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Abstract: Objective: Recognizing and managing of admitted patients in intensive care unit (ICU) with high risk of 
mortality is important for maximizing the patient’s outcomes and minimizing the costs. This study is based on linear 
and nonlinear analysis of heart rate variability (HRV) to design a classifier for mortality prediction of cardio vascular 
patients admitted to ICU. Methods: In this study we evaluated 90 cardiovascular ICU patients (45 males and 45 fe-
males). Linear and nonlinear features of HRV include SDNN, NN50, low frequency (LF), high frequency (HF), correla-
tion dimension, approximate entropy; detrended fluctuation analysis (DFA) and Poincaré plot were analyzed. Paired 
sample t-test was used for statistical comparison. Finally, we fed these features to the Multi-Layer Perceptron (MLP) 
and Support Vector Machines (SVMs) to find a robust classification method to classify the patients with low risk and 
high risk of death. Results: Almost all HRV features measuring heart rate complexity were significantly decreased 
in the episode of half-hour before death. The results generated based on SVM and MLP classifiers show that SVM 
classifier is enable to distinguish high and low risk episodes with the total classification sensitivity, specificity, posi-
tive productivity and accuracy rate of 97.3%, 98.1%, 92.5% and 99.3%, respectively. Conclusions: The results of the 
current study suggest that nonlinear features of the HRV signals could be show nonlinear dynamics. 

Keywords: Mortality prediction, ICU, HRV, linear and non-linear analysis, MLP, SVM.

Introduction

The intensive care unit is a speculated area 
where medical devices, doctors and nurses are 
focused for treating severely ill patients in a 
hospital. The main goal of ICU is to recover the 
life of patients with reversible medical condi-
tions or offer comfortable death for non-sal-
vageable patients with adverse condition.

Presently health care groups are focused to 
research on techniques for improving effective-
ness of the treatment for the critically ill 
patients in ICU. The concept of providing cost-
effective intensive care has now generalized to 
all developed countries, becoming a major 
interest of clinicians, hospital administrations, 
health care managers, medical economists 
and governmental policy makers [1].

The acute physiology and chronic health evalu-
ation (APACHE) [2], mortality probability model 
(MPM) [3], and simplified acute physiology 
score (SAPS) [4] are among the most commonly 
used models for predicting risk of mortality in 
ICU patients [5]. Though widely used and having 
multiple revisions to accommodate changes in 
patient populations and advances in hospital 
care, these scoring systems still have some 
limitations. The most comprehensive and accu-
rate of these scoring systems, APACHE, is a pro-
prietary tool that requires licensing and is heav-
ily dependent on selecting the correct admis-
sion diagnosis [6]. MPM and SAPS examine only 
a few variables, resulting ease of use, but overly 
simplistic models that might overlook important 
physiological measurements. 

While using only a few key data elements to 
develop predictive models made sense histori-
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cally, the availability of detailed electronic med-
ical records and modern machine learning 
methods has made this rationale obsolete. 
Most importantly, these models are unable to 
deal with missing data and assume that unob-
served parameters are normal, which can 
result in under predicted risk [6].

More recently, the techniques based on neural 
networks have been proved to be useful in the 
ICU mortality prediction. They are widely used 
because of their capabilities like nonlinear 
learning, multi-dimensional mapping and noise 
tolerance. Previous studies reported that the 
neural network models were better than or at 
least similar to the linear regression models 
[7-9].

Outcome prediction in intensive care is a chal-
lenging process. It requires accurate synthesis 
of quality data and application of prior experi-
ence to the analysis. Evaluation of HRV can be 
helpful in clinical assessment and intervention 
strategies. It has been proved that nonlinear 
analysis of HRV might provide more valuable 
information for the physiological interpretation 
of heart rate fluctuations [10]. The nonlinear 
analysis of HRV is a valuable tool in both clinical 
practice and physiological research reflecting 
the ability of the cardiovascular system [11]. 

In this study, we propose an algorithm to esti-
mate the risk of mortality based on linear and 
non-linear analysis of HRV during 48-hours 
admission in ICU. We investigated how the 
most common nonlinear HRV measures vary in 
admitted patients in ICU during death episode. 
Finally, we proposed a classifier for automatic 
detection of patients close to death.

This paper is organized as follows: Section 2 
presents the database, feature extraction 

In this paper we used the data belong to MIMIC-
II database, include the physiological data 
streams obtained from the patients admitted in 
ICU. The MIMIC II database includes continu-
ous physiologic waveforms such as electrocar-
diogram (ECG), blood pressure and discrete 
physiologic variables such as pH and Glucose. 
MIMICII database focused on patient-specific 
mortality prediction using the information col-
lected during the first two days of admission in 
ICU, to predict which patient survive his/her 
hospitalizations and which do not [12]. 

The proposed algorithm

The block diagram of the proposed algorithm is 
demonstrated in Figure 1. As it can be seen, 
the algorithm comprises of five steps include 
preprocessing, feature extraction, PCA-based 
feature reduction, death and non-death epi-
sodes classification based on MLP and SVM 
and classification performance. In the follow-
ing, each block is described with more details.

Preprocessing

In this paper, we apply an improved least mean 
square (LMS) adaptive filtering algorithm [13] to 
remove the 50 Hz power line interference from 
ECG signal. As current study is based on HRV 
analysis, the HRV should be extracted from the 
ECG signals. Therefore, the first stage of this 
study is R wave detection. We used the pro-
posed algorithm by Pan-Tompkins [14] for R 
wave detection. After determining the exact 
position of R peaks the HRV signal is made by 
calculaing the time interval between each two 
successive R wave. Then, the HRV signal of 
each patient is divided into segments include 
2000 samples to extract the linear and nonlin-
ear features of each segment.

Figure 1. The block diagram of the proposed classification algorithm.

methods and details of the pro-
posed algorithm. Section 3 
demonstrates the results and 
briefly discusses the rationale 
for the proposed algorithm. 
Section 4 and 5 represent the 
discussion and conclusions, 
respectively.

Methods 

Database



Mortality prediction for cardiovascular patient

8918	 Int J Clin Exp Med 2015;8(6):8916-8926

the HRV is not both linear and deterministic 
[18]. However, this assumption is commonly 
valid because some hearts may show linear 
and deterministic behavior; usually those that 
have very low heart rate variability. Finally, to 
specify if the heart shows deterministic or sto-
chastic non-linear behavior, a method utilizing 
attractor reconstruction dimension d, and cor-
relation dimension Dc is utilized [18, 19]. If in 
some d dimensional description of the system, 
the attractor correlation dimension of Dc reach-
es to saturation state, the system can be speci-
fied deterministic. If the ECG signal has too 
much noise, it will be a stochastic system 
because the attractor is masked and its corre-
lation dimension never saturates [18].

Chaos theory applied to feature extraction: The 
one dimensional deterministic nonlinear 
system can be determined using the following 
formula (1):

xn+1 = f(xn,α)                                                       (1)

Where function f is a non-linear function based 
on the present value of the system state vari-
able (xn) and controls the parameter (α) which is 
a constant value. xn+1 is the subsequent value 
of this variable. 

The special characteristic of a chaotic system 
is aperiodicity, determinism, confinement and 
sensitive dependence on initial conditions. 
When the values of a state variable show no 
obvious periodic schema, the system is aperi-
odicity, and the values of the state variable 
never repeat [18]. Meaning of determinism is 
that the values of system state variables can 
be computed in every moment if their previous 
value is specified [20]. 

Confinement denotes that the values of system 
variables are always constrained between 
some boundary values. Every chaotic system 
has sensitive dependence on initial conditions. 
It means that a very small difference may lead 
to a very large trajectory divergence of the vari-
able after a number of cycles.

Table 1. Linear time domain indicators of HRV
Features Description
SDNN Standard deviation of NN intervals (beat-to-beat intervals) calculated over a 24-hour period.
RMSSD Root mean square of successive difference (RMSSD) is the square root of the mean of the sum of the squares of 

the successive differences between adjacent NNs.
NN50 The number of pairs of successive NNs that differ by more than 50 millisecond.
pNN50 The ratio obtained of NN50 divided by the total number of NNs.

Feature extraction

The second step in the block diagram is the fea-
ture extraction. In general, the cardiovascular 
system, hence the HRV signal, demonstrates 
both linear and nonlinear behavior of autonom-
ic nervous system. In this study, a combination 
of linear and nonlinear features is considered 
for HRV analysis. Time and frequency domain 
features are among the standard linear mea-
sures of the HRV signals.

Linear features extraction

Usually linear feature extraction of the HRV 
signal is done in both time and frequency 
domain. In this paper, we used of linear features 
extracted from time and frequency domain for 
classification between two time periods 
[15-17].

Time domain features: Features that are 
extracted from the time domain consists of a 
set of statistical features. Linear HRV indicators 
determined are listed in Table 1.

Ferequency domain features: In frequency-
domain methods, frequency components of  
the HRV signal are identified. In HRV spectrum 
obtained from ECG recordings, some com- 
ponents are detected such as VLF (very low 
frequency), LF (low frequency) and HF (high fre- 
quency). The LF is a measure of sympathetic 
activity (frequency range: 0.05-0.15 Hz) and HF 
is a marker of parasympathetic activity 

(frequency range: 0.15-0.5 Hz). The HF
LF  ratio is 

an important feature in the frequency domain, 
which determines the equilibrium rate of 

sympathovagal. In addition to LF, HF and HF
LF  

features, we used another feature in the 
frequency domain called total power (TP).

Non-linear features extraction

In general, a supposition is accepted for elec-
trocardiogram time series. It is assumed that 
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delay and embedding dimension are usable. In 
this paper, mutual information (MI) method for 
choosing the time delay and the false nearest 
neighbor method is used for selecting the 
embedding dimension.

Mutual information method: The mutual infor-
mation method is examined on dynamic sys-
tems and chaotic data. This method used a 
powerful approach to find the relationships 
between data sets [23]. The advantage of this 
method in comparison with the autocorrelation 
function, which was used previously, is that 
unlike the autocorrelation function this method 
considered the linear correlations in the time 
series.

The most common method for computing time 
delay is based on the value of mutual informa-
tion between the pair of observed values xi and 
xi+1 The main idea in this method is to look for 
the minimum τ for which the mutual informa-
tion between observations is lowest [22]. The 
average mutual information function for differ-
ent τ values can be computed using formula 
(3):

lnp p p
p

ij
i j

ij

,i j
= -x x

x
L^ ^

^
h h

h/                         (3)

Where pi is the probability to find a time series 
value in the ith interval of the interval, pij(τ) is the 
joint probability to find a time series value in the  
ith interval and a time series value in the jth inter-
val after a time τ, i.e. the probability of transi-
tion in τ time from the ith to the jth interval [24].

False nearest neighbor method: False nearest 
neighbor method is a method to determine the 
minimal sufficient embedding dimension m 
which was proposed by Kennel et al. [q25]. The 
idea is quite intuitive. Suppose m0 is the mini-
mal embedding dimension for a specific time 
series x{i}. It means that the reconstructed 
attractor in a m0- dimensional delay space is in 
one-to-one correspondence with the attractor 
in the original phase space. In fact, the topo-
logical characteristics are preserved. Therefore, 
the neighbors of a specific point are mapped 
onto neighbors in the delay space. Under the 
assumption of dynamics smoothness, neigh-
borhoods of the points are mapped onto neigh-
borhoods again. Based on the basics of 
Lyapunov exponents, the shape and the diam-
eter of the neighborhoods are changed. 

The basic problem of nonlinear time series 
analysis is to determine whether a given time 
series is a deterministic signal of a dynamic 
system with low dimension or not. If this is true, 
what is the phase space dimension related to 
this data, and are the time series chaotic. The 
answers of these questions are in the phase 
space reconstruction that has been agreed by 
Saur and Taken [21].

Phase space is a space in which every point 
represents two or more states of a system vari-
able. The number of states that can be used in 
phase space is called phase space dimension 
or reconstruction dimension. Phase space 
reconstruction is a standard method when ana-
lyzing chaotic systems. It shows the trajectory 
of the system in time. 

Phase space in m dimensions will display a 
number of points X(i) of the system, where each 
point is given by formula (2):

X(i) = [x(i),(i + τ),...,x(i + m(i - 1)τ)]                             (2)

Where, i is a moment in time of a system vari-
able, τ is a period between two consecutive 
measurements of the variable or called delay 
time and m is embedding dimension. Choosing 
different τ and m values create a different 
reconstructed trajectory. The trajectory in m 
dimensional space is a set of k consecutive 
points, where i = t0,t0 + τ,...,t0 + (k - 1)τ is the 
starting time of observation [18, 22].

Taken embedding theory claims that if a time 
series is part of an attractor (with the dimen-
sion of d), topological properties of the attrac-
tor with topological properties of the embed-
ded attractor, which formed with the m-dimen-
sional phase space vectors, are equal to condi-
tional. m > 2d + 1 Therefore, the first step in the 
non-linear dynamic analysis is the attractor 
reconstruction in the phase space. The main 
technique for the phase space reconstruction 
is using the time delay method. In time delay 
method, the vectors in the new space and the 
embedding space are constructed using the 
delay values. Thus, in order to reconstruct a 
dynamic system attractor, two problems must 
be solved. The first challenge relates to the 
choice of the optimal delay for trajectory recon-
struction in phase space, and the second one 
is to determine the embedding dimension. 
Different methods for selecting optimum time 
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Suppose we embed in a m dimensional space 
(the attractor embedding dimension is less 
than original dimension: m < m0). Because of 
this projection, the topological structure is not 
well preserved. Points are projected into neigh-
borhoods of other points to which they wouldn’t 
belong in higher dimensions. These points are 
called false neighbors. The main idea of the 
false nearest method is the following. 

For each point Ri

"
 in the time series look for its 

nearest neighbor R j

"  in a m dimensional space. 

Calculate the distance R Ri j-" "
 [25, 26]. Iterate 

both points and compute Ri using the formula 
(4):

R
R R

R R1 1

i

i j

ji

=
-

-
" "

+ +
                                             (4)

If Ri exceeds a given heuristic threshold of Ri, 
that point is labeled as having a false nearest 
neighbor [q25]. The criterion that the embed-
ding dimension is high enough is that the frac-
tion of points for which Ri > Rj is zero or at least 

close to zero. In other words, the plot of 
R
R

j

i  

achieve to the saturation state. To explain more 
clearly associated with the false nearest neigh-
bor method, a simple example will be explained 
using Figure 2. When the red, yellow and blue 
samples are projected in one dimension, it 
seems that the samples are in the neighbor-
hood. When the samples projected in two 
dimensions, the yellow samples are no longer 
near the red and blue samples. When the sam-
ples projected in three dimensions, there is no 
further change in the relative distances 
between the samples.

Correlation dimension: Correlation dimension 
is the degree of complexity of the system and 
gives the number of independent variables 
needed to describe the behavior of the system. 
The linear determinism system has integer cor-
relation dimension, while chaotic systems have 
the fractional correlation dimension. This meth-
od estimates the embedding dimension based 
on the phase space pattern. 

Correlation dimension can be calculated using 
the distances between each pair of points in 
the set of N number of points (s(i,j) = |Xi - Xj|). 
Where Xi, Xj are points of the trajectory in the 
phase space [27, 28]. A correlation function, 
C(r), can be calculated using formula (5), where 
N is the number of data points in phase space 

Figure 2. A simpli-
fied explanation of 
false nearest neigh-
bors.

Figure 3. A standard Poincaré plot (τ=1) of RR inter-
vals of a healthy subject.

Figure 4. Multi-layer perceptron neural network 
structure.
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and r is the radial distance around each refer-
ence point Xi.

( )
1

( ( , ) ( , ) < )C r
N

Numbers pf pairs i j with s i j r2
= #    (5)

C(r) has been found to follow a power law simi-
lar to the one seen in the capacity dimension 
(C(r) = krD). Therefore, we can find Dcorr with esti-
mation techniques derived from the formula 
(6):

log
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                                  (6)

Where C(r) can be written in a more mathemati-
cal form as the formula (7):
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Where θ is the Heaviside step function 
described as formula (8) [27]:
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Detrended fluctuation analysis (DFA): De- 
trended fluctuation analysis (DFA) is used in 
analysis of biological data and computes the 
root-mean-square fluctuation of integrated and 
detrended time series, permits the detection of 
intrinsic self-similarity embedded in a non-sta-
tionary time series, and also avoids the spuri-
ous detection of apparent self-similarity. The 
algorithm is used in a large range of physiologi-
cal and simulated time series in recent years 
[28]. To represent the DFA algorithm, we calcu-
late the total length of the heart rate signal (N) 
as shown in formula (9):

y k HR HRi vgi 1

k= - a=
^ ^h h6 @/                             (9)

Where HR(i) is the ith heart rate signal and HRαvg 
is the average heart rate of N samples. Next, 
the integrated time series is divided into seg-
ments of equal length n, a least-squares line is 
fit to the data (representing the trend in that 
segment). They coordinate of the straight line 
segments is denoted by y(k). Then, we detrend 
the heart rate data y(k), by subtracting the local 
trend, y(k), in each segment. The root mean 
square fluctuation of this integrated and 

detrended heart rate data is calculated by for-
mula (10):

1 ( )F n N y k y kn
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This calculations is repeated over all the seg-
ment sizes to provide a relationship between 
F(n), the average fluctuation as a function of the 
segment size n. In this paper, the segment size 
is ranged from 4-300 beats. A box size larger 
than 300 beats would give a less accurate fluc-
tuation value because of finite length effects of 
data. Typically, F(n) will increases with the seg-
ment size. A linear relationship on a double-log 
graph indicates the presence of scaling, i.e. 
F(n)≈nα. Under such conditions, the fluctua-
tions can be characterized by a scaling expo-
nent a, the slope of the line relating logF(n) to 
log(n). A good linear fit of the logF(n) to log(n) 
plot (DFA plot) indicates that F(n) is proportional 
to nα, where α is the single exponent describing 
the correlation properties of the entire range of 
heart rate data.

However in some cases, the DFA plot was not 
strictly linear but rather consisted of two dis-
tinct regions of different slopes separated at a 
break point nbp [27]. This observation suggests 
there is a short range scaling exponent, αs, over 
periods of 4-l3 [nbp] beats, and a long-range 
exponent, αi, over long periods [27].

Poincaré plot analysis: Poincaré plot technique 
is derived from nonlinear dynamics. In Poincaré 
plot, each RR interval is plotted against next RR 
interval (a type of delay map). Thus, the time 
series of RR interval is plotted in phase space. 
The Poincaré plot is analyzed quantitatively by 
calculating the standard deviation of RR inter-
vals with the lines y = x and y = -x + 2 × RRm 
which RRm is RRi the average of . Poincaré plot 
provides useful information from short-term 
and long-term fluctuations and demonstrate 
patterns of heart rate dynamics resulting from 
nonlinear processes. It is quantified by measur-
ing SD1 and SD2, which are standard deviation 
of the instantaneous RR variability and stan-
dard deviation of the long term variability of the 

heart rate, respectively. The 
2
1

SD
SD  ratio shows 

the relation between short and long variations 
of RR intervals [29]. Figure 3 shows a geome- 
trical representation of Poincaré plot for a 
healthy subject.
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Feature dimension reduction 

We tried to combine the best features to the 
maximum difference between two groups. 
First, the classification was applied to each fea-
ture, separately and the best features are 
selected according to the highest classification 
accuracy. Then, this feature is combined with 
each feature individually. Finally, the best com-
bination is selected. Similarly, this process con-
tinues until the resulting combination that 
makes the most difference is achieved. This 
combination is comprised of eleven features 
(four features of time, there features of fre-
quency and four non-linear features). 

Principal component analysis (PCA) is used in 
order to continue improving the performance of 
clustering and reduce the learning time. PCA is 
a supervised method for dimension reduction. 
The purpose of PCA is to find a transformation 
matrix on the data vectors, which are belong to 
different classes in order to image to a space 
with lower dimension so that the ratio of scat-
tering between the classes to the scattering 
into classes to be maximized. 

Statistical analysis

In this paper, we computed mean, standard 
deviation of extracted indicators of HRV to illus-
trate the distribution of HRV features during 
two episodes (death episode and non-death 
episode). We used the paired sample t-test to 
investigate the statistical significance of indica-
tors within each subject. The statistical analy-
sis was performed using related software 
developed in MATLAB version R2014b.

Classification and performance measurement

The finalized optimal features obtained based 
on the combination of linear and nonlinear fea-
tures were given to a classifier to predict the 
mortality risk. In this paper, MLP and SVM were 
selected as classifier.

Multi-layer perceptron

Artificial Neural Network (ANN) is versatile tool 
widely used to tackle issues. Feed-Forward 
Neural Networks (FNN) is popular among ANNs. 
These networks solve complex problems 
through modeling complex input-output rela-
tionships. The back-propagation algorithm is 
the workhorse for design of special class of lay-
ered feed-forward networks known as MLP 
[30].

MLP is a generalization of single layer percep-
tron that consists of an input layer, one or more 
hidden layer and an output layer [31]. The visu-
alization of MLP is depicted in Figure 4. The 
MLP uses the back-propagation learning algo-
rithm. In current paper, the number of neurons 
in the hidden layer is equal to the sum of the 
input neurons and output neurons divided by 2.

Support vector machine

SVM is proven to be very robust and reduces 
the need for extensive parameter tuning for 
better classification performances compared 
to other machine learning methods [32]. It is 
based on the structural risk minimization prin-
ciple from computational learning theory. SVM 
tries to find hyper planes that best separate the 
classes with maximum distance between hyper 
planes based on the input features. The issue 
of low dimensionality feature vector always 
results in poor class separation. However, in 
SVM, this low dimensionality data is projected 
into higher dimensionality vector using differ-
ent kernel functions for improving the class 
separation rate of input. 

In order to design an efficient SVM classifier, 
the type of kernel and the hyper-plane separat-
ing method should be specified. Kernel func-
tions used to project low dimension data into 
higher dimension [33]. There are three hyper-
plane separating methods considered repeat-
edly in the literature in SVM based pattern rec-
ognition such as Quadratic Programming (QP), 
Sequential Minimal Optimization (SMO) and 
Least Squares (LS). Choosing the best kernel 
function is done through trial and error. In this 
work, Radial Basis Function (RBF) kernel with 
scaling factor (σ) of one [34] was chosen, and 
QP was used for mortality prediction. The given 
parameters to SVM are summarized in Table 2 
[35].

In order to analyze the output data obtained 
from the classifier, the number of true positives 
(TP), false positives (FP), true negatives (TN), 
and false negatives (FN) are used. Using the 
formulae mentioned in Table 3, we calculated 
the common measures for binary classification 
performance measurement [36] to evaluate 
the classifier. Considering positive to the test 
those records classified as death episode. Total 
classification accuracy represents the ability of 
the classifier to discriminate between the two 
groups (death and non-death episode), sensi-
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tivity refers to the ability to identify records in 
the death episode and specificity refers to the 
ability to identify records in the non-death epi-
sode [37].

Total classification accuracy represents the 
ability of the classifier to discriminate between 
the two groups (death and non-death episode), 
sensitivity refers to the ability to identify records 
in the death episode and specificity refers to 
the ability to identify records in the non-death 
episode [37].

Results

Table 4 represents a comparison between the 
non-linear characteristics of two time periods 
include: half-hours before death (group 1) and 
4 to 3.5 hours before death (group 2). The delay 
time required for phase space reconstruction 
from 4 to 3.5 hours before death is lower than 
30 min before death.Therfore, more data 
should be used to reconstruct the phase space 
of HRV time series belongs to group 2. In other 
words, the correlation between the data of 
group 2 are lower than group 1.

Adequate embedding dimension to reconstruct 
the phase space of HRV time series for the data 
of group 2 is higher than group 1. This shows 
that, the data of group 2 are more random than 

group 2 leads to significantly higher SD
SD

1

2  com-

pared to group 1.

Fractal characteristics (αlong, αshort) extracted 
from group 1 and group 2 indicate that group 1 
has αlong < αshort. However, it is contrariwise in 
group 2. Table 4 shows non-linear features 
extracted from the two groups and the differ-
ences between them.

Table 5 shows the sensitivity, specificity, posi-
tive predictive value and accuracy obtained by 
different classifiers based on the combination 
of linear and non-linear features. As can be 
seen, the SVM neural network classifiers 
showed better performance. MLP classifier 
can’t separate feature vectors of two groups as 
well as SVM.

Discussion

The purpose of this present study was to exam-
ine the potential of HRV as a predictor of mor-
tality risk in patients admitted in ICU. Therefore, 
the linear and nonlinear analysis of HRV has 
been carried out. 

The results of this study cannot be compared 
directly with previous studies worked on mor-

Table 2. Given parameters to SVM
Parameters Description
Input vector 60×7
Target vector 60×1
Kernel function Radial basis function with σ=1
Hyper plane searching method Quadratic programming

Table 3. Binary Classification Performance Measures
Measure Abbreviation Formulae
Sensitivity SEN

TP FN
TP
+

Specificity SPE
TN FP
TN
+

Positive predictive value PPV
TP FP
TP
+

Accuracy ACC
TP FN FP TN

TP TN
+ + +

+

TP, the number of records performed during university examination 
correctly detected; TN, the number of records performed on holidays 
correctly detected; FP, the number of records performed on holidays 
incorrectly labeled as during university examination; FN, the number 
of records performed during university examination incorrectly labeled 
as on holidays.

group 1 or in the other words, the com-
plexity and the correlation existing in the 
data of group 1 are higher.

The correlation dimension extracted 
from the data of group 2 is higher than 
group 1. Since this feature shows the 
number of variables needed to model 
the system, it can be concluded that 
modeling of the HRV time series of group 
2 needs more variables.This result is 
similar to the results obtained by the 
delay time and the embedding dimen-
sion, which stated that the correlation 
between the data of group 2 is lower in 
comparison with group 1. 

The ApEn of group 2 is higher than group 
1, which emphasize more complexity of 
HRV time series of group 2 in comparisin 
with group 1. SD1 of group 2 is higher 
than group 1, while SD2 of group 1 is 
higher than group 2. Therefore, short 
and long-term fluctuations of group 1 
are high. Lower SD1 and higher SD2 of 
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Table 4. Non-linear features extracted from the two groups
                     Group Types
Features

Group 1 (half-hours 
before death)

Group 2 (4 to 3.5 
hours before death)

m 6.1±0.8 8.3±2.5
τ 4.8±1.4 3.4±1.9
CD 5.22±1.8 6.47±2.2
ApEn 1.34±1.06 1.97±1.2

SD
SD

1

2 1.05±0.23 1.46±0.34

αshort 0.89±0.11 0.97±0.41
αlong 1.13±0.16 0.45±0.28

tality prediction of ICU patients. Although 
APACHE and SAPS have almost been accompa-
nied by good results in mortality prediction [2, 
4], to the best of our knowledge there is not any 
study focus on HRV to predict the mortality risk 
of ICU patients instead of physiopathologic vari-
ables. As there are significant changes in 
dynamic of HRV in episodes near death, it 
seems that non-linear features are better pre-
dictor of mortality than pathologic parameters 
were used in previous studies [38].

However, our algorithm for mortality prediction 
appears to be a more sensible way with less 
parameters and computation to predict mortal-
ity risk compared to other methods. Previous 
studies required more physiologic parameters 
to predict mortality risk. This time is not enough 
for a medical person to prepare the necessary 
preventive actions. This work managed to 
improve the prediction accuracy compared to 
previous studies. 

The main advantage of the proposed approach 
is using HRV, which keep the method simple 
and fully interpretable from a clinical point of 
view. The crucial reason for this improvement is 
utilization of fewer features, which are more 
effective and proven to be statistically signifi-
cant. Further reason for accuracy of prediction 
in this algorithm is due to implementation of 

The current study has several limitations, which 
have to be improved. First, our data are repre-
sentative of a single ICU and a limited popula-
tion sample. Therefore, future work should lead 
towards a prospective study, to validate the 
generalizability of the method. Second, the 
data were not serially collected over the 2-years 
interval, and we cannot exclude the possible 
changes in outcomes related to differences in 
quality of care.

Conclusion

In this work, we had presented an algorithm 
with the goal of predicting mortality risk of the 
cardiovascular patients admitted in ICU. The 
good performance of our algorithm demon-
strates that the combination of linear and non-
linear analysis of HRV, combined with robust 
machine learning techniques, is a successful 
strategy to yield accurate predictions in terms 
of probability estimates of the subject’s death. 
The features were fed into SVM and MLP for 
mortality prediction. In our analyses, the SVM 
classifier showed better performance in dis-
criminating the patients with low and high risk 
than MLP classifier. 

This paradigm provides a solid base for devel-
oping a computational tool, which could be 
used in clinical settings to offer patient-specific 
critical information to medical staff and guide 
their supervision activities, therapeutic actions, 

Table 5. The classification results of MLP and SVM classifiers
                           Neural Network Types
Features

MLP SVM
Group 1 Group 2 Group 1 Group 2

Sensitivity (%) 88.4 90.3 97.3 98.7
Specificity (%) 92.4 95.3 98.1 95.9
Positive predictivity (%) 87.1 88.1 92.5 94.5
Accuracy (%) 93.4 96.4 99.3 99.7

the SVM. SVM is superior to 
MLP and when combined with 
good feature vectors improved 
prediction accuracy.

This experimental result indi-
cates that, this proposed algo-
rithm can predict mortality 
risk using small set of fea-
tures. Furthermore, this pro-
posed method required less 
computation and time in con-
trast with earlier works. Due 
to availability of limited num-
ber of samples from the data-
bases and focusing on one 
type of admitted patients in 
ICU this algorithm could not 
be generalized for larger pop-
ulation of samples. Future 
work depends on availability 
of reliable database in other 
types of ICU patients.
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and life-support interventions. Further research 
on a large sample size and different ICU types 
of patients will help to further elucidate the 
findings of this study and effectiveness of HRV 
analysis for differentiation between low and 
high risk condition. Our future work would focus 
on getting large datasets with other types of 
ICU patients and novel features for mortality 
prediction.
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