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dent form of cancer [4, 5]. Hence, effective new 
therapies and accurate prognostic indicators 
are needed to improve clinical care of prostate 
cancer patients.

MicroRNAs, a group of small endogenously non-
coding RNAs, are fundamental critical regula-
tors of gene expressions [6, 7]. Mature miRNAs 
negatively regulate their target genes through 
imperfect complementary sequence pairing to 
the 3’-untranslated region (UTR) of target 
genes, resulting to either mRNA degradation or 
translational repression [8]. Recent studies 
have shown that the global alteration of miRNA 
expression has become a hallmark of tumori-
genesis, and serves as a diagnosis and progno-
sis signature [9]. So far, over 1,000 miRNAs 
have been identified in human cells, and their 
diverse functions in normal cell homeostasis 
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apoptosis by repressing the expression of KDM5B. This study revealed that the aberrant expression of miR-29a in 
PCa cells regulated KDM5B expression levels associated with tumor dissemination. These findings may be utilized 
in developing novel therapeutic tools for PCa.
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Introduction

Prostate cancer is one of the most common 
cancer in men and accounts for 28% of the 
main causes of cancer related deaths from all 
newly diagnosed cancer cases in men, as indi-
cated by prostate specific antigen (PSA) testing 
[1]. In recent years, the incidence of PCa in 
China has also sharply increased [2]. A tumor 
cell develops the ability of invading its sur-
rounding tissue during the tumor cell develop-
ment process; inducing angiogenesis and 
metastasis as well. It was proven that 30% of 
PCa in patients were clinical types, as diag-
nosed by clinical studies [3]. Unfortunately, 
after 18 to 24 months of androgen deprivation 
therapy, approximately 80% of androgen-
dependent PCa patients eventually progressed 
to a castration-resistant or hormone indepen-
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and various different diseases have been thor-
oughly investigated during the past decade 
[10].

MiR-29s, currently one of the most interesting 
miRNA families in humans, consists of three 
mature members: miR-29a, miR-29b, miR-29c; 
encoded in two genetic clusters. Members of 
this family have been shown to be silenced or 
down-regulated in many different types of can-
cer, such as acute myeloid leukemia [11], 
chronic lymphocytic leukemia [12], and some 
solid tumors [13, 14]; which has also been 
shown to mediate either tumor suppressive or 
oncogenic functions in distinct malignancies. 
Several potential oncogenes have been report-
ed to be silenced by miR-29s, including anti-
apoptotic p53 up stream inhibitors p85a and 
CDC42 [15], DNA methyltransferase [16], and 
extracellular matrix proteins [17]. These may 
partake in abnormal migration and cell inva-
sion or proliferation, and favor cancer develop-
ment as well. Our recent studies revealed that 
microRNA-29s were significantly downregulat-
ed and was a putative tumor-suppressive 
miRNA family in PCa. However, the role of 
microRNA-29s in PCa remains unclear.

KDM5B was the specific demethylase of H3K4 
and its upregulation could reduce H3K4 meth-
ylation levels. Studies by Charlie Degui Chen 
have showed high KDM5B expressions in PCa 
cells [18]. Bioinformatics analysis revealed a 
conserved target site for miR-29a in the 
3’-untranslated region (UTR) of KDM5B. MiR-
29a affected the methylation status of H3K4 
through regulating the expression of KDM5B; 
which controlled PCa development. Thus, 
understanding the roles of miR-29a in PCa and 
identifying relevant mRNA targets that mediate 
its tumor suppressor or oncogenic activities are 
essential in developing miR-29a as a therapeu-
tic target.

In this study, we investigated the miR-29a 
expression in PC-3 cell lines, and it identified 
miR-29a as an essential regulator for PCa by 
targeting KDM5B in LNCaP and PC-3 cells.

Materials and methods

Patients

Tumor samples were extracted from 75 pros-
tate cancer patients, 10 cases of normal pros-

tate tissues and 30 cases of benign prostatic 
hyperplasia tissues were included in this study. 
The normal prostate tissue was from bladder 
cancer patients after total cystectomy, BPH tis-
sues obtained in BPH patients and prostate 
cancer tissue were from prostate cancer 
patients after RP in Tong Ji Hospital, subsidiary 
of Shanghai Tong Ji University. The prostate 
cancer patients undergoing RP and regional 
lymph node dissection were from Tong Ji 
Hospital, subsidiary of Shanghai Tong Ji 
University, between January 2001 and 
December 2013, who did not receive any pre-
operation treatment. The Research Ethics 
Committee of Tong Ji Hospital approved this 
protocol and verbal consent was obtained from 
all patients.

Cell culture

PCa cell line LNCaP, 22Rv1, PC-3 and DU145, 
as well as WPMY-1 were obtained from the Cell 
Bank of Chinese Academy of Sciences 
(Shanghai, China); which were authenticated by 
mycoplasma detection, DNA-Fingerprinting, 
isozyme detection and cell vitality detection. 
Four PCa cell lines were maintained in an RPMI 
1640 medium supplemented with 10% FBS, 
1% penicillin/streptomycin, 1% nonessential 
amino acids and 1% (mg/ml) sodium pyruvate. 
The cell lines were cultured at 37°C with 5% 
CO2. WPMY-1 cells were cultured in a DMEM 
medium supplemented with 10% FBS and 1% 
penicillin/streptomycin. All reagents used in 
cell culture were obtained from Life Tech- 
nologies (New York, USA). 

MiRNA mimics

Synthetic miR-29a mimics and its scrambled 
control, control miRNA (miR-NC), were from 
GenePharma (Shanghai, China); and were used 
at a concentration of 50 nM. SiRNA targeted 
sequences were as follows: miR-29a: 5’-UAG- 
CACCAUCUGAAAUCGGUUA-3’ and 3’-ACCGAU- 
UUCAGAUGGUGCUAUU-5’; Negative Control 
siRNA:  5’-UUCUCCGAACGUGUCACGUTT-3’ and 
3’-ACGUGACACGUUCGGAGAATT-5’.

Transient transfection

Transient transfection was performed as previ-
ously described [20]. Transfection was carried 
out with Lipofectamine 2000 Transfection 
Reagent in accordance with manufacturer’s 
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Western blot

Western blot was performed as previously 
described [19]. Forty-eight hours after siRNA 
transfection, cells were harvested for protein 
using a 1 x SDS lysis buffer (50 mM Tris-HCl, pH 
6.8; 100 mM DTT; 2% SDS; 0.1% bromphenol 
blue; 10% glycerol). Protein concentration was 
determined using BCA Protein Assay reagent kit 
(Thermo Fisher Scientific, Waltham, MA, USA), 
according to manufacturer’s instructions. Then, 
proteins were separated by SDS–PAGE in 12% 
(w/v) polyacrylamide gels and transferred to 
membranes with antibodies, against KDM5B 
(1:1000, Sigma-Aldrich, MO, USA; 1:500, 
Proteintech, Chicago, USA) and β-Actin (1:4000, 
Sigma-Aldrich). Secondary antibodies were pur-
chased from Sigma-Aldrich (St. Louis, MO, 
USA). Western blot signal intensity was quanti-
fied with Quantity One Software (Bio-Rad, 
California, USA).

Cell proliferation assay

Cell proliferation was performed as described 
[20]. Cells were briefly transfected with miR-
29a and their negative control; then examined 
at 0, 24, 48 and 72 hours. At each time-point, a 
CCK-8 reagent was added into the cells and 
incubated for two hours. Absorbance was mea-
sured at 450 nm using a multi-mode microplate 
reader (BioTek, Winooski, VT). The absorbance 
at 630 nm was used as reference. Each experi-
ment was performed in sextuplicate.

Cell cycle assay

Cell cycle was performed as described [21]. 
Cells were briefly incubated with propidium 
iodide (10 μg/ml) (Sigma-Aldrich) for 15 min-
utes in the dark. The fractions of viable cells in 
G1, S, and G2 cell cycle phases were measured 
with a FACStar flow cytometer (Becton-
Dickinson, San Jose, CA) and analyzed with 
ModFit software (Verity Software House, 
Topsham, ME).

Apoptosis assays

MiR-29a and miR-NC were transfected as 
described above. 48 hours after transfection, 
cells were collected and assayed with FITC 
Annexin V Apoptosis Detection Kit (Becton-
Dickinson) on a FACScalibur flow cytometer 

instructions. The day before transfection, cells 
were seeded in six-well plates. A 100-pmol 
sample of siRNA in a 250 μl Opti-MEM medium 
was mixed with 5 μl of Lipofectamine 2000 dis-
solved in 250 μl of the same medium; which 
was then allowed to stand at room temperature 
for 20 minutes. The 500 μl transfection solu-
tion results were then added to each well, 
which already contained 1.5 ml of Opti-MEM. 
Four hours later, the cultures were replaced 
with 2 ml of fresh RPMI 1640 medium. Opti-
MEM medium and Lipofectamine 2000 were 
both purchased from Life Technologies 
(Shanghai, China).

Real-time reverse transcription PCR (qRT-PCR)

Total RNA was extracted from 22RV1, DU145, 
PC-3 and LNCaP cells with Trizol (Invitrogen); 
and reverse transcription was performed 
according to the PrimeScript RT reagent kit 
manual (TaKaRa, Tokyo, Japan). Real-time 
quantitative PCR was performed using an ABI 
Prism 7900HT (Applied Biosystems, Foster 
City, California, USA). Primers for KDM5B were 
forward, 5’-AGCAGACTGGCATCTGTAAGG-3’ and 
reverse, 3’-GAAGTTTATCAACATCACATGCAA-5’. 
The primers for β-actin were forward, 5’-CC- 
TCTCCCAAGTCCACACAG-3’ and reverse, 3’-GG- 
GCACGAAGGCTCATCATT-5’ (synthesized by SBS 
Gentech, Shanghai, China). Primers for RNU6B 
were forward, 5’-CGCTTCGGCAGCACATATACT- 
AA-3’ and reverse, 3’-TATGGAACGCTTCACGAAT- 
TTGC-5’. For miRNA quantification, cDNA was 
synthesized from total RNA with MiScript 
Reverse Transcription kit (Qiagen, California, 
USA). The specific mature miR-29a primers 
were obtained from Qiagen (Catalog No. 
MS00031430), forward, 5’-GTGGAGGGTC- 
CGAGGT-3’ and reverse, 3’-CACCATCTGAAAT- 
CGGTTAGT-5’.  

Dual luciferase assay

LNCaP cells were co-transfected in 24-well 
plates with 20-pmol miR-29a or miR-NC, 
together with 0.8 μg of firefly luciferase report 
construct, containing wild-type or mutant KDM- 
5B-3’-UTR and 8 ng control vector pRL-TK 
(Promega, Madison, WI). After 48 hours of 
transfection, firefly and renilla luciferase activi-
ties were measured with GloMax® 96 Microplate 
Luminometer (Promega, Madison, WI).
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(Becton-Dickinson), following manufacturer’s 
instructions.

Statistical analysis

The differential expressions of miR-29a 
between groups were analyzed using χ2 analy-
sis. To analyze the correlation between miR-
29a and KDM5B expression, the T-test, χ2 anal-
ysis were employed according to the test 
condition, respectively. The statistical analysis 
was performed based on SPSS 17.0 software. 
Statistical significance was defined as P<0.05.

For experiments in cell lines, means and stan-
dard deviations of individual groups (n≥3) were 
calculated. P values were assessed by perform-
ing two-tailed Student’s t-test.

Result

Expression of miR-29a and KDM5B in PCa tis-
sues and cell lines

We first detected the expressions of miR-29a 
and KDM5B in 75 cases of PCa tissues, 10 
cases of normal prostate tissues and 30 cases 
of benign prostatic hyperplasia tissues. 
Compared to normal prostate tissues and BPH 
tissues, miR-29a expression was lower in the 
75 samples of PCa tissues (Figure 1A). 
Conversely, the expression of KDM5B was sig-
nificantly high in tumor tissues, based on the 
qRT-PCR analysis of microarray dataset 
GSE6919 (Figure 1B). In prostate cancer cell 
lines (DU145, PC-3 and LNCaP), miR-29a 
expression was generally low (Figure 1C). We 

Figure 1. The expression levels of miR-29a and KDM5B in prostate cancer tissues and cell lines. Compared with 
normal prostate tissues and BPH tissues, miR-29a expression levels were lower in PCa tissues (A). The expression 
levels of KDM5B were significantly high in tumor tissues, based on microarray dataset GSE6919 analysis (B), (C, D) 
The qRT-PCR analysis results are illustrated. There were generally low miR-29a expression levels in PCa cell lines 
(DU145, PC-3 and LNCaP). Reversely, the expression levels of KDM5B were lowest in WPMY-1 cells and highest in 
22Rv1 cells, as detected in the five prostate cell lines (22Rv1, LNCaP, DU145, PC-3 and WPMY-1). ***P<0.005.
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microRNA target (http://microrna.sanger.ac.
uk), and Miranda (www.microrna.org). We 
focused our attention on KDM5B, a histone 
lysine demethylase of Jumonji family.

To investigate interactions between miR-29a 
and KDM5B, we cloned the miR-29a binding 
sites from the 3’-UTR of KDM5B into a lucifer-
ase reporter plasmid containing a constitutive-
ly-active promoter and subsequently transfect-
ed HEK293T cells (Figure 4B). Co-transfection 
of miR-29a with luciferase reporter plasmid 
resulted in less luciferase activities than in 
transfecting the reporter plasmid alone. 
Additionally, miR-29a transfection did not 
reduce the luciferase activity of the reporter 
construct transfected with mutant 3’UTR of 
KDM5B. Negative control (NC) miRNA did not 
affect the luciferase activity of reporters con-
taining either the 3’UTR of KDM5B or the 
mutant KDM5B construct (Figure 4A, 4B). 
These results indicated that miR-29a directly 
interacts with KDM5B.

We also examined the effects of the overex-
pression of miR-29a on the KDM5B protein 
expressions in LNCaP and PC-3 cells. Compared 
with cells transfected with miRNA control, cells 
transfected with miR-29a showed a significant 
increase in miR-29a mRNA expression (P<0.01) 
(Figure 4C, 4F), accompanied by a significant 
reduction in KDM5B protein expression 
(P<0.001) (Figure 4D, 4G) Collectively, our 
results demonstrated that KDM5B is a direct 
target of miR-29a.

Discussion

MiRNA expression profiles of numerous solid 
malignancies have been reported [22]. Com- 
pared to traditional mRNA and protein markers, 
miRNA expression patterns are more reliable 
and sensitive to changes in cell biology. mRNAs 
and its translated protein levels are not often 
proportional; one important cause is the regu-
latory influence of epigenetic mechanisms, 
including those mediated by miRNAs [23].

further measured the expression of miR-29a 
and KDM5B in four PCa cell lines (LNCaP, 
22RV1, PC-3 and DU145) and noncancerous 
prostatic cell WPMY-1. QRT-PCR showed that 
WPMY-1 had a relatively higher miR-29a expres-
sion (Figure 1D). Reversely, KDM5B expression 
was lower in WPMY-1, while 22RV1 had the 
highest KDM5B expression (Figure 1D).

MiR-29a influenced PCa cell proliferation and 
cell cycle status

MiR-29a was transfected into two PCa cell lines 
(LNCaP and PC-3) to determine its effects in 
vitro. As shown in Figure 2, the enforced expres-
sion of miR-29a significantly decreased the 
growth rate of LNCaP and PC-3 cells. Therefore, 
these results suggest that the overexpression 
of miR-29a inhibits prostate cancer growth.

Cell cycle distribution is a parameter that 
reflects cell growth; we assessed the function 
of miR-29a on the cell cycle profile of LNCaP 
and PC-3 cells by flow cytometry. The overex-
pression of miR-29a in LNCaP and PC-3 cells 
induced an increase in the S phase, and a 
decrease in the G1 phase, compared with miR-
NC (P<0.05).

MiR-29a promotes cell apoptosis

We further explored the role of miR-29a on PCa 
cell apoptosis. LNCaP and PC-3 cells were 
treated with miR-29a and negative control, 
respectively; and the cells were subsequently 
stained with Annexin V-FITC/PI, followed by flow 
cytometry analyses. As shown in Figure 3, the 
enforced expression of miR-29a significantly 
reduced the fraction of living cells and boosted 
apoptotic cells (P<0.05).

KDM5B is a potential target of miR-29a

To identify possible miR-29a target genes, we 
performed a computational screen for genes 
with complementary sites of miR-29a in their 
3’UTR using open-access software. The soft-
ware included TargetScan (www.targetscan.
org), PicTar (http://pictar.bio.nyu.edu), Sanger 

Figure 2. MiR-29a influenced cell proliferation and cell cycle status in PCa cells. A,B. Cell proliferation analysis 
graphs. Cells were seeded into a 96-well plate at 5,000 cells/well and examined at 0, 24, 48 and 72 hours after 
transfection. Each experiment was performed in octuplicate (n=8). MiR-29a overexpression inhibited cell prolifera-
tion in LNCaP (A) and PC-3 (B). C,D. Cell cycle analysis graphs. Cells were transfected with miR-29a and miR-NC for 
48 hours, stained with Propidium Iodide (PI), and subjected to cell cycle analysis. MiR-29a overexpression caused 
a decrease in the G1 phase and an increase in the S phase in LNCaP (C) and PC-3 (D). 
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myosarcoma, cholangiocarcinoma, acute mye- 
logenous leukemia (AML), lung cancer, and 
nasopharyngeal carcinoma [18, 19]. Further, 
miR-29s have subsequently been predominant-
ly attributed with tumor-suppressing proper-
ties; albeit, exceptions have been described in 
its tumor-promoting functions. Restoration of 
miR-29 sensitized cholangiocarcinoma and 
AML cells to apoptotic stimuli, and inhibited 
rhabdomyosarcoma growth in lung cancer [33, 
34]. MiR-29s targets diverse protein expres-
sions, such as collagens, transcription factors, 
and methyltransferases; these may partake in 
abnormal cell migration, invasion or prolifera-
tion; and may also favor cancer development. 
In our previous study, microRNAs chip screen-
ing results of the pathological specimens, 
including 75 PCa patients, revealed 22 differ-
entially expressed miRNAs; the low miR-29a 
expression in PCa has been confirmed by 
RT-PCR. In this study, we also investigated the 
functional role of miR-29a in PCa. It has been 

Specifically, miRNAs played critical regulatory 
roles in diverse biological processes, including 
metabolism [24, 25] and tumorigenesis [26, 
27]; and some miRNAs have been shown to 
repress well-known oncogenes or tumor sup-
pressors [28]. Recently, more and more evi-
dence indicate that abnormal miRNA expres-
sions are involved in tumorigenesis or 
metastasis pathways [29, 30]. MicroRNAs may 
regulate the progress of tumors through epi-
genetic mechanisms. Epigenetic mechanisms 
usually refer to: histone modification, DNA 
methylation [31]. According to the new miR-
base, humans have about 1,000 mature miR-
NAs, but it was reported that only approximate-
ly 50 miRNAs have abnormal expressions in 
prostate cancer. However, only a few were 
involved in the occurrence and development of 
prostate cancer [32]. 

Decreased MiR-29s expressions have been 
reported in many cancers, including rhabdo-

Figure 3. MiR-29a promoted PCa cell apoptosis. Cells were transfected with MiR-29a or miR-NC for 48 hours, and 
then, subjected to cell apoptosis (stained with PI and FITC-Annexin V). A. In LNCaP cells, MiR-29a overexpression 
caused an increase in early and late apoptotic cells, and a decrease in living cells. B. In PC-3 cells, miR-29a overex-
pression caused a decrease in living cells and an increase in early apoptotic cells. Each experiment was performed 
in triplicate. 
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levels in the PCa samples and its relationship 
with PCa patient survival.

To summarize, we found an increased expres-
sion of miR-29a in PCa cells and that miR-29a 
affected the expression of KDM5B; which sup-
pressed PCa cell proliferation, induced PCa cell 
apoptosis and controlled PCa development. 
The results indicated that miR-29a functions as 
a tumor suppressor by targeting KDM5B, and 
these findings could potentially be beneficial as 
a novel therapeutic strategy in PCa.
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