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Abstract: Glioblastoma (GBM) is the most common and deadliest primary tumor in adults, with current treatments 
having limited specific and efficient delivery of therapeutic drugs to tumor sites or cells. Therefore, the development 
of alternative treatment options is urgently needed. Stem cells are considered as ideal cellular vehicles for gene 
therapy against glioblastoma. In this paper, we reviewed the recent studies investigating the use of different types 
of stem cells as cellular vehicles and the gene of interests against the glioblastoma, as well as the future directions 
of the application of cellular vehicles mediated therapy for glioblastoma.
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Introduction

Glioblastoma makes 25% of all malignant  
nervous system tumor, which occurs about 3  
per 100,000 population in United States [1]. 
Because of its aggressive characteristics and 
low specific and efficient delivery of therapeutic 
drugs to tumor sites, treatments for glioblasto-
ma include surgery, radiotherapy and chemo-
therapy lead to only 25% of patients surviving 
about 2 years even with advanced technology 
[2]. Thus, the development of better therapeu-
tic strategies to enhance the survival rate is 
desperately needed [3].

Stem cells are a group of cells with self-renewal 
and multilineage differentiation. A large num-
ber of studies have demonstrated that stem 
cells derived from various sources could spe-
cifically migrat to tumor sites [4-7]. Therefore, 
stem cell is a promising vehicle loaded with 
anti-tumor drugs or gene of interests against 
tumor home to tumor site [8].

Stem cells as cellular vehicles 

Neural stem cells

Neural stem cells (NSCs) are central neural  
system (CNS) progenitor cells, which have self-

renewal ability and can differentiate into all of 
the three types of cells in CNS: neurons, oligo-
dendrocytes and astrocytes [9]. Recent studies 
showed that NSCs could migrate through the 
brain and target to tumor site, which indicated 
that NSCs was a cellular vehicle for delivering 
anti-brain therapeutic drugs or gene of inter-
ests [10]. The possible mechanism was that 
cytokines and other factors produced in the 
tumor microenvironment, such as hepatocyte 
growth factor (HGF), hypoxia-inducible factor-
1alpha (HIF-1α) and vascular endothelial growth 
factor (VEGF) act as chemoattractants for NSCs 
[11]. On the other hand, several studies have 
demonstrated that injected NSCs release solu-
ble molecules to promote immuno modulation 
in the CNS [12, 13]. Because NSCs reduce the 
activity of immune system, they are easy to 
carry and deliver anti-tumor drug and gene of 
interests.

Mesenchymal stem cells

Mesenchymal stem cells (MSCs) are multipo-
tent cells which is able to differentiate into a 
number of cell types. These cells have been 
another potential vehicle for delivering anti-
tumor therapy [14]. MSCs can be expanded in 
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vitro with a low intrinsic mutation rate, are 
manipulated easily and well tolerant to the 
human immune system. They can also be autol-
ogously transplanted into the same patient 
where therapy taken to avoid immune response 
after administration [15]. Interestingly, MSCs 
have been proved to migrate into many differ-
ent types of tumor microenvironments includ-
ing glioma [16-18]. However, the exact migra-
tory mechanism of MSCs is not completely 
understood. It is suspected that chemokines, 
cytokine, growth factors and metalloproteinase 
secreted by the tumor guide MSCs’ tumor-tar-
geting ability [19, 20]. Additionally, MSCs can 
be engineered to express homing ligands, 
which improves their target specificity [21].

Actually, bone marrow, adipose tissues, periph-
eral blood and embryonic stem cell-derived 
mesenchymal stem cells are the most common 
types [15, 22]. However, it has come up a new 
mesenchymal stem cells obtained from men-
strual blood called menstrual blood-derived 
mesenchymal stem cells recently [23, 24]. 
These cells express stem cell markers such as 
SSEA-4, Oct-4, c-kit (CD117), and Nanog, and 
have the potent ability to differentiate into a 
variety of cell types, such as the heart, nerve, 
bone and liver [25, 26]. These cells secrete 
many growth factors to display recurrent angio-
genesis [26]. This provides an easy way to get 
MSCs, indicating a potential application in cell 
carrier of gene therapy against glioma.

Gene of interest

Gene therapy for GBM is rapidly developing. 
The functions of genes of interest can result 
not only in tumor cell death, but also enhance 
immune responses to tumor antigens, as well 
as disruption of the tumor microenvironment, 
including inhibition of angiogenesis and neo-
vascularization [27-29]. The genes of interest 
include the cytotoxic gene and immune stimula-
tory gene as follows.

Cytotoxic gene 

Cytotoxic, radio- and chemotherapy have been 
the standard care for GBM patients. Most of 
the failure was because of their negative 
impacts on neighboring healthy tissue and 
small therapeutic indexes. Suicide gene thera-
py includes delivery of a prodrug activating 
enzyme (suicide gene) that is able to convert 
nontoxic prodrugs to cytotoxic forms [30].

Herpes simplex virus-thymidine kinase (HSV-
TK)

HSV-TK/ganciclovir (GCV) is one of the most 
widely used prodrug activation systems. In this 
suicide gene therapy system, GCV is non-toxic 
and can readily cross the blood-brain barrier, 
converted into active drug in the tumor cells. 
Then GCV will be phosphorylated and incorpo-
rated into replicating DNA, leading to cell death. 
The phosphorylated GCV can pass through the 
gap junction of adjacent cells, and kill neighbor-
ing tumor cells. This ability was called the 
“bystander effect”, which was defined as death 
of tumor cells adjacent to modified cells [31, 
32]. As the bystander effect could cover the low 
transduction rate of retroviral system, clinical 
studies have used the retrovirus-mediated 
HSV-TK/GCV gene therapy, resulting in only  
clinical safety but not therapeutic benefits [33, 
34]. 

However, in a previous study, a potent bystand-
er effect between NSCs transduced with HSV-
TK gene (NSCtk cells) was observed inintracra-
nial tumor. NSCtk cells were injected at the 
intracranial site distant from the tumor implan-
tation inducing the contralateral hemisphere  
to the tumor in rates. Results demonstrated a 
potent migratory and tumor hunting ability of 
NSCs and a potent in vivo anti-tumor effect of 
thymidine kinase through the bystander effect 
[31]. Furthermore, they found out that the strat-
egy using mesenchymal stem cells transduced 
with HSV-TK (MSCtk cells) and ganciclovir 
(MSCtk therapy) is more feasible and practical 
for clinical application than the method using 
neural stem cells [35]. Recently, human embry-
onic stem cell-derived MSCs were evaluated as 
another alternative option in stem cells HSV-TK 
therapy [36].

Secretable trimeric form of tumor necrosis fac-
tor-related apoptosis-inducing ligand (stTRAIL)

Tumor necrosis factor-related apoptosis-induc-
ing ligand (TRAIL) based therapy strategy 
involves treatment with recombinant TRAIL 
(rTRAIL) or an adenovirus bearing the TRAIL 
gene anti glioma. The artificial TRAIL gene, that 
is secretable trimetric TRAIL (stTRAIL), encodes 
a fusion protein composed of three functional 
elements including a secretion signal, a trimer-
ization domain and an apoptosis-inducing moi-
ety of the TRAIL gene sequence [37]. Adenoviral 
vectors delivering the stTAIL gene (Ad-stTRAIL) 
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had higher tumor suppressor rate compared 
with adenoviral vectors delivering the full-
length sequence of TRAIL gene in vivo and in 
vitro [38]. Other studies also showed that TRAIL 
and secreted TRAIL dominant with or without 
fused to hFlt3L instead of stTRAIL also had  
profound anti-tumor effects in vivo [39-41].

Cytosine deaminase (CD)

Cytosine deaminase: uracil phosphoribosyl-
transferase (CDy:UPRT) engineered human adi-
pose tissue-derived mesenchymal stem cells 
(AT-MSCs), short as CDy-AT-MSCs, are able to 
convert non-toxic 5-fluorocy-tosine (5-FC) to the 
active toxic form [42]. Then they demonstrated 
that CDy-AT-MSCs/5-FC system of suicide  
gene therapy significantly inhibited glioblasto-
ma growth [43, 44].

Interleukin-24 (IL-24)

The mda-7 gene, renamed as interleukin-24 (IL-
24), was isolated from human melanoma cells 
induced to undergo terminal differentiation 
treating with fibroblast interferon and mezerein 
[45], which is a member of the interleukin-10 
(IL-10) gene family [46-48]. Considering its can-
cer cells’ specific apoptosis-inducing and tumor 
growth suppressing ability in human tumor ani-
mal models, mda-7/IL-24 was regarded in appli-
cation in patients with advanced cancers [49, 
50]. The pathways by which Ad.5-mda-7 causes 
cell death in tumor cells are not well under-
stood, however, it seems that proteins impor-
tant in the onset of growth inhibition and apop-
tosis, such as BCL-XL, BCL-2, and BAX [48, 
51-53], are involved, which lead to mitochon-
drial dysfunction [54] and endoplasmic reticu-
lum stress signaling [55].

A recent study employed a recombinant adeno-
virus that comprises the tail and shaft domains 
of a serotype 5 virus and the knob domain  
of a serotype 3 virus expressing MDA-7/IL-24 
(Ad.5/3-mda-7) to combine both inhibition of 
cytoprotective pathways and tropism modifica-
tion, and provided a means of developing an 
improved therapy for GBM [56].

Interleukin-13 (IL-13)

Human IL-13 was fused to the Pseudomonas 
exotoxin (hIL-13-PE; Cintredekin Besudotox) to 
target IL13Rα2-expressing GBM cells [57] as 
50% to 80% of human GBMs express a number 

of the IL-13 receptor, IL13Rα2 [58, 59]. A recent 
study developed Ad.mhIL-13-PE to provide sus-
tained expression, effective anti-GBM cytotox-
icity, and minimal neurotoxicity leading to a sig-
nificant advance in the implementation of tar-
geted toxins for glioma therapeutics [60].

EphrinA1-PE38 

EphrinA1-PE38 is a specific immunotoxin 
against the EphA2 receptor which is a member 
of the Eph receptor tyrosine kinase family, 
whose 16 members can be further divided into 
“A” and “B” classes, based on sequence homol-
ogy and binding affinity to their ligand, the 
Ephrin [61]. A recent study demonstrated that 
the intratumoral injection of hMSCs engineered 
with EphrinA1-PE38 was effective in inhibiting 
tumor growth in a glioma tumor model [62].

Immune stimulatory gene 

The immune-privileged state of the brain is an 
important obstacle to immunotherapy against 
glioma [63]. The brain lacks antigen-presenting 
cells and is limited in lymphatics that impede 
immune cells from the brain parenchyma  
[64]. In addition, the GBM microenvironment is 
immunesuppressed, with elevated myeloid-
derived suppressor cells and regulatory T cells 
[65]. Despite these challenges, significant 
progress with immunemediated gene therapy 
strategies has been achieved.

Interleukin-12 (IL-12)

IL-12 is one of the anti-tumor cytokines, driving 
from a TH1 response [66]. A 34.5-deleted HSV-1 
expressing mouse IL-12 (M002) was tested in 
non-human primates and proved to be nontox-
ic, but increased activation of nonhuman pri-
mates lymphocytes [67]. MSCs expressing 
IL-12 (MSC-IL12M) inhibited intracranial tumor 
growth and prolonged survival administered in 
the contralateral brain hemisphere [68].

Colony stimulating factor (CSF)

One of the immunotherapy strategies is to 
express cytokines to enhance adaptive immune 
system. JX-594 was a TK-deleted VV express-
ing granulocyte macrophage colony stimulating 
factor (GM-CSF) [69]. In two GBM models, 
JX-594 inhibited tumor growth and increased 
survival. It indicated to be linked with increased 
CSF-dependent inflammation [70].
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Fms-like tyrosine kinase 3 ligand (Flt3L)

Flt3L is a cytokine associated with the develop-
ment of hematopoietic precursors into both 
conventional (cDCs) dendritic cells and plasma-
cytoid (pDCs), as well as their migration out  
of bone marrow [71]. Replication-defective Ad 
expressing Flt3L enhanced survival in a rat gli-
oma model and this was linked with increased 
infiltration of DCs [72]. A similar strategy has 
been performed using oHSV expressing Flt3L. 
G47D-Flt3L significantly prolonged survival in 
the mouse glioma model [73].

Future directions

Considering the cell carriers’ tropism to tumor 
cells, integrins and chemokines have been 
regarded as important for cell hunting for 
tumors sites [74]. Chemokines, which induce 
migration and manipulating integrin function to 
stimulate lymphocyte movement are used to 
attract various cell types to the tumor [75]. It 
has demonstrated that these chemokine sys-
tems can improve the efficacy of migrating 
immunotherapeutic cell carriers to tumors, and 
would be applied to improve the delivery of cell 
carriers to brain tumors [76].

Additionally, signaling pathways including uPA/
uPAR (urokinase receptor), c-MET receptors 
and VEGF/VEGFR2 seem to play roles in the 
migration of stem cell to cancer cells [77]. The 
upregulation of these signaling pathways would 
improve the migratory activity of these cell car-
riers in glioma treatment.

Keeping the cell carriers alive around the tumor 
site for a longer period of time is another impor-
tant strategy that will improve cell-carried ther-
apies. Coating the carrier cells with a synthetic 
extracellular matrix (sECM) promotes stem cell 
survival. This approach reduced tumor volume 
when used with TRAIL engineered stem cells in 
vivo successfully [78]. These results are partic-
ularly attractive because the efficacy of the 
sECM surrounded NSCs was determined in a 
resected tumor cavity. This study also domen-
strated that encapsulating MSCs with a biode-
gradable sECM enabled their retention in the 
tumor resection cavity and allowed them to 
release tumor suppressing therapy for a longer 
period of time. 

At last, when cell carriers are loaded with a 
therapeutic virus, the virus would better to 

remain quiescent until delivered to the tumor 
cells. Otherwise, the virus will destroy the cell 
carrier and potential therapeutic effect will be 
lost. Therefore, creating viruses that only repli-
cate when they reach the tumor site will impro- 
ve their clinical efficacy in patients with brain 
tumors.

Alternatively, differentiated cells can be indu- 
ced into stem cell state. Cells derived from 
urine, and skin other tissues have been repro-
grammed into induced pluripotent NSCs suc-
cessfully [79]. These induced pluripotent stem 
(iPS) cell-derived NSCs have delivered gene 
therapy following contralateral intracranial 
injection in mice with glioma xenografts suc-
cessfully [80]. Advantages of iPS cells instead 
of stem cells include their ability to escape from 
immune rejection and the absence of ethical 
concerns when using human embryonic cells. 
Additionally, iPS cells can be easily generated 
from somatic cells, which makes it excellent 
option for investigationsin many model sys-
tems. However, these cells still have the po- 
tential for tumorigenicity. Furthermore, which 
somatic cells provide the best source to gener-
ate iPS cells or which reprogramming technique 
is the most efficient and safest still remains 
uncertain [81]. While the treatment of brain 
cancer is in infancy using iPS cells as carriers  
of therapeutic agents, the clinical potential of 
iPS cells is promising.

Conclusions

Even with the advanced therapies for glioma, 
patients are still faced with a poor prognosis. 
The low efficiency of delivering molecular thera-
pies to the tumor site has in large part resulted 
in unremarkable benefits to glioma patients in 
clinical trials. Stem cells as cellular vehicles 
have been used to improve the delivery of these 
therapies. The natural tumor tropism, loading 
capability and modifiable characteristics of 
stem cells are major advantages that augment 
molecular therapies. The genes of interest 
include Cytotoxic gene and Immune stimulatory 
gene. With a better understanding of the poten-
tial tumor tropism mechanism, modifications 
can be performed to improve clinical efficacy  
of cell carrier system. To avoid ethical concerns 
and get stem cells relative easily, using induced 
pluripotent stem (iPS) cell is another direction 
in the future.
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