43] 2012 Case-control Asian PB 6 239 354 167 184 194 54 761/433

Nemr [44] 2012 Case-control Arabs PB 7 279 247 104 421 295 76 630/792

Mansoori [45] 2015 Case-control Arabs PB 6 19 38 83 12 74 54 140/140

Song [46] 2015 Case-control Asian PB 6 15 25 11 30 18 3 51/51

T2DM: type 2 diabetes mellitus; Case: the total number of T2DM cases; control size: the total number of control group; PB: population-based; HB: 
hospital-based; NOS: Newcastle-Ottawa quality assessment scale.
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in order to find potential studies. The following 
terms were used: ‘CDKAL1’, ‘rs7754840’, 
‘T2DM’ and ‘polymorphism’, with the date of 
publication ranging from 2007 to March 18, 
2015.

Potential studies were only included if they met 
the following criteria: (1) They included an eval-
uation of the CDKAL1 rs7754840 G/C gene po- 
lymorphism and T2DM; (2) The studies should 
be case-control or cohort studies published in 
official journals; (3) A diagnosis of T2DM was 

made using the World Health Organization and 
American Diabetes Association fasting plasma 
criteria, which requires that the fasting plasma 
glucose levels of patients to be no less than 7.0 
mmol/l, or that the 2 hrs plasma glucose level 
be no less than 11.1 mmol/l; and (4) The stud-
ies should be consistent with the HWE.

Data extraction

The data were extracted following a standard 
protocol. The meta-analysis was done by two 

Table 2. Summary of the meta-analysis of the association of the CDKAL1 gene rs7754840 G>C poly-
morphism and type 2 diabetes mellitus

Genetic model Pooled OR  
(95% CI) Z value P value Study 

number
T2DM 
size

Control 
size

P value for  
heterogeneity

Allelic genetic model 1.37 [1.22, 1.55] 5.24 < 0.00001 32 33149 36992 < 0.00001
Asia 1.31 [1.24, 1.39] 9.21 < 0.00001 17 15603 16872 < 0.00001
Caucasus 1.37 [1.03, 1.84] 2.14 0.03 11 15324 17060 < 0.00001
Africa 2.29 [2.03, 2.57] 13.83 < 0.00001 1 933 1581 NA
Mexico 1.07 [0.89, 1.29] 0.76 0.45 1 519 547 NA
Arabs 1.44 [1.24, 1.66] 4.91 0.76 2 770 932 0.99
Recessive genetic model 1.58 [1.20, 2.08] 3.27 < 0.00001 32 33149 36992 < 0.00001
Asia 2.18 [1.45, 3.27] 3.74 < 0.00001 17 15603 16872 < 0.00001
Caucasus 0.99 [0.66, 1.47] 0.07 0.94 11 15324 17060 < 0.00001
Africa 1.46 [1.17, 1.82] 3.30 0.001 1 933 1581 NA
Mexico 1.12 [0.74, 1.69] 0.54 0.59 1 519 547 NA
Arabs 2.08 [1.51, 2.86] 4.47 < 0.00001 2 770 932 NA
Dominant genetic model 1.13 [1.03, 1.23] 2.52 0.36 32 33149 36992 0.01
Asia 1.21 [1.04, 1.41] 2.51 0.01 17 15603 16872 < 0.00001
Caucasus 1.01 [0.90, 1.14] 0.16 0.88 11 15324 17060 < 0.00001
Africa 1.21 [0.95, 1.54] 1.55 0.12 1 933 1581 NA
Mexico 1.08 [0.85, 1.38] 0.65 0.52 1 519 547 NA
Arabs 1.00 [0.43, 2.32] 2.84 1.00 2 770 932 0.03
Homozygous genetic model 1.27 [1.21, 1.33] 3.64 0.93 32 33149 36992 < 0.00001
Asia 1.37 [1.16, 1.63] 2.84 0.004 17 15603 16872 < 0.00001
Caucasus 1.40 [1.11, 1.77] 1.85 0.06 11 15324 17060 < 0.00001
Africa 1.34 [0.98, 1.82] 1.95 0.05 1 933 1581 NA
Mexico 1.30 [1.00, 1.70] 0.61 0.54 1 519 547 NA
Arabs 1.14 [0.75, 1.75] 3.94 0.23 2 770 932 0.99
Heterozygous genetic model 0.83 [0.75, 0.93] 3.43 0.01 32 33149 36992 0.0006
Asia 0.78 [0.66, 0.90] 3.23 0.001 17 15603 16872 < 0.00001
Caucasus 1.01 [0.90, 1.13] 0.17 0.87 11 15324 17060 0.007
Africa 0.88 [0.72, 1.07] 1.31 0.19 1 933 1581 NA
Mexico 0.94 [0.61, 1.44] 0.30 0.76 1 519 547 NA
Arabs 0.47 [0.26, 0.84] 4.65 0.01 2 770 932 0.06
T2DM: type 2 diabetes mellitus; OR: odds ratio; CI: confidence interval; T2DM size: the total number of T2DM cases; control 
size: the total number of the control group; Allelic genetic model: C allele distribution frequency; recessive genetic model: 
CC versus GC + GG; Dominant genetic model: GG versus GC + CC; Homozygous genetic model: CC versus GG. Heterozygous 
genetic mode: GC versus AA.
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researchers, two of which independently 
searched for studies, while the third served as 
the arbitrator in case disagreements that 
occurred between the two researchers. The 
current meta-analysis did not accept studies 
that were not in accordance with the inclusion 
criteria, published repeatedly, or supplied insuf-
ficient data. If similar data were used in differ-
ent studies, the data were only included once in 
this analysis. The following information was col-
lected from each study: the first author’s name, 
publication year, region, number of genotypes, 
genotyping, study design and the total number 
of T2DM and control groups.

Statistical analyses

In the present meta-analysis, four genetic mod-
els, including the allelic (G allele distribution 
frequency), recessive (CC vs. GG + GC), domi-
nant (GG + GC vs. CC), homozygous (CC vs. GG), 

and the heterozygous (GC vs. GG) genetic mod-
els were used. The association of the CDKAL1 
rs7754840 G/C gene polymorphism and T2DM 
was compared using the odd ratio (ORs) and 
their corresponding 95% confidence intervals 
(CIs). The heterogeneity between the individual 
studies was calculated using Chi-square-based 
Q-tests and the significance level was set at P < 
0.05 level [22]. If heterogeneity existed, the 
random-effect model (DerSimonian and Laird 
method) [23] would be used in order to pooled 
the OR among the studies. Otherwise, the fixed-
effect model was adopted (the Mantel-Haenszel 
method) [24]. A Z-test was used to determine 
the pooled OR, with the significance set at P < 
0.05 level.

HWE was evaluated using Fisher’s exact test 
with the significance set at P < 0.05 level. 
Potential publication bias was estimated using 
a funnel plot. A sensitivity analysis was per-

Figure 1. Forest plot of the T2DM associated gene rs7754840 G/C polymorphism under the allelic genetic model 
(distribution of C allelic frequency of CDKAL1 rs7754840 gene).
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formed to identify potential outliers. The statis-
tical analyses were performed with Review 
Manager 5.3 software.

Results 

Studies and populations

Three hundred eighty four studies were identi-
fied in the literature search. Twenty nine publi-
cations were obtained though the retrieval pro-
cess and among these, twenty four papers that 
included thirty two studies met the inclusion 
criteria. Typically, one paper included one study, 
however, a few publications included multiple 
studies; such as the paper published by 
Zegginia et al, which included 4 individual stud-
ies. Among the five papers that were excluded, 

one paper had been published repeatedly, two 
papers were unrelated to the CDKAL1 gene 
rs7754840 G/C polymorphism or T2DM, and 
two papers were excluded for deviating from 
Hardy-Weinberg equilibrium (HWE). All informa-
tion was extracted from 33,149 T2DM cases 
and 36,992 controls (Table 1) [21, 22, 25-46]. 
These populations included Asians, Caucasians, 
Africans, Mexicans and Arabs. The Caucasian 
subgroup is comprised of 11 studies, the Asian 
subgroup is comprised of 17 studies, both the 
African and the Mexican subgroups are com-
prised of only 1 study, and the Arab subgroup is 
comprised of 2 studies.

Pooled analyses

In the whole population, a significant relation-
ship between the CDKAL1 rs7754840 G/C 

Figure 2. Forest plot of the T2DM associated gene rs7754840 G/C polymorphism under a recessive genetic model 
(CC vs. GC + GG).
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gene polymorphism and T2DM was observed 
under the allelic (OR: 1.37, 95% CI: 1.22-1.55, P 
< 0.001), recessive (OR: 1.58, 95% CI: 1.20-
2.08, P < 0.001), dominant (OR: 1.13, 95% CI: 
1.21-1.33, P = 0.01), homozygous (OR: 1.27, 
95% CI: 1.21-1.33, P < 0.001), or the heterozy-
gous genetic model (OR: 0.83, 95% CI: 0.75-
0.93, P < 0.001). In the subgroup analysis, a 
significant association was found in the Asian 
population under the allelic (OR: 1.31, 95% CI: 
1.24-1.39, P < 0.001), recessive (OR: 2.18, 
95% CI: 1.45-3.27, P < 0.001), dominant (OR: 

1.21, 95% CI: 1.04-1.41, P = 0.01), homozy-
gous (OR: 1.37, 95% CI: 1.16-1.63, P = 0.004) 
or the heterozygous genetic model (OR: 0.78, 
95% CI: 0.66-0.90, P < 0.001) (Table 2; Figures 
1-5). 

In the subgroup analysis, there was a signifi-
cant association between them in Caucasian 
population under allelic under allelic (OR: 1.37, 
95% CI: 1.03-1.84, P = 0.03). No significant 
association was found under recessive (OR: 
0.99, 95% CI: 0.66-1.47, P = 0.94), dominant 

Figure 3. Forest plot of the T2DM associated gene rs7754840 G/C polymorphism under a dominant genetic model 
(GC + CC vs. GG).
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(OR: 1.01, 95% CI: 0.90-1.14, P = 0.88), homo-
zygous (OR: 1.40, 95% CI: 1.11-1.77, P = 0.06), 
or the heterozygous genetic model (OR: 1.01, 
95% CI: 0.90-1.13, P = 0.87). In the African 
subgroup, a significant association between 
the CDKAL1 rs7754840 G/C gene polymor-
phism and T2DM was identified under the allel-
ic (OR: 2.29, 95% CI: 2.03-2.57, P < 0.001), 
recessive (OR: 1.46, 95% CI: 1.17-1.82, P < 
0.001). No significant association was found 
under dominant (OR: 1.21, 95% CI: 0.95-1.54, 
P = 0.12), homozygous (OR: 1.30, 95% CI: 1.00-
1.70, P = 0.05), or the heterozygous genetic 
model (OR: 0.88, 95% CI: 0.72-1.07, P = 0.19). 
In the Mexican subgroup. No significant asso-
ciation between the CDKAL1 rs7754840 G/C 
gene polymorphism and T2DM in the Mexican 
subgroup was identified under the allelic (OR: 
1.07, 95% CI: 0.89-1.29, P = 0.45), recessive 

(OR: 1.12, 95% CI: 0.74-1.69, P = 0.59), domi-
nant (OR: 1.08, 95% CI: 0.85-1.38, P = 0.52), 
homozygous (OR: 1.14, 95% CI: 0.75-1.75, P = 
0.54), or the heterozygous genetic model (OR: 
0.94, 95% CI: 0.61-1.44, P = 0.76). In the Arab 
subgroup, there was a significant association 
between the CDKAL1 rs7754840 G/C gene 
polymorphism and T2DM was identified under 
the allelic (OR: 1.44, 95% CI: 1.24-1.66, P < 
0.001), dominant (OR: 1.34, 95% CI: 1.09-1.64, 
P = 0.005), recessive (OR: 2.08, 95% CI: 1.51-
2.86, P < 0.001), homozygous (OR: 1.84, 95% 
CI: 1.36-2.50, P < 0.001), and the heterozy-
gous genetic model (OR: 0.51, 95% CI: 0.38-
0.68, P < 0.001). 

Significant heterogeneity was observed in every 
subgroup for each genetic model (P < 0.05). In 
order to identify the source of this observed 

Figure 4. Forest plot of the T2DM associated gene rs7754840 G/C polymorphism under a Homozygous genetic 
model (CC vs. GG).
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heterogeneity, a subsequent meta-regression 
was performed using the Asian population 
data. Under the allelic, recessive, and the 
homozygous genetic models, the CC genotype 
number in the T2DM group was verified to be 
the main confounding factor behind the source 
of the heterogeneity (P < 0.05).

Diagnostics bias

Funnel plots were performed in order to deter-
mine if there was a publication bias in the liter-
ature. Funnel plots were performed under the 
allelic genetic model (shown in Figure 6). Visual 
inspection of the funnel plots indicated an 

asymmetry. The asymmetry of the funnel plot 
may be due to an insufficient number of case 
(which may lead to a small-study effect) and 
significant statistical heterogeneity in the cur-
rent meta-analysis. 

Discussion

The association between the CDKAL1 
rs7754840 SNP and T2DM has been investi-
gated using different populations; however, the 
results of these studies are in disagreement. In 
this meta-analysis involving 33,149 T2DM 
patients and 36,992 controls from 21 indepen-
dent studies, the relationship of the CDKAL1 

Figure 5. Forest plot of the T2DM associated gene rs7754840 G/C polymorphism under a heterozygous genetic 
model (GC vs. GG).
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gene rs7754840 G/C polymorphism with T2DM 
was investigated. Overall, our data indicated 
that a significant association exists between 
the CDKAL1 gene rs7754840 A/G polymor-
phism and T2DM under the allelic (OR: 1.37), 
recessive (OR: 1.58), dominant (OR: 1.13), 
homozygous (OR: 1.27), and the heterozygous 
genetic models (OR: 0.83). 

Considering the possibility that different ethnic 
backgrounds may influence the results, a sub-
group analysis stratified by the different ethnic 
backgrounds was also performed in the current 
meta-analysis. A significant association was 
shown to exist in the Asian and Arab subgroups 
(P < 0.05), while no significant association was 
detected in the Caucasian, African and Mexican 
subgroups (P > 0.05). In conclusion, the C allele 
of the CDKAL1 gene rs7754840 G/C polymor-
phism may increase susceptibility to develop-
ing T2DM, except in the Caucasian, African and 
Mexican populations. The results for the popu-
lation as a whole and the Asian, Arab subgroups 
were genome-wide significant under most of 
the genetic models. In the Caucasian subgroup, 
the results reached genome-wide significance 
under the allelic genetic models. The negative 
results found for both the African and Mexican 
populations were perhaps not only associated 
with ethnic differences, but could also be a 
result of small sample sizes; only one research 
study with 933 T2DM subjects and one with 
519 T2DM subjects were included for the 

high glucose environments [47]. Ubeda et al 
suggested that CDKAL1 plays a role in the inhi-
bition of CDK5 activity in pancreatic β cell 
expression, which prevents a decrease in insu-
lin gene expression resulting from glucotoxicity 
[48]. As mutations accumulate in the CDKAL1 
gene, the inhibition of CDK5 activity would 
decrease and β cell function, being the secre-
tion of insulin, would be compromised. It has 
been reported that in relation to β cell function, 
the CDKAL1 gene has been significantly associ-
ated with insulin resistance, however, not the 
lack of insulin secretion. The rs7754840 C 
allele located in the CDKAL1 gene is a single 
nucleotide polymorphism associated with a 
genetic susceptibility towards type 2 diabetes. 
The mutation has two alleles, G and C; where G 
is the wild-type allele and C is the mutant. When 
the G→C mutation occurs, the β cells become 
degenerated and insulin secretion is inhibited; 
thus the CDKAL1 gene rs7754840 G/C muta-
tion most likely leads to an increased risk of 
type 2 diabetes [49, 50].

In 2013, Peng et al [51] performed a meta-
analysis regarding the relationship between the 
CDKAL1 rs7754840 G/C gene polymorphism 
and T2DM. They concluded that the CDKAL1 
rs7754840 C allele increased the risk of T2DM. 
Despite the similarity between these results 
and the results performed in this study, the cur-
rent meta-analysis was far superior in compari-
son. The previous study was published in 2012, 

Figure 6. Funnel plots for the CDKAL1 gene G/C polymorphism and T2DM risk 
in the allelic genetic model.

African and Mexican sub-
groups. In comparison to the 
6,798 and 6,535 research 
subjects used in the analysis 
for the Asian and Caucasian 
studies, the sample size for 
the Mexican and African 
studies was relatively small. 
Therefore, the results should 
be further verified using 
more studies with larger 
sample sizes for the African 
and Mexican subgroups.

Cyclin-dependent kinase 5 
(CDK5) has been shown to 
blunt insulin secretion in 
response to glucose and to 
play a permissive role in the 
decrease of insulin gene 
expression, especially in 
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whereas the current meta-analysis included lit-
erature published from 2010 up to the present. 
Additionally, only basic data extraction was 
done and there was no use of any genetic mod-
els in Peng’s work, whereas the present meta-
analysis utilized five different genetic models, 
including the allelic, recessive, dominant, 
homozygous, and the heterozygous genetic 
models. Thus, the conclusions drawn from this 
study are more objective and scientifically vali-
dated than theirs.

As a result, in the current meta-analysis, the 
CDKAL1 gene rs7754840 G/C polymorphism 
was found to be significantly associated with 
T2DM susceptibility, particularly in the Asian 
and Arab populations. People with the G allele 
in the CDKAL1 gene rs7754840 G/C polymor-
phism may be predisposed to developing 
T2DM. This conclusion may lead to the formula-
tion of new methods for T2DM therapies. Taking 
the limitations discussed above into consider-
ation, more large-scale studies focusing on the 
association of the CDKAL1 gene rs7754840 
G/C polymorphism and T2DM should be done 
to further validate the conclusion.
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