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Abstract: Problems that screw cannot be inserted may occur in screw-rod fixation techniques such as Harms tech-
nique. We compared the biomechanical stability imparted to the C-2 vertebrae by four designed posterior screw 
and rod fixation techniques for the management of odontoid fractures. A three-dimensional finite element model of 
the odontoid fracture was established by subtracting several unit structures from the normal model from a healthy 
male volunteer. 4 different fixation techniques, shown as follows: ① C-1 lateral mass and C-2 pedicle screw fixation 
(Harms technique); ② C-1 lateral mass and unilateral C-2 pedicle screw fixation combined with ipsilateral laminar 
screw fixation; ③ Unilateral C-1lateral mass combined with ipsilateral C-1 posterior arch, and C-2 pedicle screw 
fixation; and ④ Unilateral C1 lateral mass screw connected with bilateral C2 pedicle screw fixation was performed 
on the odontoid fracture model. The model was validated for axial rotation, flexion, extension, lateral bending, and 
tension for 1.5 Nm. Changes in motion in flexion-extension, lateral bending, and axial rotation were calculated. The 
finite element model of the odontoid fracture was established in this paper. All of the four screw-rod techniques 
significantly decreased motion in flexion-extension, lateral bending, and axial rotation, as compared with the desta-
bilized odontoid fracture complex (P<0.05). There was no statistically significant difference in stability among the 
four screw techniques. We concluded that the first three fixation techniques are recommended to be used as surgi-
cal intervention for odontoid fracture, while the last can be used as supplementary for the former three methods.  
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Introduction

In recent years, the incidence of upper cervical 
vertebrae injury has an upward trend year after 
year because of traffic accidents increasing. 
Injury of the upper cervical vertebrae with spi-
nal cord has become a serious impact on peo-
ple’s body health and quality of life in the field 
of orthopedic disorders. The biomechanical 
analysis of upper cervical vertebrae has an 
important clinical significance such as fracture 
types, treatment choices, prognosis judgme- 
nts, and so on. At present, the finite element 
method (FEM) has been generally used in spine 
biomechanical research, but because of com-
plicated anatomy structure of cervical verte-
brae, the heavy workload for three-dimensional 
modeling and other reasons, the building and 
application of finite element model for the cer-
vical vertebrae start relatively late.

Odontoid fracture accounts for up to 20% of all 
cervical spine injuries and most often occurs 
during high-speed motor vehicle collisions [1, 
2]. At present, studies about the biomechanics 
of the cervical internal fixation devices are car-
ried out mainly using cadaver experiments and 
finite element analysis [3]. Among them, the 
cadaver experiment is mostly confined to the 
range of the three-dimensional movement of 
the spine and the internal fixation devices, and 
the pull-out strength of the screw. Finite ele-
ment analysis simulates and analyzes various 
structures in the human body and their patho-
logical changes using a computer. Its results 
are not affected by other factors and it can ana-
lyze the internal stress and strain, which are dif-
ficult to study using general experimental meth-
ods. Moreover, it has advantages such as the 
high accuracy and repeatability [4].
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In this present study, we established a finite 
element model of the odontoid fracture includ-
ing the inferior extremity of the occipital bone, 
and C1-C3 vertebral body. Furthermore, we 
designed four different internal fixation tech-
niques for the management of odontoid frac-
ture, and performed a preliminary analysis to 
compare the biomechanical stability of the four 
C0-C3 transarticular screw and rod fixation 
techniques.

Methods

Finite element model of the odontoid fracture 

The present study was approved by the Ethics 
Committee of Shengjing Hospital of China Me- 
dical University. A 28-year-old healthy male vol-
unteer gave his written informed to participate 
in our study. He was 174 cm tall and weighed 
65 kg. Cervical disease was excluded via X-ray 
examination.

Continuous computed tomography (CT) scan-
ning was performed from the base of the occip-
ital bone to C3 vertebrae by using a Philips-
Marconi MX8000 CT Scanner (Philips Medical 
Systems, Bothell, WA, USA) and the scanning 

data were collected and stored in Dicom format 
for the reconstruction of 3D bone structure 
using Mimics 10.0 (Materialise Technologies, 
Leuven, Belgium). The Freeform Plus software 
(Geomagic Sensable group, Wilmington, MA, 
USA) was applied to sand, fill, denoise, remove 
odontoid and bony component adjacent to C-2 
vertebral body to optimize the model structure. 
These data were then imported to the Ansys 
11.1 software (ANSYS, Inc. Canonsburg, PA, 
USA) as IGES files to produce a finite element 
model of the odontoid fracture (Figure 1). Grid 
division was carried out on each part of the 
bony model by a combined artificial and auto-
matic division method to create a total of 
108,325 nodes and 546,430 elements. The 
model data are summarized in Table 1.

Finite element model with four different poste-
rior implants

The lateral screw and rod fixation system of 
upper cervical spine were modeled by using 
SolidWorks software (Dassault Systèmes, Pa- 
ris, France). This model is consisted of 2 univer-
sal screws (length, 24 mm) and 1 connection 
rod (length, 35 mm). The images were then con-
verted and saved as an STL file format. Next, 
the generated DXF files were loaded into the 
Mimics software to perform smoothing and 
meshing operation to establish a finite element 
model for the treatment of odontoid fractures 
using four different posterior screw and rod fix-
ation techniques by using Magics9.9 software 
which implemented in Mimics (Figure 2). Four 

Figure 1. The finite element model of odontoid fracture. A: frontal view; B: lateral view.

Table 1. Material properties used for various com-
ponents of the model
Material Young’s modulus (Mpa) Poisson’s ratio
Bone 10000 0.3
Internal fixator 105000 0.3
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distinct posterior screw and rod fixation tech-
nique drawn using Mimics software were shown 
as follows: ① C-1 lateral mass and C-2 pedicle 
screw fixation (Harms technique); ② C-1 lateral 
mass and unilateral C-2 pedicle screw fixation 
combined with ipsilateral laminar screw fixa-
tion; ③ Unilateral C-1lateral mass combined 
with ipsilateral C-1 posterior arch, and C-2 ped-
icle screw fixation; and ④ Unilateral C1 lateral 

mass screw connected with bilateral C2 pedi-
cle screw fixation.

Boundary and loading conditions

The range of motion at the base of the C3 ver-
tebra was defined in all directions as 0. Forty 
Newtons of vertical downward pressure were 
imposed on the surface of the occipital condyle 

Figure 2. The finite element model treating odontoid fracture with posterior screw-rod fixation system. Left: surface 
mesh; Right: volume mesh.
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to simulate the weight of the head due to grav-
ity. Approximately 1.5 Nm torque was imposed 
on the model from various directions to pro-
duce flexion, extension, lateral bending and 
axial rotation. The models of the four different 
posterior screw and rod fixation techniques for 
the management of odontoid fractures posteri-
or were compared using an Ansys 11 post- 
processor. 

Statistical analysis

SPSS software version 20.0 (SPSS Inc., Chi- 
cago, IL, USA) was used for data analysis. 
Rotational stiffness (axial rotation, flexion/
extension, and lateral bending) was defined as 
a ratio of applied torque (Nm) to the corre-
sponding angular deformation (degrees). The 
degrees of ROM at C1-C2 and at the levels 
above and below were statistically compared 
using a one-way analysis of variance (ANOVA) 
combined with Student-Newman-Keuls test at 
95% confidence. Differences were considered 
statistically significant when P<0.05. 

Results

In this study, we first established a finite model 
of odontoid fracture of upper cervical spine. 
The model appearance was matched with geo-
metric profile and size, which consists of 
108325 nodes, and 546430 elements. Based 
on the established finite model of odontoid 
fracture, we designed four different posterior 
screw and rod fixation model for the treatment 
of odontoid fracture. This four fixation model 
consists of 168785, 191237, 151436, 1421- 

48, nodes and 869022, 991730, 771929, and 
719880 elements, respectively (Table 2).

Stress diagrams and displacement diagrams

In this present study, forty newtons of vertical 
downward pressure were imposed on the sur-
face of the occipital condyle to simulate the 
weight of the head, and approximately 1.5 Nm 
torque was imposed on the model from various 
directions to produce flexion, extension, lateral 
bending and axial rotation. Stress diagrams 
and displacement diagrams were analyzed and 
compared among the four screw-rod system 
(Figures 3-6).

ROM data

Total C1-C2 ROM data for all the fixation sce-
narios and the statistical significance of these 
data are shown in Table 3. The average ROM 
was 36.8°C in combined flexion extension, 
20.8 in combined lateral bending, and 75.2 in 
axial rotation. These values are in good agree-
ment with ROM data obtained from previously 
published studies [5] .

All of the four different posterior screw and rod 
fixation techniques significantly reduced motion 
of flexion-extension, lateral bending, and axial 
rotation, as compared with the destabilized 
odontoid fracture complex (P<0.05). No statisti-
cal difference for any motion was demonstrat-
ed among our first three posterior screw and 
rod fixations (P>0.05); however, Model IV 
(Unilateral C1 lateral mass screw connected 
with bilateral C2 pedicle screw fixation) was sig-
nificantly different from the other three fixation 
technique (P<0.05), showing unilateral C1 lat-
eral mass screw connected with bilateral C2 
pedicle screw fixation have a relative weak 
stability.

Discussion

The C1-C2 articulation accounts for 50% of the 
rotation (47°C) and 12% of flexion/extension of 
the cervical spine [6]. Many disorders can 
cause instability of the atlantoaxial complex 
such as odontoid fractures, malignancy, rheu-
matoid arthritis, congenital anomalies, or infec-
tious diseases [7]. The unique anatomic shape 
of the atlantoaxial segment permits the highest 
mobility of all the spinal segments. Surgical 
attempts to achieve stabilization in this region 
need to address this challenge. Posterior wiring 
combined with structural bone graft was the 

Table 2. Nodes and elements of odontoid 
fractures and four posterior screw and rod 
fixation model of the upper cervical spine

Nodes Elements
Odontoid fractures model 108325 546430
Model I 168785 869022
Model II 191237 991730
Model III 151436 771929
Model IV 142148 719880
Model I, C-1 lateral mass and C-2 pedicle screw fixation 
(Harms technique); Model II, C-1 lateral mass and unilat-
eral C-2 pedicle screw fixation combined with ipsilateral 
laminar screw fixation; Model III, Unilateral C-1 lateral 
mass combined with ipsilateral C-1 posterior arch, and 
C-2 pedicle screw fixation; and Model IV Unilateral C1 
lateral mass screw connected with bilateral C2 pedicle 
screw fixation. 
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first standardized operative techniques for fus-
ing C1 and C2 [8-11]. More recently, wiring with 
bilateral transarticular screw fixation has 
become the gold standard for achieving atlan-
toaxial arthrodesis [12-16]. A novel method 
that uses direct polyaxial screw fixation to the 
lateral masses of C1 and the pedicle of C2 

have recently been described [5, 17]. The 
screws are fixed via bilateral longitudinal rods. 
In theory, this fixation has the ability to provide 
adequate stability that is not dependent on the 
integrity of the posterior arch of C1 or any struc-
tural bone grafts. Also, because of the insertion 
sites of the screws, the operative exposure is 

Figure 3. The displacement and stress diagram of four screw-rod fixation system under flexion motion. Left: frontal 
view; Right: lateral view.
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the same regardless of the degree of thoracic 
kyphosis. Finally, a reduction maneuver, if nec-
essary, may be performed after screw place-
ment. Incorporation as part of a posterior fixa-

tion device for extended fusion in the occipito-
cervical area is possible. However, to date there 
have been as yet no consensuses for occipito-
cervical reconstruction. 

Figure 4. The displacement and stress diagram of four screw-rod fixation system under extension motion. Left: 
frontal view; Right: lateral view.
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Finite elements models have their current ori-
gin and real use in mechanical engineering 
analysis and design. They provide interesting 
local information in terms of displacement, 
strain and stress. This local information is gen-
erally difficult to obtain experimentally. The 
invasive nature of the direct methods decrease 
their reliability: insertion of experimental devic-
es, such as strain gauges, inside the structure 
can induce damage to its tissues, while placing 
the measuring device in or between the dental 

arches can be inefficient [18]. Furthermore, 
these experimental techniques deliver local 
measurements in specific points, giving an 
approximation of the biomechanical behavior 
[19]. Accordingly, experimental studies of the 
biologic effects of various magnitudes of force 
acting on the condyle, discs or the fossa are 
not available in vivo.

Biological applications of finite element analy-
sis have been successful in biomechanical field 

Figure 5. The displacement and stress diagram of four screw-rod fixation system under flexion motion. Left: left 
lateral bending; Right: Right lateral bending.
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such as upper cervical spine [20-23]. The main 
purpose of surgical intervention, in the case of 
atlantoaxial instability, is to obtain immediate 
stability and promote bony fusion of the atlan-
toaxial joint [3]. Therefore, it is very important 
to evaluate the biomechanical properties of 
various atlantoaxial fixation methods. In this 
study, we designed four new posterior screw-
rod fixation techniques for the management of 
odontoid fracture. Our findings indicated that 
the four screw-rod system may provide a new 
option for internal fixation using the posterior 
upper cervical approach.

The current model involved two levels (C0 and 
C3) that were not directly part of the fixation. 
The authors thought inclusion of the occiput 
was important considering the dependence of 
the kinematic behavior of the atlas and axis on 
ligamentous connections with the occiput (i.e., 
the alar ligaments and the tectorial membrane). 
Mechanical evaluation of the isolated atlanto-
axial segment is difficult and would have pro-
vided a less physiologically meaningful model. 
One subaxial level, C3, was included in the 
preparation to allow for obtaining the correct 
transarticular screw trajectory. Previous work 

Figure 6. The displacement and stress diagram of four screw-rod fixation system under axial rotation. Left: left axial 
rotation; Right: right axial rotation.
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indicated that the potting material interfered 
with the surgeon’s ability to access the osse-
ous entry point when C3 was chosen as the 
inferior level in the preparation [5].

The current data reported that changes in ROM 
after destabilization also had a good concor-
dance to those in previously published data 
[15, 24-27]. Besides, we found no statistical 
difference for any motion among our first three 
posterior screw and rod fixations; however, 
Model IV (Unilateral C1 lateral mass screw con-
nected with bilateral C2 pedicle screw fixation) 
was significantly different from the other three 
fixation technique, showing unilateral C1 lateral 
mass screw connected with bilateral C2 pedi-
cle screw fixation have a relative weak sta- 
bility. 

Conclusion 

In summary, the finite element model of the 
odontoid fracture was established in this paper. 
The model appearance was matched with geo-
metric profile and size. Fixation of atlantoaxial 
complex using C-1 lateral mass and C-2 pedicle 
screw fixation is biomechanically equivalent to 
C-1 lateral mass and unilateral C-2 pedicle 
screw fixation combined with ipsilateral laminar 
screw fixation, and unilateral C-1lateral mass 
combined with ipsilateral C-1 posterior arch 
and C-2 pedicle screw fixation. All of the three 
fixation techniques are biomechanically superi-
or to unilateral C1 lateral mass screw connect-
ed with bilateral C2 pedicle screw fixation in 
axial rotation. In order to simulate the physio-
logical state and to analyze the biomechanical, 
additional biomechanical experiments should 
be performed to verify the reliability of our new 
internal fixation system.
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