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Abstract: New strategies for the prevention or treatment of infections are required. The purpose of this study is to 
evaluate the effects of antimicrobial peptides and bacteriocins isolated from Lactobacillus plantarum on growth and 
biofilm formation of three common pathogenic microbes. The antibacterial properties of the antimicrobial peptide 
Tet213 and bacteriocins were tested by the disc diffusion method. Tet213 and bacteriocins showed inhibitory ef-
fects on biofilm formation for the three organisms, as observed by fluorescence microscopy. Furthermore, Tet213 
and the bacteriocins all showed antimicrobial activity against the three bacterial species, with Tet213 having a 
greater inhibitory effect on S. aureus than the bacteriocins (P < 0.05), while the bacteriocins showed stronger anti-
microbial activity against S. sanguis (P < 0.05).
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Introduction

For many years traditional antibiotics have 
played an important role in the treatment of 
infections [1]. However, the extensive use of 
these “traditional antibiotics” has created sig-
nificant problems [2]. Many currently used anti-
biotics are no longer effective at inhibiting or 
killing certain pathogens. More and more 
research has focused on the development of 
new classes of antibiotics, such as antimicro-
bial peptides (AMPs) or other new compounds 
with novel mechanisms of action or spectrum 
of activity [3, 4]. These new antibiotics may 
hold promise for treating refractory infections 
and inflammation [5].

Lactobacilli are known for their production of 
antimicrobial compounds, including bacterio-
cins and bacteriocin like peptides [6, 7]. Most 
of the bacteriocins produced by Lactobacillus 
species are small, thermally stable proteins, 

known as type II bacteriocins [8]. These com-
pounds can induce rupture of the cell mem-
brane, causing leakage of cell contents and 
playing a role in sterilization [9]. Bacteriocins 
isolated from Lactobacillus species have also 
been reported to have significant antibacterial 
effects on common clinical pathogens in vitro 
[10, 11]. However, a comparison of the antibac-
terial effects of both AMPs and bacteriocins 
has been rarely reported. 

The objective of this study was to compare the 
antibacterial effect of an antimicrobial peptide 
(Tet-213) and bacteriocins isolated from 
Lactobacillus plantarum on Staphylococcus 
aureus, Streptococcus sanguis and Pseudo- 
monas aeruginosa. To our knowledge, this  
is the first report of the comparison of the  
antibacterial effect of an antimicrobial peptide 
and bacteriocins isolated from Lactobacillus 
plantarum on three kinds of pathogenic bac- 
teria.
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according to the guidelines of the National 
Committee for Clinical Laboratory Standards 
(NCCLS) [15]. The test strains P. aeruginosa 
ATCC 90271, S. sanguis ATCC10556 and S. 
aureus ATCC 25923 used in this study were the 
fully sequenced strains. The following antibiot-
ics were tested: Tet213 30 μg, bacteriocin 30 
μg, ceftazidime 30 μg. Disks were incubated for 
24 h at 35°C. Inhibition zone diameters for anti-
microbial peptide and bacteriocin were noted 
and compared.

Inhibitory effects of the test compounds on 
biofilm formation in the three test strains

Biofilm formation was conducted according to 
previously published methods [16]. In detail, 
the S. aureus, S. sanguis and P. aeruginosa cul-
tures were incubated in BHI broth and grown 
under microaerophilic conditions for 24 h at 
37°C. The cells were washed three times with 
PBS and then adjusted with PBS to 0.5 
McFarland standard (1.5 × 108 CFU/ml) by 
using a Densicheck (BioMérieux, France) [17]. In- 
dividual Petri dishes were filled with 10 ml of 
BHI broth, and a sterile coverslip (18 mm diam-
eter) was added to each dish. 100 µl of individ-
ual bacterial suspensions were mixed with 500 
µl of antimicrobial peptide or bacteriocin sus-
pensions (100 µg/ml) in the dishes. PBS was 
used as a control. All Petri dishes were incubat-
ed under microaerophilic conditions at 37°C for 
24 h. 

After 24 h of biofilm formation, each coverslip 
was washed with 10 ml of PBS to remove unat-
tached cells. After fixation with 1% formalde-
hyde, each coverslip was stained with a 0.01% 
acridine orange solution [18] (Sigma, USA) and 
then observed with a Nikon 80i microscope 
(using the green fluorescence channel). Image 
analysis was conducted by Image-Pro Plus 4.5 
software (Media Cybernetics, USA) [19].

Table 1. Tet213 and bacteriocin zone diameters from S. 
aureus, S. sanguis and P. aeruginosa using a 30 µg disk 
read at 24 h of incubation (means ± SD)
Bacterial species P. aeruginosa S. aureus S. sanguis
Tet213 12.5 ± 3.1a 11.7 ± 1.1a,b 17.5 ± 3.5a,b

Bacteriocin 17.5 ± 2.9a 18.5 ± 4.4a 10.3 ± 1.7a

Tinidazole (control) 7.9 ± 1.9 7.6 ± 2.4 8.7 ± 1.6
Note: a means P < 0.05 compared with bacteriocin, b means P < 0.05 
compared with control.

Materials and methods

Strains and culture conditions

Lactobacillus plantarum ATCC 8014 was pur-
chased from ATCC. The three strains used for 
the experiments were P. aeruginosa ATCC 
90271, S. sanguis ATCC10556 and S. aureus 
ATCC 25923. The three strains were incubated 
on Columbia sheep blood agar (BioMérieux, 
France) at 37°C under microaerophilic condi-
tions (6% CO2) for 24 h. The in vitro experiments 
were performed in Brian Heart Infusion (BHI) 
broth and Brian Heart Infusion agar (Oxoid, UK).

Peptides

Tet-213 (amino acid sequence: KRWW KWW- 
RRC) was synthesized by Shanghai Apeptide 
Co. Ltd (Shanghai, China) (~94% purity by 
HPLC).

Production of culture supernatants

Lactobacillus plantarum ATCC 8014 was grown 
in MRS broth at 37°C for 24 h. Supernatants 
were harvested by centrifugation (7000 g for 
10 min), adjusted to pH 6.5, treated with cata-
lase (5 mg/ml), to eliminate the inhibitory activ-
ity due to hydrogen peroxide, and filtered 
through a 0.22 µm pore size filter (Millipore, 
USA).

Isolation of bacteriocins

The bacteriocins from Lactobacillus plantarum 
ATCC 8014 was isolated according to the meth-
ods by Lash et al [12]. In brief, 100 ml culture 
supernatants of L. plantarum were precipitated 
using 60 g ammonium sulfate. The crude pre-
cipitate was centrifuged for 20 min at 10,000 × 
g at 4°C. The resulting pellet was resuspended 
in 2 ml of 10 mM Tris-HCl pH 7.4. The resus-
pended pellet was concentrated by using an 
Amicon Ultra-4 Centrifugal Filter device 

(Millipore, USA) with a molecular weight 
(MW) cut-off of 10 kDa [13] to a final vol-
ume of 0.5 ml at 4°C and then the final 
suspension was concentrated by freeze-
drying [14] and stored at 4°C.

Antimicrobial activity

The antimicrobial activity of Tet-213 and 
bacteriocins were tested by the agar 
disc diffusion method on BHI agar 
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Statistics

All tests were performed in triplicate. SPSS 
14.0 software for Windows was used for data 
analysis. A one-way analysis of variance 
(ANOVA) was performed first, and then data 
comparisons were performed with paired t-test.

Results

Antimicrobial activity

Results for the antimicrobial activity of Tet213 
and bacteriocins in the disc diffusion assay are 
shown in Table 1. Tet213 and the bacteriocins 
all showed greater antimicrobial activity against 
P. aeruginosa, S. aureus and S. sanguis com-
pared with the control (P < 0.05). For S. aureus, 
Tet213 showed a greater inhibitory effect com-
pared with the bacteriocins (P < 0.05) while the 

bacteriocins showed stronger antimicrobial 
activity against S. sanguis (P < 0.05). Both 
Tet213 and the bacteriocins showed no signifi-
cant inhibitory effect on the growth of P. aerugi-
nosa (P > 0.05). The inhibition zone tests are 
shown in Figure 1.

Inhibitory effects on biofilm formation

Individually, Tet213 and the bacteriocins 
showed strong inhibitory effects on biofilm for-
mation in P. aeruginosa, S. aureus and S. san-
guis (P < 0.05, Figure 2), but there was no sig-
nificant difference in biofilm formation of these 
strains, when the effects of Tet213 and the 
bacteriocins were compared (P > 0.05) (Figure 
1). Fluorescent images of these biofilms are 
shown in Figure 3.

Discussion

AMPs have a wide antimicrobial spectrum, 
including activity against many multi-drug resis-
tant bacteria [20]. Furthermore, resistance 
does not developed during bacterial killing, 
making these compounds attractive candi-
dates for drug development [21, 22]. Our 
results showed that Tet213 had strong antibac-
terial activity against P. aeruginosa, S. aureus 
and S. sanguis, which agree closely with previ-
ous experimental results [23-25].

AMPs and bacteriocins from lactobacilli are 
known to be more active against Gram-positive 
than Gram-negative bacteria [26]. Our results, 
however, showed that there was no obvious  
difference in antibacterial activity against  
the three strains. Bacteriocins isolated from 

Figure 1. Response of Tet213 and bacteriocin with disks containing 30 mg of Tet213 (1) and 30 mg of bacteriocin 
(2) and 30 mg of ceftazidime (C). A: P. aeruginosa, B: S. aureus and C: S. sanguis.

Figure 2. The integrated optical density (IOD) of P. 
aeruginosa, S. aureus and S. sanguis grown in the 
presence of Tet213 and bacteriocins. Data are ex-
pressed as the mean ± SD, *P < 0.05, **P < 0.01. 
A: Antimicrobial peptide; B: Bacteriocins; C: Control.
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Lactobacillus species usually have a broad 
antimicrobial spectrum [27] and can inhibit 
common pathogenic bacteria that are respon-
sible for food spoilage or human diseases. S. 
aureus can cause suppurative infections, and 
also can produce enterotoxins, which result in 
food poisoning [28]. P. aeruginosa can cause 
wound infections after surgery [29] and is espe-
cially likely to develop resistance [30]. S. san-
guis causes endocarditis [31], an infection 
where bacterial biofilms play a prominent role 
and are often responsible for treatment failure 
[32]. Our research shows that Tet213 and bac-
teriocins all have good inhibitory effects on bio-
film formation, which indicates that Tet213 and 
bacteriocins may be effective in treating the 
above mentioned diseases. In this study, there 
was little difference in the antimicrobial activity 
between Tet213 and bacteriocins, while differ-
ences in inhibitory effects of these compounds 
on biofilm formation were not obvious. However, 
our studies were based on a small number of 

test strains and in future experiments, we will 
utilise a larger panel of experimental bacteria.

In conclusion, an antimicrobial peptide and 
bacteriocins isolated from Lactobacillus plan-
tarum were able to inhibit the growth and bio-
film formation of S. aureus, S. sanguis and P. 
aeruginosa. Their antibacterial activity against 
S. aureus, S. sanguis and P. aeruginosa is 
slightly different, suggesting that these com-
pounds may be one promising way to control 
infectious diseases.
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Figure 3. The effect of antimicrobial peptide and bacteriocin on P. aeruginosa, S. aureus and S. sanguis biofilm 
formation (stained with acridine orange): (1) P. aeruginosa, (2) S. aureus, (3) S. sanguis, A: Antimicrobial peptide; 
B: Bacteriocins; C: Control.
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