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Abstract: Objective: The objective of this work is to identify disrupted pathways in narcolepsy according to system-
atically tracking the dysregulated modules of reweighted Protein-Protein Interaction (PPI) networks. Here, we per-
formed systematic identification and comparison of modules across normal and narcolepsy conditions by integrating 
PPI and gene-expression data. Methods: Firstly, normal and narcolepsy PPI network were inferred and reweighted 
based on Pearson correlation coefficient (PCC). Then, modules in PPI network were explored by clique-merging al-
gorithm and we identified altered modules using a maximum weight bipartite matching and in non-increasing order. 
Finally, pathways enrichment analyses of genes in altered modules were carried out based on Expression Analysis 
Systematic Explored (EASE) test to illuminate the biological pathways in narcolepsy. Results: Our analyses revealed 
that 235 altered modules were identified by comparing modules in normal and narcolepsy PPI network. Pathway 
functional enrichment analysis of disrupted module genes showed 59 disrupted pathways within threshold P < 
0.001. The most significant five disrupted pathways were: oxidative phosphorylation, T cell receptor signaling path-
way, cell cycle, Alzheimer’s disease and focal adhesion. Conclusions: We successfully identified disrupted pathways 
and these pathways might be potential biological processes for treatment and etiology mechanism in narcolepsy.
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Introduction 

Narcolepsy is a chronic neurological disorder 
caused by autoimmune destruction of hypocre-
tin-producing neurons inhibiting the brain’s 
ability to regulate sleep-wake cycles normally 
[1, 2]. People with narcolepsy often experience 
frequent excessive daytime sleepiness, sleep 
paralysis, hypnagogic hallucinations and cata-
plexy, these symptoms may not present in all 
patients [3]. It severely interferes with every 
aspect of patients’ life, in work and social set-
tings. Narcolepsy occurs in approximately 1 in 
2000 individuals, while most cases are sporad-
ic and can be substantially helped but not 
cured [4].

Studies have revealed that several genes are 
associated with narcolepsy. Manzotteet al. 
showed that more than 90% of narcolepsy 
patients have an association with human leu-

kocyte antigens (HLA) [5, 6]. Meanwhile it has 
been reported that there is a strong association 
between narcolepsy and polymorphisms in the 
T-cell receptor α (TCRα) [7], and a weaker asso-
ciation with tumor necrosis factor super family 
number 4 (TNFSF4) [8] and the purinergic 
receptor subtype P2Y11 [9]. However, the com-
plex nature of central nervous system and the 
immune system presents unique challenges in 
finding a mechanism for narcolepsy [10].

With the advances of high-throughput experi-
mental technologies, large amounts of Protein-
Protein interaction (PPI) data are uncovered, 
which make it possible to study proteins in sys-
tematically level [11]. In addition, a PPI network 
can be modeled as an undirected graph, where 
vertices represent proteins and edges repre-
sent interactions between proteins, to prioritize 
disease associated genes or pathways and to 
understand the modus operandi of disease 
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mechanisms [12]. But it has been noticed that 
PPI data are often associated with high false 
positive and false negative rates due to the 
limitations of the associated experimental 
techniques and the dynamic nature of protein 
interaction maps, which may have a negative 
impact on the performance of complex discov-
ery algorithms [13]. Many computational 
approaches have been proposed to assess the 
reliability of protein interactions data. An itera-
tive scoring method proposed by Liu et al was 
selected to evaluate the reliability and predict 
new interactions, and it has been shown to per-
form better than other methods [14]. However, 
studying multiple diseases simultaneously 
makes it challenging to discern clearly the intri-
cate underlying mechanisms. 

In addition, it is important to effectively inte-
grate omics data into such an analysis, for 
example, Chu and Chen combined PPI and 
gene expression data to construct a cancer 
perturbed PPI network in cervical carcinoma to 
study gain-and loss-of-function genes as poten-
tial drug targets [15]. Magger et al. combined 
PPI and gene expression data to construct tis-
sue-specific PPI networks for 60 tissues and 
used them to prioritize disease genes [16]. 
Beyond straightforward scoring genes in the 
gene regulatory network, it is crucial to study 
the behavior of modules across specific condi-
tions in a controlled manner to understand the 
modus operandi of disease mechanisms and to 
implicate novel genes [17], since some of 
important genes may not be identifiable 
through their own behavior, but their changes 
are quantifiable when considered in conjunc-
tion with other genes (e.g. as modules). What is 
required, therefore, is a systematic tracking 
gene and module behavior across specific con-
ditions in a controlled manner. Besides, num-
bers of human genes has not yet been assigned 
to definitive pathways, scoring pathways based 
on module analysis becomes a more reliable 
analyzing approach.

Therefore, in this paper, we systematically 
tracked the altered modules of reweighted PPI 
networks to identify disturbed pathways 
between normal controls and narcolepsy 
patients, in order to further to reveal mecha-
nism of narcolepsy. To achieve this, we firstly 
inferred normal and narcolepsy PPI network 
based on Pearson correlation coefficient (PCC); 
then clique-merging algorithm was performed 
to explore modules in PPI network, and we com-

pared these modules to identify altered mod-
ules; finally pathways enrichment analysis of 
genes in altered modules were carried out 
based on Expression Analysis Systematic 
Explored (EASE) test.

Materials and methods

Inferring normal and narcolepsy PPI network

Using human protein interactions, we first con-
structed generic PPI network, and every inter-
action had a weight score reflecting the reliabil-
ity of the interactions. 

We utilized a dataset of literature-curated 
human PPI from the Search Tool for the 
Retrieval of Interacting Genes/Proteins (STR- 
ING), comprising 16730 genes and 1048576 
interactions [18]. For STRING, self-loops and 
proteins without expression value were 
removed. The remaining largest connected 
component with score more than 0.8 was kept 
as the selected PPI network, which consisting 
of 8590 genes and 53975 interactions.

The microarray expression profiles of E- 
GEOD-21592 from Array Express database was 
selected for narcolepsy related analysis. 
E-GEOD-21592, which consisted of 10 narco-
lepsy patients and 10 normal controls, existed 
in Affymetrix Gene Chip Human Genome U133A 
2.0 Platform. We performed the standard meth-
ods for preprocessing the gene expression pro-
file of each dataset, including “rma” [19], 
“quantiles” [20], “mas” [21] and “medianpol-
ish” [19].

Briefly, in order to eliminate the influence of 
nonspecific hybridization, background correc-
tion was applied by rma method [19]. The 
observed Perfect match (PM) probes were 
modeled as the sum of a normal noise compo-
nent N (Normal with mean µ and variance σ2) 
and an exponential signal component S (expo-
nential with mean α). To avoid any possibility of 
negatives, the normal was truncated at zero. 
Given O the observed intensity, Ø and Φ were 
the standard normal distribution density and 
distribution functions respectively, and a = s - µ 
- σ2α, b = σ, the adjustment as following:
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Quantiles based algorithm was applied to nor-
malization of the data [20]. The quantile nor-
malization method was a specific case of  
the transformation x’i = F-1 (G (xi)), where we 
estimated G by the empirical distribution of 
each array and F using the empirical distribu-
tion of the averaged sample quantiles. PM/
Mismatch(MM) correction was conducted by 
mas method [21]. An ideal mismatch was sub-
tracted from PM. The Ideal MM would always 
be less than the corresponding PM and thus we 
could safely subtract it without risk of negative 
values.

Medianpolish was performed to summarize the 
probe data [19]. A multichip linear model was fit 
to data from each probe set. In particular for a 
probe set k with i = 1, …, Ik probes and data 
from j = 1, …, J arrays we fitted the following 
model 
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Where αi was a probe effect and βj was the log2 
expression value.

In this paper, gene interactions in narcolepsy 
patients and normal controls network were 
reweighted by PCC, which evaluating the prob-
ability of two co-expressed gene pairs. PCC is a 
measure of the correlation between two vari-
ables, giving a value between -1 and +1 inclu-
sive [22]. The PCC of a pair of genes (x and y), 
which encoded the corresponding paired pro-
teins (u and v) interacting in the PPI network, 
was defined as:
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Where s was the number of samples of the 
gene expression data; g (x, i) or g (y, i) was the 
expression level of gene x or y in the sample i 
under a specific condition; 

_
g  (x) or 

_
g  (y) repre-

sented the mean expression level of gene x or y 
and s(x) or s(y) represented the standard devia-
tion of expression level of gene x (or y). 

The PCC of a pair of proteins (u and v) was 
defined as the same as the PCC of their corre-
sponding paired genes (x and y), that was PCC 
(u, v) = PCC (x, y). If PCC (u, v) has a positive 
value, there is a positive linear correlation 
between u and v. in addition, we defined PCC of 
each gene-gene interaction as weight value of 
the interaction.

Identifying modules from the PPI network

In this study, module-identification algorithm 
was based on clique-merging [23, 24]. Our 
algorithm worked in two steps: in the first step, 
it found all the maximal cliques from the weight-
ed PPI network and ranked the cliques accord-
ing to their weighted density, and in the second 
step, it merged highly overlapped cliques.

Cliques algorithm proposed by Tomia et al was 
applied to find maximal cliques [25]. It utilized a 
depth-first search strategy to enumerate all 
maximal cliques and effectively pruned non-
maximal cliques during the enumeration pro-
cess. The score of a clique C was defined as its 
weighted interaction density dW (C):
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Where w (u, v) was the weight of the interaction 
between u and v. Proteins in a larger clique 
were more likely to have more common neigh-
bors than proteins in a smaller clique, so the 
edges within a larger clique were likely to have 
higher weights than those in a smaller clique. 
Therefore, if the density of two cliques was the 
same, the weighted density of the larger clique 
was likely to be higher than that of the smaller 
clique.

Many of maximal cliques might overlap with 
one another as thousands of them were gener-
ated from a PPI network. The high overlapped 
cliques should be removed to reduce result 
size. Besides, merging highly overlapped 
cliques to form bigger yet still dense sub graphs 
was also desirable since complexes were not 
necessarily fully connected and PPI data might 
be incomplete. The inter-connectivity between 
two cliques was selected to determine whether 
two overlapped cliques should be merged 
together or not. The weighted inter-connectivity 
Iw between the non-overlapping proteins of Ci 
and Cj was calculated as follows:
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Given a set of cliques ranked in descending 
order of their score, denoted as {C1, C2, ..., Ck}, 
the algorithm removed and merged highly over-
lapped cliques in the following steps. For every 
clique Ci, it checked whether there existed 
clique Cj such that Cj had a lower score than Ci 
and |Ci ∩ Cj|/|Cj| ≥ t, where t = 0.5 was a pre-



Dysregulated modules identify disrupted pathway in narcolepsy

9387 Int J Clin Exp Med 2015;8(6):9384-9393

defined threshold for overlapping [17]. If such Cj 
existed, then using the inter-connectivity scores 
between Ci and Cj to decide whether to remove 
Cj or merge Cj with Ci. If inter-score (C1, C2) ≥ m, 
then Cj was merged with Ci, otherwise, Cj was 
removed. Here, m = 0.25 was a predefined 
threshold for merging [17].

We captured the effect of differences in inter-
action weights between normal and narcolepsy 
through the weighted density-based ranking of 
cliques. Weighted density assigned higher rank 
to larger and stronger cliques. Therefore, we 
expected cliques with lost proteins or weak-
ened interactions to go down the rankings 
resulting in altered module generation, thereby 
capturing changes in modules between normal 
and narcolepsy. 

Comparing modules between normal and 
narcolepsy conditions

HN and HD represented the PPI network of nor-
mal controls and narcolepsy patients, which 
identifying the sets of modules S = {S1, S2, …, 
Sm} and T = { T1, T2, …, Tn} respectively. For each 
Si Є S, module correlation density dc (Si) was 
defined as:
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Correlation densities of narcolepsy modules (dc 
(Ti)) were calculated similarly.

Disrupted or altered module pairs were evalu-
ated by modeling the set γ (S, T) as a maximum 
weight bipartite matching [26]. Firstly we build 
a similarity graph M = (VM, EM), where VM = {S U 
T}, and EM = U {(Si, Tj): J (Si, Tj) ≥ tJ, ∆C (Si, Tj) ≥ δ}, 
where by J (Si, Tj) = |Si ∩ Tj|/|Si U Tj| was the 

Jaccard similarity and ∆C (Si, Tj) = |dc (Si) - dc (Ti)| 
was the differential correlation density between 
Si and Tj, tJ and δ were thresholds with 2/3 and 
0.05 [17]. J (Si, Tj) weighted every edge (Si, Tj). 
We next identified the disrupted module pair’s γ 
(S, T) by detecting the maximum weight match-
ing in M, and we ranked them in non-increasing 
order of their differential density ∆C. At last, we 
inferred genes involved in narcolepsy as Γ = {g: 
g Є Si U Tj, (Si, Tj) Є γ (S, T)} ranked in non-
increasing order of ∆C (Si, Tj). To identify altered 
modules, we matched normal and narcolepsy 
modules by setting a high tJ, which ensured 
that the module pairs either had the same gene 
composition or had lost or gained only a few 
genes.

Pathway enrichment analysis of genes in 
altered modules

The Database for Annotation, Visualization, and 
Integrated Discovery (DAVID) for KEGG pathway 
enrichment analysis was carried out to further 
investigate the biological functions of genes in 
altered modules from normal controls and nar-
colepsy patients [27]. In addition, pathway 
analysis of genes only existed in normal or nar-
colepsy module was also conducted. KEGG 
pathways with P value thresholds were chosen 
based on Expression Analysis Systematic 
Explored (EASE) test applied in DAVID. EASE 
analysis of the regulated genes indicated 
molecular functions and biological processes 
unique to each category [28]. The EASE score 
was used to detected the significant catego-
ries. In both of the functional and pathway 
enrichment analysis, the threshold of minimum 
number of genes for the corresponding term > 
2 were considered significant for a category.
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Where n was the number of background genes; 
a’ was the gene number of one gene set in the 
gene lists; a’ + b was the number of genes in 
the gene list including at least one gene set; a’ 
+ c was the gene number of one gene list in the 
background genes; a’ was replaced with a = 
a’-1.

Results 

Analyzing of disruptions in narcolepsy PPI 
network

We obtained 12493 genes of normal and nar-
colepsy after preprocessing, then investigated 

Figure 1. Scorewise distribution of interactions: Nor-
mal vs Narcolepsy. 



Dysregulated modules identify disrupted pathway in narcolepsy

9388 Int J Clin Exp Med 2015;8(6):9384-9393

intersections between these gene 
interaction and STRING PPI network, 
and identified PPI networks of normal 
and narcolepsy. The normal HN and 
narcolepsy HD PPI networks displayed 
equal numbers of nodes (6820) and 
interactions (41729). Their average 
scores (weights) were 0.387 and 
0.318, respectively. Figure 1 showed 
that there were significant differences 
in the score distribution (0~0.4) of the 
two networks. Examining these inter-
actions more carefully, we found that 
scores of 17249 interactions in narco-
lepsy network were lower compared 
with normal network, and on the con-
trary 24480 interactions were higher 
than these of normal. We extracted 
those with score changes > 0.6, which 
included 2210 interactions. 

KEGG pathway enrichment analysis of 
genes involved in these 2210 interac-
tions was performed, and with thresh-
olds of P value < 0.001, the results 
were shown in Table 1. These genes 
were enriched in 47 biological process 
terms, of which pathways in cancer (P 
= 3.53E-22), focal adhesion (P = 
1.37E-15) and cell cycle (P = 2.11E-13) 
were the most significant three 
pathways.

Analyzing of disruptions in narcolepsy 
modules

Clique-merging algorithm was select-
ed to identify disrupted or altered 
modules from the normal and narco-
lepsy PPI network in this paper. In 
detailed, we performed a comparative 
analysis between normal S and narco-
lepsy T modules to understand disrup-
tions at the module level. Maximal 
cliques of normal and narcolepsy PPI 
network were 23208 based on fast 
depth-first algorithm. With the thresh-
old of nodes > 4, a total of 7070 maxi-
mal cliques were identified for module 
analysis. As shown in Table 2, a num-
ber of 1800 and 2195 modules were 
explored in normal and narcolepsy PPI 
network. For narcolepsy module, aver-
age module size was smaller than that 
of normal module, while maximum 

Table 1. KEGG pathways of genes with interaction score 
changes > 0.6 between normal and narcolepsy
Pathways P Value
Pathways in cancer 3.53E-22
Focal adhesion 1.37E-15
Cell cycle 2.11E-13
Melanoma 4.58E-13
Glioma 9.30E-13
T cell receptor signaling pathway 4.70E-12
Progesterone-mediated oocyte maturation 2.31E-11
Colorectal cancer 3.01E-11
Fc epsilon RI signaling pathway 6.54E-11
GnRH signaling pathway 7.62E-11
Chemokine signaling pathway 5.33E-10
Chronic myeloid leukemia 9.10E-10
Non-small cell lung cancer 1.13E-09
Renal cell carcinoma 3.68E-09
Neuroactive ligand-receptor interaction 3.79E-09
VEGF signaling pathway 3.81E-09
ErbB signaling pathway 1.00E-08
Pancreatic cancer 1.16E-08
Prostate cancer 2.61E-08
Regulation of actin cytoskeleton 2.88E-08
MAPK signaling pathway 5.76E-08
Gap junction 8.70E-08
Wnt signaling pathway 1.02E-07
Bladder cancer 1.21E-07
Endometrial cancer 1.75E-07
Small cell lung cancer 3.28E-07
ECM-receptor interaction 3.28E-07
Oocyte meiosis 5.24E-07
Melanogenesis 5.64E-07
TGF-beta signaling pathway 1.14E-06
Nucleotide excision repair 2.21E-06
Vascular smooth muscle contraction 2.75E-06
Acute myeloid leukemia 4.55E-06
Purine metabolism 5.58E-06
Long-term potentiation 1.10E-05
Insulin signaling pathway 1.30E-05
Long-term depression 1.64E-05
Neurotrophin signaling pathway 1.72E-05
B cell receptor signaling pathway 1.95E-05
Calcium signaling pathway 3.34E-05
Adherens junction 1.05E-04
Toll-like receptor signaling pathway 1.18E-04
mTOR signaling pathway 3.50E-04
Linoleic acid metabolism 3.57E-04
Jak-STAT signaling pathway 5.88E-04
Dilated cardiomyopathy 5.99E-04
Epithelial cell signaling in Helicobacter pylori infection 6.05E-04
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marginal increase in correlation for 126 mod-
ules in narcolepsy versus normal, with a maxi-
mum increase of 0.152. However, KEGG path-
way analysis showed enrichment for similar 
terms in both γ’ (S, T) and γ” (S, T), which was 
not specific enough to differentiate the roles of 
the two subsets and, therefore, whether com-
pensatory or narcolepsy-driving mechanisms 
coming into play. This prompted further in-
depth analysis of the modules.

In-depth analyses of disrupted modules

Of the 235 disrupted module pairs in γ (S, T), 
pathway analysis based on disrupted module 
gene composition were conducted, Table 4 
showed pathways within threshold P value < 
0.001. These genes were enriched in 59 terms, 
of which oxidative phosphorylation (P = 1.93E-
23), T cell receptor signaling pathway (P = 
8.44E-21), cell cycle (P = 3.39E-20), Alzheimer’s 
disease (P = 4.13E-17) and focal adhesion (P = 
6.89E-17) were the most significant five dis-
rupted pathways. This was consistent with cur-
rent knowledge on narcolepsy which included 
Alzheimer’s disease, Huntington’s disease, 
Parkinson’s disease, glioma and neurotrophin 
signaling pathway.

In detailed, there were a total of 651 genes pre-
sented in normal modules and 643 genes con-
sisted in narcolepsy modules. Among these 
genes, 198 genes only existed in altered nor-
mal modules, thus these genes were gained 
genes compared with normal, for example, 
TOP2A and CCNA2 were gained 14 and 10 
modules respectively. Whereas 182 genes only 
consisted in altered narcolepsy modules, which 
meant 182 genes were missed in the narco-
lepsy process. There were three genes (FGD1, 
ARHGEF18 and MELK) had missed more than 
10 modules. Being consistent with previous 
enrichment analysis, many genes in gained or 
missed gene list had been identified in inde-
pendent wet-lab studies and related to neuro-
associated disease, particularly FGD1 and 
ARHGEF18 [29, 30]. For gained genes, cell 

weighted interaction density was larger than 
that of normal module. Figure 2 showed the 
relationship between numbers of modules and 
weighted interaction density of modules. There 
were significant differences of module num-
bers when the interaction density arranged 
from -0.05 to 0.15, and modules in normal was 
higher. 

But Table 2 also showed an overall decrease in 
correlation in narcolepsy modules, further, this 
decrease had affected mainly the highly corre-
lated modules (Figure 2). Next, we obtained 
235 disrupted module pairs and then comput-
ed the set of matching modules γ (S, T). Giving 
|γ (S, T)| = 235, for tJ = 2/3 and δ = 0.05. 
Substantially, we divided γ (S, T) into γ’ (S, T) of 
module pairs showing higher correlation in nor-
mal than narcolepsy, and γ” (S, T) of module 

pairs showing lower correlation in 
normal than narcolepsy, giving |γ’ 
(S, T)| = 109, |γ” (S, T)| = 126. We 
calculated the absolute differen-
tial correlation ∆C of these sub-
sets, as shown in Table 3. 
Interestingly, this demonstrated a 

Table 2. Properties of normal and narcolepsy modules

Module set Numbers 
of modules

Average 
module size

Correlation
Maximal Average Min

Normal S 1800 20.406 0.287 -0.075 0.033
Narcolepsy T 2195 18.353 0.319 -0.074 0.036

Figure 2. Correlationwise distribution of modules in 
normal and narcolepsy. Expression correlation of 
one module was equaled to weighted interaction 
density in the module.

Table 3. Correlations of matched normal and 
narcolepsy module pairs

Module  
pair subset

No. of  
pairs

∆C

Maximal Average
γ′ (S, T) 109 0.226 0.083
γ″ (S, T) 126 0.152 0.074
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cycle (P = 2.01E-07), long-term 
depression (P = 2.51E-07) and focal 
adhesion (P = 3.81E-07) were the 
most significant 3 of 16 pathways. As 
for missed genes, top 3 significant 
terms were prostate cancer (P = 
8.46E-12), Fc epsilon RI signaling 
pathway (P = 9.34E-12) and T cell 
receptor signaling pathway (P = 
2.54E-10). 

Discussion

The objective of this work is to identify 
disrupted pathways in narcolepsy 
according to systematically tracking 
the dysregulated modules of reweight-
ed PPI networks. We obtained 
reweighted normal and narcolepsy PPI 
network based on PCC and then iden-
tified modules in the PPI network. By 
comparing these modules, 235 dys-
regulated modules pairs were identi-
fied, further, pathway enrichment 
analyses were conducted utilizing 
genes in dysregulated modules. The 
results displayed 59 disrupted path-
ways, such as T cell receptor signaling 
pathway, cell cycle and Alzheimer’s 
disease.

A recent genome-wide association 
study found a strong association 
between narcolepsy and a T cell 
receptor gene variant, corroborating 
the autoimmune hypothesis [7]. In 
this study, we found that T cell recep-
tor signaling pathway was a disrupted 
pathway in narcolepsy. Literatures 
documented that T cell receptor was 
the major receptor for HLA-peptide 
presentation, and narcolepsy might 
be triggered by an acute autoimmune 
process together with HLA and T cell 
receptor associations [31]. Chen et al 
discovered that narcolepsy, a immune-
mediated disease, was associated 
with polymorphisms of the genes 
encoding T cell receptor alpha chain 
[32]. Immune-mediated destruction 
of hypocretin producing neurons may 
be mediated by microglia/macro-
phages that become activated either 
by autoantigen specific CD4+ T cells or 
superantigen stimulated CD8+ T cells, 

Table 4. Pathways based on genes in disrupted normal and 
narcolepsy modules
Term P Value
Oxidative phosphorylation 1.93E-23
T cell receptor signaling pathway 8.44E-21
Cell cycle 3.39E-20
Alzheimer’s disease 4.13E-17
Focal adhesion 6.98E-17
Pathways in cancer 1.44E-15
Huntington’s disease 1.84E-15
Prostate cancer 2.04E-15
Long-term depression 2.04E-14
B cell receptor signaling pathway 5.24E-14
Colorectal cancer 6.57E-14
Fc epsilon RI signaling pathway 1.12E-13
Parkinson’s disease 1.39E-13
Chemokine signaling pathway 1.95E-13
Chronic myeloid leukemia 3.66E-13
Small cell lung cancer 4.19E-13
Glioma 4.49E-13
VEGF signaling pathway 2.42E-12
Ribosome 8.04E-12
Neurotrophin signaling pathway 1.90E-11
Pancreatic cancer 2.72E-11
Endometrial cancer 4.61E-11
GnRH signaling pathway 6.93E-11
Progesterone-mediated oocyte maturation 1.62E-10
ECM-receptor interaction 4.20E-10
Non-small cell lung cancer 8.62E-10
Linoleic acid metabolism 1.53E-09
Oocyte meiosis 2.33E-09
Acute myeloid leukemia 4.66E-09
Regulation of actin cytoskeleton 7.89E-09
Toll-like receptor signaling pathway 1.46E-08
ErbB signaling pathway 2.34E-08
MAPK signaling pathway 5.84E-08
NOD-like receptor signaling pathway 1.09E-07
Renal cell carcinoma 2.82E-07
Epithelial cell signaling in Helicobacter pylori infection 6.94E-07
Fc gamma R-mediated phagocytosis 7.22E-07
DNA replication 1.12E-06
TGF-beta signaling pathway 1.50E-06
Phosphatidylinositol signaling system 3.45E-06
Wnt signaling pathway 3.46E-06
Inositol phosphate metabolism 4.48E-06
Melanoma 6.30E-06
Leukocyte transendothelial migration 7.19E-06
Arachidonic acid metabolism 8.02E-06
Nucleotide excision repair 2.08E-05
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receptor signaling pathway played an important 
role in narcolepsy.

In conclusion, we successfully identified dis-
rupted pathways, such as T cell receptor signal-
ing pathway, cell cycle and Alzheimer’s disease, 
and these pathways might be potential biologi-
cal processes for treatment and etiology mech-
anism in narcolepsy.
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