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Abstract: Overexpression of miR-155 in nasopharygeal carcinoma (NPC) is partly driven by Epstein-Bar virus infec-
tion. However the role of miR-155 in NPC oncogenesis is unclear. This study showed that miR-155 inhibitor could 
inhibit the cell migration in NPC cell lines. ZDHHC2 was identified as a direct target of miR-155 and downregulation 
of ZDHHC2 prompted cell migration in NPC. Furthermore, reduced ZDHHC2 expression was associated significantly 
with metastasis and poor survival of NPC patients. Collectively, inhibition of miR-155 suppresses cell migration in 
NPC through targeting ZDHHC2. The potential of miR-155 and ZDHHC2 as therapeutic targets in NPC should be 
further investigated.
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Introduction

Nasopharyngeal carcinoma (NPC) is a tumor 
arising from the mucosal epithelium covering 
the nasopharyngeal surface and is one of the 
most common malignancies in South-China, 
Southeast-Asia and North Africa [1]. Genetic 
alterations, Epstein-Barr virus (EBV) infection 
and other environmental factors were reported 
to be associated with risk for NPC [2, 3]. NPC 
has a obvious clinical-pathological behavior of 
loco-regional recurrence and metastasis, which 
is different from other types of head and neck 
cancers [4]. However to date the pathogenesis 
of NPC is not investigated clearly. 

MicroRNAs is an abundant class of non-coding 
RNAs, typically 20-23 nucleotides in length and 
they are involved in many cellular processes 
including apoptosis, differentiation, prolifera-
tion, and metabolism [5]. In the microRNAs 

family, microRNA 155 (miR-155) is located on 
chromosome 21 and transcribed from the 
B-cell integration cluster. MiR-155 plays impor-
tant roles in many human tumors, including 
breast cancer [6-8], leukemia [9], melanoma 
[10], lymphoma [11-13], cervical cancer [14], 
hepatocellular carcinoma [15], pancreatic can-
cer [16], lung cancer [17, 18], colon cancer [6], 
and gastric adenocarcinoma [19]. We have also 
reported that miR-155 is upregulated in NPC, 
which is partly driven by EBV encoded LMP1 
and LMP2A [20]. However the function of miR-
155 in NPC is unclear yet. 

Zinc finger, DHHC-type containing 2 (ZDHHC2), 
also known as reduced expression associated 
with metastasis protein (REAM), is one member 
of DHHC protein family of protein acyltransfer-
ases (PATs). It is located in chromosome 
8p21.3-22 [21], where frequent loss of hetero-
zygosity has been detected in various types of 
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metastatic cancers, including colorectal cancer 
[22], hepatocellular carcinoma [22], prostate 
cancer [23], non-small cell lung cancer [22], uri-
nary bladder cancer [24], breast cancer [25]. 
Reduced of ZDHHC2 was found to be associat-
ed with lymph node metastasis and poor prog-
nosis in gastric adenocarcinoma [26], and the 
mRNA level of ZDHHC2 expression was signifi-
cantly reduced in primary and metastatic foci 
of advanced colorectal cancer [21]. However 
the expression pattern of ZDHHC2 has not 
been investigated in NPC yet. In view of the pro-
posed roles of miR-155 and ZDHHC2 in cancer, 
we aimed to investigate the function of miR-
155 and ZDHHC2 and their potential relation-
ship in NPC. 

Materials and methods

Patients and tissue samples

The study was approved by the Ethics Com- 
mittee of Sun Yat-sen University Cancer Center 
(Guangzhou 510060, China). All samples used 
in this study were anonymous and collected 
from patients for routine pathology use. The 
patient records/information was de-identified 
as well as anonymized, prior to analysis. No 
informed consent (written or verbal) was ob- 
tained for use of retrospective tissue samples 
from the patients in this study. In this retro-
spective study, archival formalin-fixed, paraffin-
embed-ded (FFPE) tissue specimens from 124 
primary NPC patients (29 females and 95 
males; aged from 21 to 77 years; median, 48 
years) who underwent radical radiotherapy with 
or without chemotherapy from 1999 and 2007 
were obtained from the Sun Yat-sen University 
Cancer Center (Guangzhou, China, 510060). 
The disease stages of all patients were classi-
fied or reclassified according to the China 1992 
NPC staging system [27]. Of the 124 primary 
NPC patients, 4 were classified as stage I, 26 
as stage II, 64 as stage III, and 28 as stage IV, 
and 2 cases without stage information avai- 
lable.

Cell lines

Human NPC cell lines CNE1 (EBV negative, 
from Cancer Center, Sun Yat-sen University, 
China), TW03 (EBV negative, the generous gift 
of Prof. Chin-Tarng Lin, National Taiwan Uni- 
versity Hospital) [28] were cultured in 1640 
(Gibco USA) containing 10% fetal calf serum 

(FCS), and Human Embryonic Kidney 293 T 
cells (from American Tissue Culture Collection, 
ATCC, Mana-ssas, VA) were cultured in DMEM 
(Gibco USA) containing 10% fetal calf serum 
(FCS). All the cell lines were grown in a humidi-
fied incubator at 37°C with 5% CO2.

MiRNA and siRNA transfections

Before transfection, 2×105 cells per well were 
plated into 6-well plates and grown for one day 
in antibiotic-free medium containing 10% FCS. 
When the cell confluence was reached to 40% 
to 60%, cells were transfected with 100nM 
miR-155 Anti-miRTM miRNA Inhibitor (Cat#: 
AM12601, Ambion, USA), or Anti-miRTM miRNA 
Inhibitors-Negative Control #1 (Cat#: AM170- 
10, Ambion, USA), or 100 nM four individual 
ZDHHC2 specific siRNAs (Please see Figure S1 
for detailed siRNA sequence) and a negative 
control siRNA by using Lipofectamine 2000 
(Invitrogen, USA) according to the manufactur-
er’s instructions. Transfected cells were grown 
at 37°C for 6 h, followed by incubation with 
complete medium. For q-PCR and Western blot 
analysis, cells were harvested for RNA and pro-
tein respectively 48 h post-transfection.

Luciferase reporter assays

The whole 3’UTR sequences of ZDHHC2 were 
cloned to downstream from the luciferase read-
ing frame in the plasmid pmiR-Glo-report-Vec-
tor (Genepharma, China). Mutations were made 
in these two putative miR-155 target sites 
(433-439 and 2334-2340). All inserts were 
sequenced in their entirety to verify polymerase 
fidelity. Luciferase reporter assays were per-
formed by transiently transfecting HEK 293T 
cells respectively with 200 ng of with pmiR- 
Glo-ZDHHC2-3’UTR-wild, pmiR-Glo-ZDHHC2-3’ 
UTR-433mut, or pmiR-Glo-ZDHHC2-3’UTR-23- 
34mut, together with 30 nM miR-155 Pre-
miRTM miRNA Precursor Molecules (Cat#: 
PM12601, Ambion, USA), or Pre-miRTM miRNA 
Precursor Molecules-Negative Control #1 
(Cat#: AM17110, Ambion, USA) and 200 ng of 
pCMV-Renilla (internal control) using Lipofe- 
ctamine 2000 (Invitrogen) respectively. Firefly 
and Renilla luciferase activities were measured 
consecutively by using Dual Luciferase Assay 
(Cat#: E1910, Promega, USA) 48 hr after trans-
fection. Firefly luciferase values have been nor-
malized to Renilla, and the ratio of firefly/renilla 
was presented. 
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PCR assays

For miRNAs quantitive realtime PCR (qPCR) 
assay, total RNA from cell lines was isolated 
using Trizol reagent (Invitrogen) according to 
the manufacturer’s instructions, then was 
treated with RNase free DNase I (Cat#: 047- 
16728001, Roche). The miR-155 quantitive 
realtime PCR assay was performed by TaqMan 
MicroRNA Assays (Cat#: 4373124, Applied 
Biosystems, USA) and RNU6B (Cat#: 4373381, 
Applied Biosystems, USA) was used as internal 
control. For mRNA qPCR assay, total RNA was 
extracted from cell lines using TRIzol reagent 
(Invitrogen). After reverse transcription of the 
total RNA, the first-strand cDNA was then used 
as template for detection of ZDHHC2, expres-
sion by quantitative real time PCR (qPCR) with 
the SYBR Green I chemistry (Power SYBR Gr- 
een PCR Master Mix, CAT#: 4367659, ABI Inc.,  
USA). GAPDH was used as internal control. The 
primers were ZDHHC2 (Forward: TCT TAG GCG 
AGC AGC CAA GGA T and Reverse: CAG TGA 
TGG CAG CGA TCT GGT T); GAPDH (Forward: 
AGC CAC ATC GCT CAG ACA C and Reverse: GCC 
CAA TAC GAC CAA ATC C). The relative expres-
sion level was determined as 2-ΔΔCt. Data are 
presented as the expression level relative to 
the calibrator (control sample), with the stan-
dard error of the mean of triplicate measures 
for each test sample. 

Western-blot assays

Cells were harvested and lysed with RIPA buffer 
(Upstate, USA) at 48 h post-transfection. Equal 
amounts of denatured protein sample were 
separated by SDS-PAGE and were then trans-
ferred electrophoretically to PVDF membranes 
(Pall, USA) for immunoblot analysis. Antibodies 
used for immunoblot analysis were against 
ZDHHC2 (1:1000 dilution, Cat#: AP 5592a, 
Abgent, CA) and an anti-GAPDH antibody (1: 
5,000 dilution, sc-32233, Santa Cruz, USA) 
was used as loading control. All protein bands 
were detected using an enhanced chemilumi-
nescent (ECL) Western blot Kit (Cell Signaling 
Technology, USA).

Transwell assay

For the migration assay, 5×104 cells were plat-
ed in the top chamber with a non-coated mem-
brane (24-well insert; 8-μm pore size; BD 
Biosciences, USA). The cells were plated in 

medium without serum, and medium supple-
mented with 10% serum was used as a che-
moattractant in the lower chamber. The cells 
were incubated for 24 h. Cells that didn’t 
migrate through the pores, were removed by a 
cotton swab. Filters were fixed with 90% etha-
nol, stained with 0.1% crystal violet, and photo-
graphed. Cell numbers were counted under 
microscope.

Wound-healing assay

The cultured cells were transfected with 100 
nM miR-155 inhibitor or negative control. At 48 
h post-transfection, the cells were allowed to 
reach confluence before dragging a 200 ul ster-
ile pipette tip through the mono-layer. The cells 
were then washed and allowed to migrate for 
additional 24 h. At 0, 6, 12 and 24 h post-
wounding, images were captured. The experi-
ment was performed in triplicate.

Methylthiazolyl blue tetrazolium (MTT) assay

Cell growth was determined using MTT (Sigma-
Aldrich, USA) spectrophotometric dye assay. At 
24 h post-transfection with miR-155 inhibitor or 
negative control, cells were seeded into 96-well 
plates (4×103 cells/well), when the cells were 
adhered (about culturing for 6 h), DDP was 
added to each well according to the concentra-
tion gradient (0 nM, 12.5 nM, 25 nM, 50 nM, 
100 nM, 200 nM, 400 nM, 800 nM) and each 
concentration gradient was repeated thrice. 
After culturing for 48 h, MTT (10 μL per well) 
was added. The mixtures were further cultured 
for 4 h and the liquids were discarded. To each 
well 100 μL dimethylsulfoxide (DMSO) was 
added and the plate was shaken for 10 min. 
The absorbance at 570 nm was measured 
using an automatic ELISA reader. The inhibition 
rate (%) = (1-A~experimental group/A~control 
group) ×100.

Immunohistochemistry

In our study, primary antibodies against ZD- 
HHC2 (1:200 dilution, Cat#: AP 5592a, Abgent, 
CA) were used. Briefly, tissue sections were de-
waxed, incubated with hydrogen peroxide for 
10 minutes, incubated in retrieval buffer solu-
tion for antigen recovery, blocked with normal 
serum for 10 minutes and incubated with a pri-
mary antibody for 60 minutes, followed by 
detection using a Catalyzed Signal Amplification 
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Kit (DAKO, USA); signal was visualized using 
diaminobenzidine. Non-immune rabbit serum 
was substituted for the primary antibody as a 
negative control. The immunohistochemistry 
results were evaluated and scored by a senior 
pathologist without knowledge of the clinico-
pathological outcomes of the patients. A semi-
quantitative estimation was made by using a 
composite score obtained by adding the values 
of the staining intensity and the relative abun-

dance of positive cells. The intensity was grad-
ed as 0 (no staining), 1 (weak staining), 2 (mod-
erate staining) and 3 (strong staining). The 
abundance of the positive cells was graded 
from 0 to 3 (0.5% positive cells; 1. 5-25%; 2. 
26-50%; 3. 51-75%; 4. >75%). A composite 
score greater than the median value was con-
sidered as high expression, and composite 
scores less than or equal to the median value 
were considered as low expression.

Figure 1. miR-155 inhibitor suppresses cell migration in nasopharyngeal carcinoma CNE1 and TW03 cells. A. The 
relative miR-155 expression in CNE1 and TW03 cells transfected with miR-155 inhibitor (100 nM) and inhibitor 
negative control (100 nM) by qPCR detection, and U6 was used as a loading control. B and C. The migrational ability 
of CNE1 cells and TW03 cells was analyzed by transwell migration assays at 48 h post-transfection with a miR-155 
inhibitor (100 nM) and a negative control (100 nM). D. The migrational ability of CNE1 cells and TW03 cells was 
analyzed by wound healing assays at 48 h post-transfection with a miR-155 inhibitor (100 nM) and a negative con-
trol (100 nM).



MiR-155 in nasopharyngeal carcinoma

8476 Int J Clin Exp Med 2015;8(6):8472-8484

Figure 2. ZDHHC2 is the direct target of miR-155. A. The expression of ZDHHC2 was analyzed  by Western-blot at 
48 h post-transfection in CNE1 cells and TW03 cells. The miR-155 inhibitor could upregulate ZDHHC2 expression 
in protein level. B. In q-PCR detection, the ZDHHC2 mRNA was not changed significantly after transfection. GAPDH 
was used as a loading control. C. Pairing of miR-155 with ZDHHC2 3’UTR region. D. Overexpression of miR-155 by 
the miR-155 mimic resulted in a significant decrease in luciferase signals of pmiR-Glo-ZDHHC2-3’UTR, pmiR-Glo-
ZDHHC2-3’UTR–433-mut and pmiR-Glo-ZDHHC2-3’UTR-2334-mut transfected HEK293 cells. 

Figure 3. The inhibition effect of four ZDHHC2 siRNAs in nasopharyngeal carcinoma CNE1 and TW03 cells. A. The 
relative ZDHHC2 expression were analyzed by q-PCR detection in CNE1 and TWO3 cells at 48 h post-transfection 
with a negative control, ZDHHC2-homo-824, ZDHHC2-homo-1101, ZDHHC2-homo-1175 and ZDHHC2-homo-1295 
respectively. GAPDH was used as a loading control. B. The expression of ZDHHC2 was analyzed by Western-blot at 
48 h post-transfection in CNE1 cells and TWO3 cells, and GAPDH was used as a loading control.
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Statistical analysis

All the data in this study was analyzed by SP- 
SS 13.0 software. The association between 
ZDHHC2 and clinical-pathological parameters 
were assessed by Chi-Square test. Kaplan-
Meier analysis and log-rank tests were used to 
compare the difference in survival curves. It 
was considered as significant differences when 
P<0.05.

Results

Inhibition of miR-155 suppresses cell migra-
tion in nasopharyngeal carcinoma

To investigate the function of miR-155 in NPC, 
miR-155 inhibitor (Ambion, USA) and miRNA 
inhibitor control (Ambion, USA) were transiently 
transfected to two EBV negative NPC cell lines 

CNE1 and TW03 respectively, and then both 
transwell assay and wound healing assay were 
performed to determine if miR-155 could influ-
ence the cell migration ability in NPC cells. miR-
155 was reduced by 81%, and 66% in CNE1 
and TW03 cells respectively by miR-155 inhibi-
tor by qPCR dectection at 48 hours posttrans-
fection (Figure 1A). The CNE1 and TW03 cells 
transfected with miR-155 inhibitor (Ambion, 
USA) and miRNA inhibitor control (Ambion, USA) 
were used for transwell migration assays at 48 
hours posttransfection. The average number of 
migrated CNE1 cells transfected with miR-155 
inhibitor was 201±9, which was sigfinicantly 
less than that (388±10) of CNE1 cells trans-
fected with inhibitor control (P<0.001 ) (Figure 
1B and 1C). The average number of migrat- 
ed cells was 69±4 and 112±7, repectively, in  
miR-155 inhibitor and inhibitor control treated 

Figure 4. ZDHHC2 inhibits cell 
migration in nasopharyngeal 
carcinoma CNE1 and TW03 
cells. A. The migrational abil-
ity of CNE1 cells and TWO3 
cells transfected with ZDH-
HC2-homo-824, ZDHHC2-ho- 
mo-1101, ZDHHC2-1175, ZD-
HHC2-homo-1295 and nega-
tive control, was analyzed by  
Transwell Migration Assays.  
B. ZDHHC2-homo-824, ZDHH- 
C2-homo-1101, ZDHHC2-11- 
75 could increase the cells 
migrational ability of CNE1 
and TW03, comparing to the 
negative control group.
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TW03 cells. There was statistically difference 
(P<0.001) (Figure 1B and 1C). Notably, wound 
healing assay futher demonstrated that miR-
155 inhibitor could reduce the cell migration 

ability in NPC CNE1 and TW03 cells (Figure 1D). 
Moreover MTT assay indicated that miR-155 
could also inhibit cell proliferation in NPC CNE1 
and TW03 cells (Figure S2). 

Figure 5. Low expression of ZDHHC2 predicts poor prognosis of nasopharyngeal carcinoma patients. A. Two repre-
sentative images show high and low expression of ZDHHC2 in NPC tumor cells. B. Kaplan-Meier curves for disease-
free survival (DFS) of the 124 NPC patients; C. Kaplan-Meier curves for DFS in NPC patients with low level and high 
level ZDHHC2 expression; D. Kaplan-Meier curves for overall survival (OS) of the 124 NPC patients; E. Kaplan-Meier 
curves for OS in NPC patients with low level and high level ZDHHC2 expression. 
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ZDHHC2 is the direct target of miR-155

We found that ZDHHC2 protein was increased 
in miR-155 inhibitor transfected CNE1 and 
TW03 cells, compared with inhibitor control 
transfected cells (Figure 2A), but ZDHHC2 
mRNA was not changed significantly (Figure 
2B). Analyzing the sequence of ZDHHC2 3’UTR 
region by TargetScan [29], we found two poten-
tial miR-155 target sites in ZDHHC2 3’UTR 
region (base sequence 433-439 and 2334-
2340) (Figure 2C). 

To test whether ZDHHC2 responds to miR-155 
through direct 3’UTR interactions, we cloned 
the wild type of 3’UTR of ZDHHC2 (3’UTR), and 
two mutated potential miR-155 target sites in 
ZDHHC2 3’UTR region (3’UTR-433mut and 
3’UTR-2334mut) respectively into a reporter 
plasmid downstream of luciferase. The lucifer-
ase reporter assays were performed by tran-

siently transfecting HEK 293T cells respective-
ly, with pmiR-Glo-ZDHHC2-3’UTR, pmiR-Glo-
ZDHHC2-3’UTR-433mut, or pmiR-Glo-ZDHHC2-
3’UTR-2334 mut, together with miR155 mimic 
(Ambion, USA), mimic control (negative control), 
or blank and pCMV-Renilla (internal control). 
After 48 hr transfection, a dual-luciferase re- 
porter assay system ( Promega, USA) was used 
to detect luciferase expression. MiR155 mimic 
could downregulate the ratio of luciferase  
significantly in pmiR-Glo-ZDHHC2-3’UTR gro- 
up (P=0.01), pmiR-Glo-ZDHHC2-3’UTR-433mut 
group (P=0.01) and pmiR-Glo-ZDHHC2-3’UTR- 
2334 mut group (P=0.01), compared to nega-
tive control siRNA transfected groups and blank 
groups (Figure 2D). Taken together, these data 
confirmed that miR-155 could directly target 
ZDHHC2-3’UTR region throught the sites of 
ZDHHC2-3’UTR 433~439 and 2334~2340 ba- 
se sequence.

Inhibition of ZDHHC2 promotes cell migration 
in nasopharyngeal carcinoma

To investigate the function of ZDHHC2 in NPC, 
four ZDHHC2 sepcific siRNAs (ZDHHC2-homo- 
824, ZDHHC2-homo-1101, ZDHHC2-homo-11- 
75 and ZDHHC2-homo-1295) and negative 
control were transiently transfected to two EBV 
negative NPC cell lines CNE1 and TW03, and 
then both transwell assay and wound healing 
assay were performed to determine if ZDHHC2 
could influence the cell migration ability in NPC 
cells. Besides ZDHHC2-homo-1295, the other 
three ZDHHC2 siRNAs (ZDHHC2-homo-824, 
ZDHHC2-homo-1101 and ZDHHC2-homo-1175) 
could knock down both ZDHHC2 mRNA and 
ZDHHC2 protein significantly in NPC CNE1 and 
TW03 cells (Figure 3A and 3B). The average 
number of migrated CNE1 cells transfected 
with ZDHHC2-homo-824, ZDHHC2-homo-1101 
and ZDHHC2-homo-1175 was 464±7, 350±6, 
295±7, which was sigfinicantly more than that 
of CNE1 cells transfected with ZDHHC2-homo- 
1295 and negative control (264±4 and 237±5) 
(P=0.015) (Figure 4A and 4B). Similar results 
was found in NPC TW03 cells (Figure 4A and 
4B). 

Reduced expression of ZDHHC2 correlates 
with metastasis and poor prognosis of naso-
pharyngeal carcinoma 

To investigate the association between ZDH- 
HC2 expression and clinicopathological param-

Table 1. Correation between ZDHHC2 expres-
sion and clinical-pathological parameters of 
NPC

Parameters Cases 
(n)

Missing 
(n)

ZDHHC2 
Expression

Sig.
L.E. 
(n)

H.E. 
(n)

Gender 0
    Female 29 16 13 0.138
    Male 95 46 49
Age 0
    ≤48 y 64 34 30 0.111
    >48 y 60 28 32
T stage 4
    T1+T2 50 30 20 0.035*
    T3+T4 70 31 39
N stage 4
    N0 29 14 15 0.161
    N1+N2+N3 91 47 44
TNM stage 2
    I+II 30 18 12 0.086
    III+IV 92 44 48
Recurrence 0
    No 85 39 46 0.062
    Yes 39 23 16
Metastasis 0
    No 95 42 53 0.011*
    Yes 29 20 9
ps: L.E.: Low Expression; H.E.: High Expression; * P value 
< 0.05.
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eters of NPC patients, paraffin-embedded tis-
sues section (n=124) with histopathologically 
confirmed NPC were examined using immuno-
histochemistry. The ZDHHC2 was observed 
predominantly in the cytoplasm of NPC tumor 
cells, and low expression of ZDHHC2 was 
observed in 50% (62/124) of NPC cancer 
patients (Figure 5A). Interestingly, reduced 
ZDHHC2 expression was associated signifi-
cantly with metastasis (P=0.011) and T stage 
(P=0.035) (Table 1). No significant association 
was seen between ZDHHC2 expression and 
age, gender, N stage, TNM stage and recur-
rence (Table 1).

To investigate the prognostic value of ZDHHC2 
expression in NPC patients, disease free sur-
vival (DFS) and overall survival (OS) analysis 
were performed in these 124 NPC cases, and 
the five-year DFS rate was 65.7% for these 
patients (Figure 5B). The five-year DFS rate was 
55.4% for patients with low ZDHHC2 expres-
sion (n=62), and 73.4% for patients with high 
ZDHHC2 expression (n=62), which was a signifi-
cant difference (P=0.031, Figure 5C). The five-
year OS rate was 77.9% for these 124 NPC 
patients (Figure 5D). the patients with the low 
levels of ZDHHC2 expression (n=62) had a 
poorer prognosis than the patients with high 
levels of ZDHHC2 expression (n=62) (P=0.011, 
Figure 5E). Univariate and multivariate analy-
ses were performed to compare the impact of 
ZDHHC2 expression and other clinicopathologi-
cal parameters on prognosis. Univariate analy-
ses showed that 3 factors, including ZDHHC2 
expression (P=0.014), metastasis status (P= 
0.001) and age (P=0.001) were prognostic pre-
dictors of OS in NPC patients. Multivariate anal-
yses indicated the relative risk of death in 
patients with high ZDHHC2 expression tumors 

was lower than that of patients with low 
ZDHHC2 expression tumors (HR=0.213, 95% 
CI=0.095-0.480). ZDHHC2 expression had a 
significant, independent predictive value for 
survival of NPC patients (P=0.001). Moreover 
metastasis status (P=0.001) and age (P=0.001) 
were also independent prognosis predictors for 
NPC patients (Table 2).

Discussion 

MiR-155 is considered as a typical multifunc-
tional microRNA, which is involved in many 
other different biological processes including 
inflammation, haematopoiesis and immunity. 
MiR-155 also plays a pivotal role in many 
human cancers, and many studies have report-
ed on the role of miR-155 in cancer develop-
ment either as an oncomiR or as an oncosup-
pressor-miR [30]. Expression of miR-155 was 
upregulated in many human cancers with high 
proliferative activity and decreased apoptotic 
capability, including breast cancer [8, 31], 
B-cell lymphoma [12], hepatocellular carcino-
ma [15], cervical cancer [32], colon cancer [33] 
and lung cancer [34]. Moreover, upregulation of 
miR-155 has been also reported to promote 
the migration and invasion in many human can-
cers, including colorectal cancer [35], breast 
cancer [36], pancreatic cancer [37] and hepa-
tocellular carcinoma [38]. However on the other 
hand, miR-155 was found to be downregulated 
and acted as an oncosuppressor-miR in adult 
Burkitt lymphoma [39], acute myeloid leukae-
mia [40], gastric cancer [41, 42], ovarian can-
cer [43] and melanoma [44]. In the present 
study, we report that miR-155 inhibitor could 
suppress cell migration as well as cell prolifer- 
ation in NPC CNE1 and TW03 cells in vitro. Th- 
ese data proposed that miR-155 acts as an 

Table 2. Univariate and multivariate analysis of various prognostic parameters for OS in NPC

Variables
Univariate analysis Mutivariate analysis

HR (95% CI) P HR (95% CI) P
Gender (F/M) 1.055 (0.515, 2.163) 0.884 0.650 (0.283, 1.495) 0.311
Age (>48 y/≤48 y) 3.890 (1.905, 7.944) 0.001 7.474 (3.189, 17.514) 0.001
T stage (T3+T4/T1+T2) 0.915 (0.479, 1.749) 0.789 1.561 (0.612, 3.985) 0.352
N stage (N1+N2+N3/N0) 1.070 (0.506, 2.263) 0.858 0.825 (0.357, 1.906) 0.653
TNM stage (III+IV/I+II) 1.211 (0.575, 2.550) 0.614 1.155 (0.380, 3.504) 0.780
Recurrence (Yes/No) 1.561 (0.830, 2.937) 0.167 0.777 (0.371, 1.630) 0.505
Metastasis (Yes/No) 6.036 (3.225, 11.295) 0.001 11.638 (4.995, 27.117) 0.001
ZDHHC2 (H.E./L.E.) 0.441 (0.231, 0.845) 0.014 0.213 (0.095, 0.480) 0.001
ps: L.E.: Low Expression; H.E.: High Expression.
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oncomiR in NPC. In our previous study, we have 
reported that upregulation of miR-155 in NPC is 
partly driven by EBV encoded LMP1 and LMP2A 
[20]. Hence as an oncomiR, miR-155 may play 
an important role in oncogenesis of EBV encod-
ed LMP1 and LMP2A in NPC. 

MiRNAs could regulate about 30% of all pro-
tein-encoding genes of the human genome 
[45], and each miRNA could have many direct 
target transcripts while each transcript could 
be regulated by one or more miRNAs [46]. At 
present, several direct targets of miR-155 have 
been identified in may human cancers. Loss of 
C/EBPbeta (CCAAT/enhancer binding protein, 
beta) mediated by miR-155 shifts the TGF-beta 
response from growth inhibition to epithelial-
mesenchymal transition, invasion and metas-
tasis in breast cancer [36], and miR-155 could 
promote the proliferation of breast cancer cells 
through down-regulation of SOCS1 (Suppressor 
of cytokine signaling 1) [8] and FOXO3a (fork-
head Forkhead box O3) [31]. MiR-155 affected 
pancreatic cancer cell invasiveness and migra-
tion by modulating the STAT3 signaling pathway 
through SOCS1 [37]. MiR-155 has also been 
reported to be involved in the development of 
lymphoma by targeting SMAD5 (SMAD family 
member 5) [47] and SHIP1 (inositol polyphos-
phate-5-phosphatase) [48]. In our study, we 
found that miR-155 inhibitor could increase 
endogenous ZDHHC2 protein expression in 
NPC CNE1 and TW03 cells, and luciferase 
reporter assay was performed to identify ZD- 
HHC2 as direct targets of miR-155. This is the 
first report that ZDHHC2 is a direct target of 
miR-155. Moreover knockdown of ZDHHC2 
could promote cell migiration in NPC CNE1 and 
TW03 cells, but didn’t affect the cell prolifera-
tion in NPC (data was not shown). These data 
suggested that miR-155 regulated cell migira-
tion in NPC through targeting ZDDHC2 and 
besides ZDHHC2, there should be some other 
targets of miR-155 which has not been identi-
fied in NPC. 

ZDHHC2 originally named as reduced expres-
sion associated with metastasis protein (RE- 
AM), has been proposed as a putative tumor/
metastasis suppressor gene. The mRNA level 
of ZDHHC2 expression was significantly re- 
duced in primary and metastatic foci of 
advanced colorectal cancer [21] and reduced 
of ZDHHC2 was found to be associated with 
metastasis and poor prognosis in gastric ade-

nocarcinoma [26] and hepatocellular carcino-
ma [49, 50]. In the present study, reduction of 
ZDHHC2 expression was observed in 50.0% 
(62/124) of NPC patients, and was associated 
significantly with metastasis (P=0.011) and T 
stage (P=0.035) of NPC patients. Furthermore, 
our results indicated that ZDHHC2 expression 
had a significant, independent predictive value 
for survival of NPC patients (P=0.001). Hence, 
our results also proposed that ZDHHC2 was a 
putative tumor/metastasis suppressor in NPC, 
which were consistent with previous studies of 
ZDHHC2. As one member of DHHC protein fam-
ily of protein acyltransferases (PATs), ZDHHC2 
is directly involved in the palmitoyl transfer 
reaction [51]. CKAP4/p63, a cell surface recep-
tor for antiproliferative factor (APF) [52], has 
been identied as a substrate of ZDHHC2 relat-
ed to its tumor/metastasis suppressor function 
[53]. Moreover tetraspanins CD9 was also 
identified as the substrate of ZDHHC2 related 
to its putative tumor/metastasis suppressor 
[54]. It is possible that hypopalmitoylation of 
both CKAP4 and CD9 may increase tumor or 
metastatic behavior. 

Taken together, inhibition of miR-155 suppre- 
sses cell migration in NPC through targeting 
ZDHHC2, and downregaultion of ZDHHC2 is 
associated with metastasis and poor prognosis 
of NPC patients. Further studies are needed to 
validate and clarify the mechanism of miR-155 
and its emerging targets in NPC, and the poten-
tial of miR-155 and ZDHHC2 as therapeutic tar-
gets for NPC should be further investigated.
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Figure S1. The sequence of four ZDHHC specific siRNAs.

Figure S2. miR-155 inhibitor inhibits cell proliferation in nasopharyngeal carcinoma CNE1 and TW03 cells. The abil-
ity of cell proliferation was measured by MTT assay in CNE1 cells (A) and TW03 cells (B), which transfected with miR-
155 inhibitor (100 nM) or inhibitor negative control (100 nM), The curve of inhibition ratio to the drug DDP showed 
that miR-155 inhibitor could reduce the ability of cell proliferation. (C) The IC50-DDP have significant decrease in 
in CNE1 cells and TW03 cells transfected with miR-155 inhibitor (100 nM), compared to the cells transfected with 
negative control (100 nM). 


