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Abstract: CRMP family proteins (CRMPs) are widely expressed in the developing neurons, mediating a variety of 
fundamental functions such as growth cone guidance, neuronal polarity and axon elongation. However, whether all 
the CRMP proteins interact with cytoskeleton remains unknown. In this study, we found that in cultured hippocampal 
neurons, CRMPs mainly colocalized with tubulin and actin network in neurites. In growth cones, CRMPs colocalized 
with tubulinmainly in the central (C-) domain and transition zone (T-zone), less in the peripheral (P-) domain and co-
localized with actin in all the C-domain, T-zone and P-domain. The correlation efficiency of CRMPs between actin was 
significantly higher than that between tubulin, especially in growth cones. We successfully constructed GST-CRMPs 
plasmids, expressed and purified the GST-CRMP proteins. By GST-pulldown assay, all the CRMP family proteins were 
found to beinteracted with cytoskeleton proteins. Taken together, we revealed that CRMPs were colocalized with 
cytoskeleton in hippocampal neurons, especially in growth cones. CRMPs can interact with both tubulin and actin, 
thus mediating neuronal development.
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Introduction

Growth cone is only active structure to guide 
the formation and outgrowth of neurites [1]. 
Precise navigation by a neuronal growth cone 
requires the modulation of the growth cone’s 
responsiveness to spatial and temporal stimu-
lation of guidance cues [2]. Neurite outgrowth 
and branching is the result of multiple cas-
cades of signaling transductions, the remodel-
ing of microtubules and actin filaments within 
the growth cone is especially critical for these 
processes. Microtubules and actin filaments 
are abundantly presented in growth cones, 
where actin filaments mainly distributed in the 
peripheral (P-) domain and microtubules in the 
central (C-) domain. When neurite extending, 
actin in the P-domain firstly senses the external 
growth signals deciding the growth cone to col-
lapse or grow. Then dynamic microtubules in 
C-domain sense the changes of actin network 
to decide whether tubulin insertion into 
P-domain or not [3]. However, the mechanism 
of how microtubules communicate with actin 

remains to be further illustrated. According the 
literature, there are two potential mechanisms 
of interaction between microtubules and actin, 
regulatory and structural [4]. Regulatory inter-
actions says microtubules and actin indirectly 
regulate each other, but by their effect on sig-
naling cascades [5-7]. Structural interactions 
says the two systems are directly linked by a 
variety of structural proteins, such as microtu-
bule-associated proteins (MAPs) [8], +TIPs [9, 
10] or spectraplakins [11, 12].

Collapsin response mediator proteins (CRMPs) 
are a family of microtubule related proteins, 
consisting five cytosolic proteins (CRMP1-5)
which are expressed in developing and adult 
nervous systems [13-15], functioning in cell 
migration, differentiation, neurite extension, 
axon regeneration and some other cellular pro-
cesses [16, 17]. The target structure of CRMPs 
is the cytoskeleton, and some CRMP isoforms 
were reported to regulate actin [18]. However, 
there is no direct evidence telling whether 
CRMPs interact tubulin and actin simultane-
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ously. Here in the current study, we tried to 
determine whether CRMPs interacted with 
tubulin and actin thus to regulate cytoskeleton 
coordination. We observed the colocalization  
of CRMPs with tubule and actin in neurite  
and the growth cone, then we constructed  
GST-CRMPs plasmids, expressed and purified 
the GST-CRMP proteins to reveal their interac-
tion with cytoskeleton in vitro by GST-pulldown 
assay.

Materials and methods

Animals

The experiments were carried out on 1-day-old 
pups of Sprague-Dawley rats. All animal proce-
dures were performed in strict accordance with 
the recommendations in the Guide for the Care 
and Use of Laboratory Animals of the National 
Institutes of Health. The protocol was approved 
by the Jinan University Institutional Animal Care 
and Use Committee (IACUC). All efforts were 
made to minimize the suffering and number of 
animals used.

Agents

TRIzol reagent and SuperScript VILO cDNA 
Synthesis Kit were from Invitrogen, Life 
Technologies (Carlsbad, CA). Plasmid miniprep 
kit, DNA purification kit, NotI, EcoRI and SaLI 
restriction endonucleases, DNA polymerases 
for PCR reaction and T4 DNA ligase were pur-
chased from Takara (Otsu, Japan). DMEM/F12, 
Neurobasal medium, B27 supplement, Ara-C 
and FBS were purchased from Gibco (Carlsbad, 
CA, USA). Glutathione-Sepharose beads and 
Protein A/G were from TransGen Biotech 
(China). Rabbit anti-CRMPs antibody (San- 

rat pups, and dissociated hippocampal neu-
rons were obtained using 0.125% trypsin and 
plated at a density of 1×104 cells/cm2 onto 
poly-D-lysine-coated glass coverslips. Cultures 
were maintained in Neurobasal-A medium con-
taining 2% B27 and 0.5 mM glutamine supple-
ment at 37°C in a 5% CO2 humidified incubator. 
One-half of the culture media was replaced 
every 3 days. 

Immunofluorescence

Hippocampal neurons were grown on cover-
slips (Fisher, Newark, DE, USA) and processed 
for immunofluorescence according to the stan-
dard protocol described previously [19]. Cells 
were fixed with 4% (w/v) paraformaldehyde 
(Sigma, St. Louis, MO) for 5 min at room tem-
perature and permeabilized with 0.1% Triton 
X-100 in PBS for 20 min. The cells were blocked 
in 3% normal donkey serum in TBS + 0.1% 
Triton X-100 for 1 h at room temperature and 
incubated with rabbit anti-CRMPs antibody 
(Santa Cruz) and mouse anti-Actin/Tubulin 
(Abcam) at 4°C overnight. The cells were 
washed 3 times for 10 min with PBS + 0.1% 
Tween20, and incubated with monoclonal don-
key anti-rabbit IgG Dylight 549 (Jackson 
ImmunoResearch) or monoclonal donkey anti-
mouse IgG Dylight 488 (Jackson Immuno- 
Research) for 2 h at room temperature. After 
three washes, cells were mounted on glass 
slides with Fluoro Gel II containing DAPI (EMS, 
Hatfield, PA). Microscopy and image analysis 
were carried out using the same optical slice 
thickness for every channel using a confocal 
microscope (LSM 710; Carl Zeiss, Germany). 
The colocalization efficiency was calculated by 
confocal software.

Table 1. CRMPs primers and the restriction sites

Gene Primer Restriction 
enzyme

CRMP1 forward 5’-AGGTCGACATGTCTCATCAGGGGAAG-3’ SalI
reverse 5’-ATGCGGCCGCACCGAGGCTGGTGATGTT-3’ NotI

CRMP2 forward 5’-ATTCGAATTCGCCACCATGTCTTATCAGGGGAAGAAA-3’ EcoRI
reverse 5’-ATTCGCGGCCGCTTAGCCCAGGCTGGTGATGTT-3’ NotI

CRMP3 forward 5’-ATTCGAATTCATGTCCTTCCAAGGCAAGAAGAGC-3’ EcoRI
reverse 5’-ATTCGCGGCCGCCTAAGAAAGTGAAGTGATGTT-3’ NotI

CRMP4 forward 5’-ATGTCGACATGTCCTACCAGGGCAAG-3’ SalI
reverse 5’-TTGCGGCCGCACTCAGGGATGTGATGTT-3’ NotI

CRMP5 forward 5’-AGGTCGACATGCTTGCCAATTCAGCC-3’ SalI
reverse 5’-TTGCGGCCGCCCAAATACCGCTCGACCT-3’ NotI

ta Cruz, CA). Rabbit 
anti-GAPDH, anti-Actin 
and mouse anti-Tubu-
lin were from Abcam 
(Cambridge, UK). Anti-
rabbit or anti-mouse 
secondary antibody 
conjugated to Alexa 
Fluor 488/555 were 
from Molecular Probes 
(Invitrogen, Eugene, 
OR, USA).

Cell culture 

Hippocampi were dis-
sected from postnatal 



CRMPs and cytoskeleton

22339 Int J Clin Exp Med 2015;8(12):22337-22344

Plasmids and constructs

The cDNA encoding full-length rat CRMPs were 
achieved by using the PCR-based method 

accordingly [20]. pGEX-5X-3 were nicely given 
from Dr. Yuan Chen at Sun Yat-sen University. 
CRMP RNAs were cloned from rat brain tissue 
and reversed into cDNA. CRMPs encoding 

Figure 1. CRMPs colocalizes with tubulin and actin in hippocampal neurons. A. Anti-total CRMPs and anti-tubulin 
antibodies were used to detect endogenous proteins in the neurite and growth cone of hippocampus neurons. B. 
Anti-CRMPs and anti-actin antibodies were used to detect endogenous proteins in the growth cone of hippocampus 
neurons. C. Statistical data of overlap co-efficient value between CRMPs and tubulin/Actin in whole cell criteria were 
shown as Mean ± SEM, n=3; *, denotes P<0.05. D. Statistical data of overlap co-efficient value between CRMPs 
and tubulin/Actin, in growth cone criteria. Mean ± SEM, n=3; **, denotes P<0.01. Scale bar, 10 μm.
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genes were purchased by RT-PCR by using the 
primer (Table 1). Then CRMPs were subcloned 
into the pGEX-5X-3 vector. All constructs were 
verified by sequencing.

Recombinant proteins expression and GST 
pulldown assay 

GST fusion CRMPs proteins expression and 
pulldown assays were performed as previously 
described [21]. Briefly, GST-CRMPs constructs 
were transformed into the BL21 (DE3) strain of 
Escherichia coli (Invitrogen, Grand Island, NY). 
Production of fusion proteins was induced by 
incubation with 0.2 mmol/L isopropyl-1-thio-b-
d-galac-topyranoside for 6 h at 20°C. Bacteria 
were spun down and resuspended with a cock-
tail of protease inhibitors (Merck, Whitehouse 
Station, NJ). The cell suspension was treated 
with 0.1% lysozyme followed by 0.5% deoxycho-
lic acid on ice for 20 min. After sonication, the 
cell debris was removed by centrifugation 
(15,000 g for 30 min). The supernatant, with 
1% Triton X-100, was used for the purification of 
the GST fusion proteins using glutathione-Sep-
harose beads. 

hoc tests. P<0.05 was considered to be statis-
tically significant.

Results

CRMPs colocalize with tubulin and actin in hip-
pocampal neurons

In order to determine the relationship of CRMPs 
with cytoskeleton, cultured hippocampal neu-
rons at DIV 3 were immunostained with total 
CRMP antibody, tubulin and actin antibody. As 
shown in Figure 1A, tubulin distributed in cyto-
sol, neurite backbone and branches; in the 
growth cone, tubulin mainly expressed in 
C-domain, less expressed in T-zone and 
P-domain. Actin distributed in neuronal cytosol, 
neurites and branches and more in growth 
cones; in the growth cone, the expression of 
actin in C-and P- domain is more than that in 
the transition (T-) zone (Figure 1B). CRMPs 
expressed mainly in neurites, branches and 
growth cones, less in cytosol and nuclei (Figure 
1A, 1B). When CRMPs merged with tubulin, 
strong colocalizations were seen in neurites, 
branches and C-domains in the growth cone 

Figure 2. Consturction of GST-CRMPs expression plasmids. A. The gel electro-
phoresis results of CRMP gene fragments. B. Restriction enzyme digest the 
recombinant plasmids of CRMPs-GST. 1, the recombinant plasmid of CRMPs-
GST by double enzyme digestion; 2, the recombinant plasmid of CRMPs-GST 
by single enzyme digestion; Lane Marker, DNA standard molecular mass; 
Lane GST, GST vector single enzyme digestion.

Western blotting

Western blot analysis was 
performed as previously de- 
scribed [21]. Briefly, lysates 
were separated using SDS-
PAGE and electrophoretically 
transferred to a polyvinyli-
dene difluoride membrane. 
Membranes were blocked in 
Tris-buffered saline with 5% 
milk and 0.05% Tween and 
probed with primary antibod-
ies at 4°C overnight. After 
washing, the membranes 
were incubated with horse-
radish peroxidase-conjugated 
goat anti-mouse or anti-rabbit 
secondary antibodies (Jack- 
son ImmunoResearch, West 
Grove, PA) and visualized 
using the ECL reagents.

Statistical analysis 

Data are presented as the 
mean ± SEM. Significant dif-
ferences were assessed with 
one-way ANOVA followed by 
Bonferroni or Tamhanepost 
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(Figure 1A, yellow signal); when CRMPs merged 
with actin, there is a same pattern as to tubulin 
(Figure 1B, yellow signal). When counting the 
whole cell, the overlap co-efficiency value of 
CRMPs with tubulin or actin was 88±2% and 
97±3% (Figure 1C); when counting only the 
growth cone area, the overlap co-efficiency 
value of CRMPs with tubulin or actin was 
84±2% and 96%±3% (Figure 1D). The overlap 
value of CRMPs between actin was signifi- 
cantly higher than that with tubulin in both  
cell and growth cone criteria. These results 
suggest that CRMPs colocalize with cytoskele-
ton protein in hippocampal neurons.

The construction of GST-CRMP recombinant 
plasmids

In order to reveal the interaction of CRMPs  
with cytoskeleton, we constructed GST-CRMP 
expression plasmids. From rat brain tissue 
lysates, coding sequences of CRMP1-5 about 
1700 bp were amplified by RT-PCR from the 
cDNA library (Figure 2A). Then CRMP genes 
were restricted and inserted into the pGEX-
5X-3 vector. The constructed GST-CRMPs were 
confirmed by re-digestion. 6600 bp fragments 
were resulted from single restriction; 4900 bp 
and 1700 bp fragments were resulted from 
double restriction, where 1700 bp fragments 
were CRMPs genes (Figure 2B). The selected 
GST-CRMP plasmids were then further con-
firmed by gene sequencing. These data sug-
gest the successful construction of GST- 
CRMPs.

CRMPs interact with cytoskeleton proteins in 
vitro

When purified the GST-CRMP proteins, we bait-
ed them with rat brain lysates to perform GST 

cone lysates. These data suggest that CRMPs 
interact with the cytoskeleton in vitro.

Discussion

In this study, we demonstrated that CRMPs 
colocalized with cytoskeleton in neurite and 
growth cone and CRMPs interacted with tubulin 
and actin in vitro by GST-pulldown assay. 
CRMPs may be the junctions between microtu-
bules and actin to regulate cytoskeleton dynam-
ics during axonal guidance and elongation.

Neurite extension and guidance are processes 
of cytoskeleton remodeling [22]. The enlarged 
growth cone in the distal end of an axon senses 
the external growth signal, transforming the 
stimulation to cytoskeleton to adjust the grow 
direction [23]. Filopodium, which are fulfilled 
with actin filaments, are the forefront of a 
growth cone to detect the surrounding guid-
ance cues and the first structure to adjust the 
growth cone [24]. Microtubule is another criti-
cal factor deciding the extension direction of a 
neurite [25]. Microtubules mainly distribute in 
the C-domain and T-zone of the growth cone. 
The arrangement of microtubule is directional 
that is the assembly end always pointing to the 
distal end to confer the extension of a neurite 
[26]. CRMP is a class of microtubule associat-
ed proteins, which can promote the assembly 
of tubulin to regulate neurite outgrowth, axon 
elongation and cell migration [27, 28]. Our 
results showed that CRMPs colocalized with 
tubulin in the proximal branching points. CRMPs 
are related to neurite branch, so the expression 
in branching points is high, which is consistent 
with previous reports [29]. Also, CRMPs colo-
calized with tubulin mainly in the C-domain, 

Figure 3. CRMPs interact with cytoskeleton in vitro. Bacterial recombinant 
GST-CRMPs were purified and were subjected to GST-pulldown with growth 
cone extracts from rat brain. Then the pulldown sediments were subjected 
to western blot with antibodies of tubulin and actin, of GAPDH as lysate in-
put control. Thisresult is representative of three separate experiments with 
similar results.

pulldown assay. The sedi-
ments were immune-blotted 
with tubulin and actin anti-
bodies, to reveal the interac-
tion between CRMPs and 
cytoskeleton. As shown in 
Figure 3, GST protein cannot 
bind tubulin and actin, acting 
as negative control; but tubu-
lin and actin signals can be 
detected in the pulldown sedi-
ments of all the GST-CRMPs. 
CRMP1-5 showed nearly equ- 
al abilities to interact with 
tubulin and actin. The GAPDH 
control indicated equivalent 
loading for the various growth 
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less in the T-zone and P-domain. This may due 
to the low expression of tubulin in the P-domain, 
except dynamic microtubules [30]. CRMPs not 
only colocalize with tubulin but also with actin, 
especially in growth cone at C-domain, T-zone 
and P-domain. CRMPs distributed at the edge 
of lamellipodia and filopodia [31], which is con-
sistent with the distribution of actin. CRMPs 
colocalized with actin and tubulin in the 
C-domain and T-zone, suggesting that CRMPs 
not only participate in the assembly of tubulin, 
but also interact with the cytoskeleton to coor-
dinate the cytoskeleton movement, which may 
be contribute to mediating axon elongation and 
guidance [25, 32].

Accordingly, some CRMP isoforms can interact 
with tubulin and some with actin, separately 
reported. CRMP2 can bind tubulin to promote 
the assembly of microtubules [33]; CRMP4 
interacts with actin to regulate neurite growth 
[34]; CRMP5 interacts with tubulin regulating 
growth cone and axon development in hippo-
campal neurons [21, 35]. On the other side, the 
CRMP family shares high sequence homology. 
CRMP1-4 share nearly 75% homology and 
CRMP5 shares about 50% homology with other 
CRMPs [36]. So we suspect that all the CRMPs 
may interact with tubulin and actin, which was 
confirmed in the current study.

Neurite outgrowth and the formation of branch-
es are regulated by extracellular signals, such 
as Sema, Netrin and NGF [37, 38]. By activating 
their receptors in the membrane, these signals 
adjust cytoskeleton dynamics to regulate neu-
rite extension and guidance [39]. However, the 
communication pattern between microtubules 
and actin is not so clearly. According to previ-
ous reports, CRMPs can alter the polymeriza-
tion of actin under cell membrane [31]. In the 
peripheral domain, actin polymerized into 
microfilaments which are transported to the 
central domain by axonal retrograde. This pro-
cess on one hand stops the intrusion of micro-
tubule into P-domain, on the other hand breaks 
microtubule to expose the plus end, changing 
the direction of microtubule assembly to make 
growth cone steer or form new neurite branch 
[40]. Our data suggest that CRMPs may func-
tion as structural regulator between microtu-
bules and actin. CRMPs are also closely related 
to dendrite development, for example, genetic 
knockdown of CRMP3 induced the impairment 
of dendrite formation [41]. Whether and how 

CRMPs mediated cytoskeleton interaction 
modulate dendritic development remain to be 
further illustrated.

In summary, the current study reveals the colo-
calization and interaction of CRMPs with cyto-
skeleton in neurites and growth cones. CRMPs 
may function as a structural regulator between 
microtubules and actin, coordinating cytoskel-
eton dynamic to mediate growth cone and axon 
development. These findings provide new 
insights for the understanding of brain 
development.
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