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Molecular imaging of stem cells for the treatment of 
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Abstract: Stem cell therapy has a unique potential and promises hope for the treatment of acute myocardial in-
farction. Preclinical studies have identified barriers to clinical translation, one of which involves the monitoring of 
transplanted cells and the elucidation of their fates in vivo. Molecular imaging may help the solutions for these 
challenges. In this review, we illustrate the mechanisms by which molecular imaging enables insights into and the 
development of stem cell therapy.
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Introduction

The morbidity and mortality of acute myocardi-
al infarction (AMI) is increasing, and stem cell 
therapy holds unique potential and promises 
hope for the treatment of AMI. A meta-analysis 
of 50 studies enrolling 2625 patients showed 
that transplantation of adult bone marrow cells 
improved left ventricle function, infarct size, 
myocardial remodeling, and reduced the inci-
dence of death, recurrent myocardial infarc-
tion, and stent thrombosis [1]. Another meta-
analysis of 22 randomized controlled trials, 
however, found that intracoronary infusion of 
marrow-derived mononuclear cells did not 
enhance cardiac function according to magnet-
ic resonance imaging parameters nor did it 
improve clinical outcomes [2]. The therapeutic 
benefits of stem cell therapy remain controver-
sial; in addition, the biological behaviors, such 
as the localization, proliferation, migration, dif-
ferentiation, and functional mechanism, of 
transplanted stem cells require future eluci- 
dation.

Molecular imaging provides noninvasive, real-
time tracking of transplanted stem cells in vivo 
and has answered some of the above ques-
tions. In this review, we illustrate how molecular 
imaging enables the development of stem cell 
therapy and refer to important recent findings.

Imaging modalities and labeling approaches

Imaging modalities, including fluorescence 
imaging (FI), bioluminescence imaging (BLI), 
ultrasound (US), computed tomography (CT), 
magnetic resonance imaging (MRI), positron 
emission tomography (PET), and single photon 
emission computed tomography (SPECT), have 
been validated and are in widespread use; each 
imaging modality has respective strengths and 
limitations [3]. There is no best modality for 
spatial resolution, sensitivity, and specificity, 
leading to a trend of multi-modular imaging to 
combine the advantages of various modalities.

The two common methods of labeling stem 
cells with specific imaging probes are direct 
labeling and reporter gene labeling (Table 1). 
Direct labeling is performed by incubating stem 
cells with contrast agents, which are trapped 
intracellularly by active/passive transport or 
phagocytosis. Examples include near infrared 
fluorescent dyes for FI, super-paramagnetic 
iron oxide (SPIO) and ultra-small super-para-
magnetic iron oxide (USPIO) for MRI, 18F-FDG for 
PET, and 99mTc-HMPAO for SPECT [4]. This 
approach is quick, simple and highly efficient. 
These molecular probes do not proliferate along 
with stem cells, leading to false negatives; fur-
ther, they could be engulfed by macrophages or 
remain in the extracellular matrix after cell 
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Figure 1. Multimodality molecular imaging in acute myocardial infarction rats after transplanted Ad5-TGF-transfect-
ed BMSCs into myocardium. (A) From images of microPET (upper row), Fluorescence (middle row) and Biolumines-
cence (lower row) imaging, signals in the heart region could be clearly seen in different imaging modalities (indi-
cated by red arrows) at day 2, 3 and 7 after transplantation of Ad5-TGF-transfected BMSCs into the myocardium. 
Semi-Quantitative analysis results obtained by ROI analysis of the region of heart from 18F-FHBG microPET (B), 
Fluorescence (C) and Bioluminescence (D) imaging shows that a significant difference could be seen between the 
experimental group with transplanted Ad5-TGF-BMSCs and the control group with transplanted uninfected BMSCs 
(P < 0.05) in all different imaging modalities. Ad5-TGF: adenovirus carrying herpes simplex virus type 1 thymidine 
kinase (HSV1-tk), enhanced green fluorescence protein (eGFP), and firefly luciferase (FLuc). BMSCs: bone marrow 
mesenchymal stem cells. ROI: region of interest [11].

death, leading to false positives [5]. As a conse-
quence, direct labeling is suitable for short-time 
cell tracking instead of longitudinal tracking 
because the signal detection cannot reflect 
real-time cell number and viability.

Reporter gene labeling is performed by trans-
fecting or transducing stem cells with an artifi-
cial DNA sequence, which would overproduce 
the imaging probes or act with specific sub-
strates. Examples include green fluorescent 

Table 1. Comparison of direct labeling and reporter gene labeling
Label approach Operation Probes Imaging Modality Advantages Disadvantages
Direct labeling Incubate stem 

cells with 
probe agents

Fluorescent dyes FI Quick, simple, and 
highly efficient

Unable to reflect 
longitudinal cell 
number and vi-
ability

SPIO, USPIO MRI
18F-FDG, 18F-RDG PET

99mTc-HMPAO SPECT
Microbubbles US
Quantum dots CT

Reporter gene 
labeling

Transfect or 
transduce 
stem cells with 
reporter genes

GFP FI Correspond to 
cell number and 
viability; individu-
alized design

Potential to induce 
gene mutagenesisFluc BLI

ferritin MRI
HSV1-tk PET

NIS SPECT
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protein (GFP) for FI [6], firefly luciferase (Fluc) 
for BLI [7], herpes simplex virus-type 1 thymi-
dine kinase (HSV1-tk) or its mutant variants for 
PET [8], sodium iodide symporter (NIS) for 
SPECT [9], and ferritin and its receptor for MRI 
[10]. Once a stable expression is established, 
the intensity of detected signal corresponds to 
the number and viability of cells. Fusion report-

er genes assist in multi-modular imaging 
(Figure 1) [11], and a specific promoter or 
kinase helps identify the differentiation of stem 
cells [12]. Caution is required for safety, 
because transfection and transduction have 
the potential to induce gene mutagenesis. 
Several clinical studies have successfully 
applied HSV1-tk to assess gene therapy for 

Figure 2. Long-term cell survival and treatment outcome of eCMs, SMs and MSCs. A. Survival curves of mice with 
myocardial infarction transplanted with eCMs (n = 17), SMs (n = 14) and MSCs (n = 16), followed 7 weeks postop-
eratively. B. In vivo longitudinal BLI of representative mice at 5, 13 and 49 days after transplantation of eCMs (top) 
SMs (middle) and MSCs (bottom) to monitor long-term cell survival in infarcted myocardium. C. Longitudinal evalua-
tion of heart function with echocardiography at day 5 and 49 after transplantation of eCMs, SMs and MSCs. eCMs: 
embryonic cardiomyocytes. SMs: skeletal myoblasts. MSCs: mesenchymal stem cells. MI: myocardial infarction. EF: 
ejection fraction. EDV: end-diastole volume [17].
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Figure 3. Noninvasive BLI of cardiac transplanted iPSC-CMs. A. Imaging of intramyocardial transplanted iPSC-CMs 
in immunocompetent allogenic recipients; B. Imaging of intramyocardial transplanted iPSC-CMs in immunosup-
pressed allogenic receipts; C. The in vivo BLI signals of iPSC-CMs in immunocompetent/immunosuppressed allo-
genic recipients (n = 6/group). BLI: bioluminescence imaging. iPSCs-CM: induced pluripotent stem cells differenti-
ate into cardiomyocytes [19].

brain gliomas and other tumors [13], adding its 
prospect to the field of cardiovascular 
diseases.

Longitudinal retention and cell delivery

To achieve sufficient benefits, transplanted 
stem cells must localize and survive in the tar-
get tissue. Direct imaging of in vivo cell prolif-
eration requires the utilization of the radiotrac-
ers involved in the pathway of DNA synthesis 
and has not been performed [14]. With reporter 
gene labeling, a substantial amount of dynamic 
tracking and semi-quantitative analysis is con-
ducted to monitor the overall survival of stem 
cells (Figure 1). Liu et al. labeled human cardi-
ac progenitor cells (hCPCs) with Fluc and HSV1-

tk or its mutant variants that were tracked in a 
murine myocardial infarction model over a 
4-week time period; early cell engraftment 
assessed by PET was found to predict subse-
quent cardiac functional recovery, implying a 
dose-effect relationship [15]. Templin et al. 
labeled human iPSCs with NIS and performed 
long-term imaging of the viability and tissue dis-
tribution of cellular grafts with novel 3-D NOGA 
mapping [16]. Equipped with molecular imag-
ing, numerous improvements have been made 
to track transplanted cells and clarify their 
outcomes.

Most of the existing studies demonstrated a 
substantial decline in surviving embryonic stem 
cells (ESCs) [17], mesenchymal stem cells 
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Figure 4. Echocardiography evaluation of murine hearts after MI with or without cells transplantation. (A) The AWT 
of groups transplanted with HGF-MSCs were thicker than the HGF group (*P < 0.05) or the control group (**P < 
0.01). AWT was also showed thicker in BM-MSCs group compared with control group (*P < 0.05). LVEF (B) was 
higher while LVEDd (C) was lower in HGF-MSCs group compared with HGF group (*P < 0.05) or HGF-MSCs group 
(**P < 0.01). (D) M-mode echocardiograms are shown at 8 weeks after MI with or without cells injection and best 
cardiac function was shown in HGF-MSCs group. BM-MSCs: bone marrow-derived mesenchymal stem cells. HGF: 
hepatocyte growth factor. AWT: anterior wall thickening. LVEF: left ventricular ejection fraction. LVEDV: left ventricu-
lar end-diastolic volume [18].

(MSCs) [18], induced pluripotent stem cells 
(iPSCs) [19] and other stem cells, predominant-
ly within the first week (Figure 2). Such limited 
retention might be due to a hypoxic environ-
ment, ischemia-reperfusion injury, inflammato-
ry reaction, immunological rejection (Figure 3), 
cell apoptosis or other underlying causes [20]. 
Among these causes, cell apoptosis could be 
imaged with specific probes aimed at the com-
ponents involved in the cascade. A caspase-3 
specific reporter gene, pcFluc-DEVD, was 
designed, which took effect when caspase-3 
intercepted DEVD, yielding an active Fluc pro-
tein [21]. Similarly, cyclic HSV1-tk successfully 
monitored the apoptosis of tumor cells after 
chemotherapy in vivo with PET imaging, which 
provides better clinical application [22]. Other 
researchers have shown that stem cells could 
migrate and disappear into peripheral tissues 

or form teratomas, highlighting the importance 
of the homing of stem cells. 

A group of studies focused on the timing, 
routes, and dosage of cell delivery to explore 
the best protocols. Houtgraaf et al. found that 
intracoronary infusion of mesenchymal precur-
sor cells directly after infarction reduced the 
loss of myocardial cells, lowered the infarct 
size, abrogated adverse remodeling, and 
improved cardiac function, despite the hypoth-
esis that inflammatory cells recruited to repair 
an injured myocardium might be hostile to cell 
viability [23]. A meta-analysis showed that the 
ideal cell-infusion time was 4-7 days after an 
infarction, when the chemotactic factors 
reached at peak [24]. Another meta-analysis 
indicated more improvement with late injec-
tions (> 1 week) [25]. Swijnenburg et al. showed 
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that the timing of delivery had little effect on 
the overall intra-myocardial retention and car-
diac function preservation in acute and sub-
acute models [26]. Regarding the delivery 
route, intra-myocardial injection is more effec-
tive than intra-coronary injection; however, clin-
ically, it is more difficult to perform and fewer 
results are obtained [27]. Regarding dosage, 
most studies implied a dose-dependent effect 
on CD34+BMCs [28] and other stem cells [29]. 
Such divergent opinions suggest that contin-
ued research is required.

Function mechanism and cell type

The differentiation of stem cells into cardiac 
cells and the replacement of ischemic tissues 
in situ could be hypothesized. Increasingly, 
iPSCs are being used to complement their 
embryonic counterparts. Carpenter et al. dem-
onstrated efficient cardiac differentiation of 
human iPSCs that gave rise to the retention of 
progenitors within infarcted hearts in rats and 
reduction of heart remodeling after ischemic 
damage [30]. Wang et al. generated a fusion 
gene driven by a murine stem-cell virus promot-
er and an endothelial-specific promoter. With 
BLI and immunohistochemical staining, they 
found that human MSCs differentiated into 
endothelial cells and were integrated into blood 
vessels as long as 50 days after an experimen-
tal myocardial infarction and that increased 
angiogenesis and decreased fibrosis were 
associated with functional cardiac improve-
ment [31]. The relatively poor retention of stem 
cells poses a challenge to explaining their ther-
apeutic effects. 

Another characteristic of stem cells is their 
paracrine effect. Researchers found that 
BMSCs took effect by paracrine signaling and 
immune regulation instead of by differentiation 
into myocardial or vascular cells and that the 
cells would not survive long in vivo (Figure 2) 
[32]. Fan et al. showed that BMSCs inhibited 
pro-apoptotic gene (Bax, caspase-3) and 
inflammatory biomarker (MMP-9, oxidized pro-
tein, CD40+ cells) expressions and benefited 
angiogenesis (VEGF, CD31+ cells, SDF-1alpha, 
CXCR4) and myocardium preservation (connex-
in43, troponin-I, cytochrome-C) [33]. Wang et 
al. also confirmed that angiogenesis and/or the 
paracrine effect and not myogenesis had 

responsibility for functional improvement fol-
lowing CD34+ cell therapy because treatment 
with anti-VEGF rather than anti-α4β1 abolished 
improvement in cardiac function [34]. In addi-
tion, human embryonic stem cell-derived vas-
cular cells (hESC-VCs) could have a paracrine 
effect on various cytokines to promote angio-
genesis, pro-survival and anti-apoptotic effects, 
accompanied by a pronounced recruitment of 
endogenous c-kit(+) cells to the injury site [35]. 
Stem cells such as skeletal myoblasts [36], 
bone marrow-derived stem cells [37], and car-
diosphere-derived stem cells [38] generate suf-
ficient cytokines, chemokines and growth fac-
tors to protect myocardial cells, regulate angio-
genesis, inhibit post-infarction inflammation 
and fibrosis, and stimulate the recruitment and 
differentiation of endogenous stem cells.

Adjuvant treatment

It has been shown that co-therapy with antioxi-
dants [39], immune-suppressants (Figure 3) 
[40], and growth factors [41] could lengthen 
the survival of stem cells and strengthen their 
therapeutic effects. Huber et al. applied costim-
ulation-adhesion therapy through a TIM3-
dependent mechanism for preventing post-
transplantation rejection of human ESC deriva-
tives [42]. Zhang et al. showed that combina-
tion therapy with rosuvastatin and adipose-
derived mesenchymal stem cells (AD-MSCs) 
had a synergetic effect on improving the myo-
cardial function after an infarction via the PI3K/
Akt and MEK/ERK pathways [43]. Similarly, 
exendin-4 could improve the survival and thera-
peutic efficacy of ADSCs through STAT3 activa-
tion [44]. To maintain a longer and real-time co-
effect, stem cells are modified to self-generate 
adjuvants (Figure 4) [45] or microRNAs [46].

Efforts have been made to design a graft sys-
tem with improved bioactivity and tissue com-
patibility. Xu et al. utilized scaffolds mimicking 
the morphology of the cardiac extracellular 
matrix to preserve the cardiac differentiation of 
CDCs [47]. Ban et al. encapsulated murine 
ESC-derived CMs with PA-RGDS to evade the 
immune system and supply substrates for 
angiogenesis [48]. Williams et al. combined 
hMSCs and hCSCs and illustrated the impor-
tant biological interactions between them that 
enhanced cell-based therapeutic responses 
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[49]. Multidisciplinary collaboration between 
molecular imaging, biomaterials, bioengineer-
ing and other medical or non-medicals scienc-
es offers promise for stem cell therapy.

Conclusion

By taking advantage of their self-renewing, plu-
ripotent characteristics and paracrine effects, 
stem cells have significant potential for the 
treatment of AMI. Preclinical studies have iden-
tified barriers to clinical translation, one of 
which is the monitoring of transplanted cells 
and the elucidation of their fates in vivo. 
Equipped with the recent advances in molecu-
lar imaging, researchers are able to obtain bet-
ter solutions for the questions that remain. 
Direct imaging of transplanted stem cells has 
provided remarkable insight into the biological 
behavior, mechanism of action and therapeutic 
efficacy of stem cells. An improved understand-
ing of the determinants of success has become 
crucial, and efforts are being made to prolong 
cell survive with cell modification and coinci-
dent substrate delivery. A bright future is antici-
pated; however, future studies are required 
because some conclusions are equivocal. 
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