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Abstract: Objectives: Neurotrophin receptor-mediated melanoma antigen-encoding gene homology (NRAGE) is an 
important regulator of proliferation, cell cycle arrest and apoptosis. Our previous study showed that NRAGE is an 
important regulator of proliferation and odontogenic differentiation of mouse dental pulp cells. This study aimed to 
investigate the effects of NRAGE on the cell cycle and apoptosis on human dental pulp cells (hDPCs) and MDPC-23. 
Materials and methods: Cells were infected by recombinant lentivirus to stably knockdown the expression of NRAGE, 
then the biological effects of NRAGE on the MDPC-23 was detected. The cell cycle distributions and apoptosis of 
hDPCs and MCPC-23 were performed by flow cytometric analysis. Simultaneously, the cell cycle and apoptosis 
were also detected after cells treated with IKK inhibitor. Results: The mRNA and protein levels of NRAGE decreased 
significantly after infected by recombinant lentivirus. Knockdown of NRAGE inhibited the apoptosis in hDPCs and 
MCPC-23. Knockdown of NRAGE show significantly G0G1 arrest in hDPCs, while no significantly difference in MDPC-
23. Meanwhile, Knockdown of NRAGE activated the NF-κB signaling pathway. After treated with IKK inhibitor, the 
effect of NRAGE knockdown on apoptosis was reversed in both hDPCs and MDPC-23. Conclusion: NRAGE is a potent 
regulator for cell cycle and apoptosis of hDPCs. Knockdown of NRAGE inhibited apoptosis of hDPCs and MDPC-23 
through the NF-κB signaling pathway.
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Introduction

Dental pulp is composed of ectomesenchymal 
components with neural crest-derived cells, 
which contains mixed cells types including 
fibroblasts, odontoblasts and undifferentiated 
mesenchymal cells; and dental pulp plays 
important roles in dentinogenesis [1, 2]. Dental 
pulp cells (DPCs) can proliferate and differen- 
tiate into odontoblasts, thereby creating re- 
parative dentin in response to the appropriate 
stimuli [3, 4]. In the progress of multicellular 
organism development, cellular homeostasis 
and cellular response to stimuli, cell cycle 
arrest and apoptosis play essential roles. Many 
molecular regulates the tooth development via 
cell cycle [5, 6]. Cell cycle arrest can protect 
DPCs against lethal heat shock following by 
restorative procedures [7] and irradiation 
induced damage [8]. 

Cell death regulated by a genetic program is 
called programmed cell death including apop- 
tosis, necroptosis, and autophagy. This is a fun-
damental mechanism of tissue homoeostasis. 
Apoptosis, which is critical to many multicellular 
organisms, is an evolutionarily conserved mode 
of programmed cell death. Apoptosis also takes 
place in mature dental pulp when it is exposed 
to extrinsic stimuli such as bacterial infection, 
ischemia, mechanical stimuli, or dental mate- 
rial [9-11]. Appropriate apoptosis of DPCs is 
beneficial to tissue regeneration.

Neurotrophin receptor-interacting MAGE homo-
log (NRAGE), a member of type II melanoma 
antigen-encoding gene family, is widely ex- 
pressed in many normal tissues [12] and is 
called MAGE-D1 or Dlxin-1 [13]. NRAGE con-
tains 25 repeats of a WQXPXX hexapeptide 
domain in the middle region, suggesting that 
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NRAGE performs unique functions compared 
with other proteins belonging to the MAGE  
family [14]. Studies have shown that NRAGE is 
involved in cellular functions such as cell pro- 
liferation [15, 16], cell motility [17], cell cycle 
arrest [16, 18] and apoptosis [18, 19]. NRAGE 
plays an essential role in development apopto-
sis in vivo through NF-kB pathway [20], which 
could be regulated by NRAGE Interaction with 
UNC5H1 [21], TAK1-TAB1-XIAP complex [22], 
Che-1 [23], and so on. In our previous study, we 
found that NRAGE is an important regulator of 
proliferation and odontogenic differentiation of 
mouse dental pulp cells, which might via NF-kB 
signaling pathway [24]. However, the effect 
underlying the cell cycle distributions and apo- 
ptosis caused by NRAGE in DPCs is unknown. 

In the present study, the cell cycle distributions 
and apoptosis were investigated by Flow cytom-
etry. NRAGE was stably knocked down to deter-
mine its effects on cell cycle distribution and 
apoptosis of hDPCs and MDPC-23.

Materials and methods

Isolation and culture of primary human dental 
pulp cells (hDPCs)

The primary cultured hDPCs were isolated from 
the premolar of healthy people undergoing 
tooth extraction for orthodontic treatment and 
were cultured in high-glucose Dulbecco’s  
modified Eagle’s medium (DMEM; Gibco-BRL, 
Grand Island, NY, USA) supplemented with  
10% fetal bovine serum (FBS; Gibco-BRL Life 
Technologies, Paisley, UK, USA) and antibiotics 
(100 U/mL penicillin and 100 U/mL streptomy-
cin, Gibco-BRL, USA) in a humidified atmosph- 
ere of 5% CO2 at 37°C. Cell cultures between 
the third and sixth passages were used in the 
study and the culture medium was changed 
every 3 d. 

Odontoblast-like MDPC-23 cells provided by  
Dr. Guan Yang (Molecular Laboratory for Gene 
Therapy and Tooth Regeneration, Beijing Key 
Laboratory of Tooth Regeneration and Function 
Reconstruction, Capital Medical University Sc- 
hool of Stomatology, Beijing, P. R. China) were 
maintained in DMEM/high glucose (Invitrogen 
Corp., Carlsbad, CA, USA) supplemented with 
10% FBS (Gibco-BRL Life Technologies, Paisley, 
UK) and antibiotics (100 U/mL penicillin and 

100 U/mL streptomycin, Gibco-BRL, USA) in a 
humidified atmosphere of 5% CO2 at 37°C.

Plasmid construction and interfering RNA 
transfection

Lentiviral plasmids carrying the small hairpin 
NRAGE interference (shNRG) was reported in 
our previous study [24]. In brief, shCon-plasmid 
and shRNA-plasmid cotransfection were per-
formed using Lipofectamine 2000 (Invitrogen) 
in accordance with the manufacturer’s proto-
col. shNRG or shCon were packaged in 293T 
and infected hDPCs and MDPC-23 using poly-
brene (Sigma) for 24 h, then 2 and 8 ug/ml 
puromycin (Sigma) was added to select the 
positive transfected hDPCs and MDPC-23 for 
4-7 d, respectively. The hDPCs transfected by 
shNRG and shCON were short for H-shNRG and 
H-shCON, respectively. MDPC-23 transfected 
by shNRG and shCON were short for M-shNRG 
and M-shCON, respectively.

Cytotoxity ananlysis of NF-kB pathway inhibitor 
on hDPCs and MDPC-23

The Cell Counting Kit-8 (CCK-8; Dojindo Kagaku 
Co, Kumamoto, Japan) was used to analyze  
the cytotoxicity of NF-kB pathway inhibitor 
(BMS345541) on hDPCs and MDPC-23 accor- 
ding to the manufacturer’s protocols. Briefly, 
cells were seeded at a density of 5×103 cells/
well in a 96-well plate (Corning Inc, Corning,  
NY, USA) and then were cultured overnight. 
Subsequently, fresh medium with 10% FBS 
containing BMS345541 with different concen-
trations was added to replace the culture medi-
um. The cells were cultured for another 3 d, and 
the number of cells was assessed using a cell 
counting kit. The method to analyze the results 
was reported in our previous study [24].

RNA Isolation and semi-quantitative RT-PCR 
analysis

Total RNA of hDPCs (H-mock), H-shCon and 
H-shNRG; MDPC-23(M-mock), M-shCON and 
M-shNRG were isolated with TRIzol Reagent 
(Invitrogen, USA) following the manufacturer’s 
protocol. cDNA synthesized using a PrimeScript 
RT reagent Kit with gDNA Eraser (Takara Bio, 
Shiga, Japan) was used as a template in PCR. 
The mRNA level of NRAGE was analyzed. 18 S 
was used to normalize the RNA expression. The 
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sequences of the specific primers used in this 
study were as follows: NRAGE (mouse) (for- 
ward: 5’-GGCATACTGGGAACGACCAA-3’, rever- 
se: 5’-C-CAGAGCATCCAAGGCTTCA-3’), NRAGE 
(human) (forward: 5’-GCTCGGTCTCCTCTTGGT 
GATTC-3’, reverse: 5’-GGCACTCGTCTGTAGTCCA- 
GGTATT-3’); 18S: forward, 5’-CCTGGATACCGCA- 
GCTAGGA-3’; reverse, 5’-GCGGCGCAATACGAAT- 
GCCCC-3’. Real-time PCR reaction was ampli-
fied with SYBR Premix Ex Taq II (Takara Bio, 
Shiga, Japan) in an ABI 7500 Real-Time PCR 
System (Applied Biosystems, Foster City, CA, 
USA). Relative gene expression was calculated 
using the comparative 2-ΔΔCt method. Each 
measurement was assessed in triplicate. The 
gene expression ratio was shown as mean ± SD 
from three independent experiments.

Immunofluorescence

The H-shNRG, H-shCON, M-shNRG and M- 
shCON were seeded on chambers in 24-well 
plates, and incubated overnight at 37°C in a 
humidified atmosphere of 5% CO2. The method 
was reported in our previous study [24]. A 
1:300 dilution of rabbit anti-mouse NF-κB 
(p105/p50) antibody (abcam, Camb., UK), goat 
anti-rabbit immunoglobulin G Fragment (Alexa 
Fluor® 555 Conjugate) (Cell Signaling Tech- 
nology, Inc., USA) were used in this study. 

Western blot

The H-mock, H-shCon and H-shNRG; M-mock, 
M-shCON and M-shNRG cultured into 60  
mm cell culture dishes were lysed in a pro- 
tein extraction kit (Piece, Rockford, IL, USA). 
Meanwhile, the protein of hDPCs and MDPC-23 
were extracted after treated by appropriate 
dose of BMS345541 for 0 h, 1 h and 2 h. 
Protein concentrations were determined using 
a bicinchoninic acid protein assay kit (Piece, 
Rockford, IL, USA). An equal amount of protein 
was separated and then transferred onto nitro-
cellulose membranes (Millipore Corporation, 
Billerica, MA, USA). After blocking, the primary 
antibodies of mouse anti-mouse NRAGE (Santa 
Cruz Biotechnology, Inc, USA), rabbit anti-Phos-
pho-p65 (p-p65) (1:1000; Cell Signaling, 
Beverly, MA, USA) and rabbit anti-mouse β-actin 
(Santa Cruz Biotechnology, Inc., USA) were 
used. Then, secondary antibodies of goat anti-
mouse immunoglobulin G (Licor Co., Lincoln, 
NE, USA) and goat anti-rabbit immunoglobulin 
G (Licor Co., Lincoln, NE, USA) were used. After 
the final wash, the membranes were visualized 
using the Odyssey LI-CDR system.

Flow cytometry 

For Flow cytometric analysis, cells were seeded 
into 60 mm cell culture dishes in routine cul-

Figure 1. Stable knockdown of NRAGE in hDPCs and MDPC-23. (A) mRNA level and (B) protein level of NRAGE after 
hDPCs infection. (C) mRNA level and (D) protein level of NRAGE after MDPC-23 infection. Mock represents for the 
untreated cells. Data represents three independent experiments with similar results (*P<0.05 and **P<0.01).
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ture media supplemented with 10% FBS for 24 
h. After 24 h starvation with serum-free condi-
tions, serum-contained medium with or without 
BMS345541 was added to the cultures, and 
cells were permitted to grow for an additional 0, 
24, or 48 h. The cells were then collected and 
fixed in 75% ethanol at 4°C for 30 min in the 
dark. The samples were centrifuged at 1000 
rpm for 5 min, and the supernatant was dis-
carded. The pellets were washed with PBS. 
After adding 200 μl propidium iodide (PI), the 
samples were incubated for 30 min in the dark 
and then cell cycle distributions were analyzed 
with a flow cytometer (BD Biosciences). For  
cell apoptosis the pellets were resuspended  
in stained with Annexin V (BD Pharmingen, 
Franklin Lakes, USA) and propidium iodide  
(PI) (BD Pharmingen, Franklin Lakes, USA) 
according to the manufacturer’s instructions. 
Apoptosis cell fractions and cell cycle distri- 
butions were analyzed by FACScan cytometry 
(Becton-Dickinson, SanJose, CA, USA). In our 
studies, the early apoptotic cells (Q2: Annexin 
V+/PI− staining) and the late apoptotic cells 
(Q4: Annexin V+/PI+ staining) were considered 
to be undergoing apoptosis, and the proportion 
of these cells out of the total number of cells 
analyzed were determined.

Statistical analysis

Experiments were performed in triplicate, and 
data are presented as mean ± standard devia-
tion (SD). All statistical analyses were evalu- 
ated by one-way ANOVA and Turkey post hoc 
testing using the SPSS software (Version 13.0; 
SPSS, Chicago, IL, USA). P values less than 
0.05 were considered statistically significant.

Results

Stable knockdown of NRAGE in hDPCs/MDPC-
23

Stable transfected cell populations of H-shCon, 
H-shNRG, M-shCon and M-shNRG were con-
structed. The mRNA levels (Figure 1A and 1C) 
and protein levels of NRAGE (Figure 1B and 1D) 
were obviously lower in the H-shNRG and 
M-shNRG than those in the H-shCON and 

M-shCON. The results showed that NRAGE was 
stably knocked down in H-shNRG and M-shNRG. 

The cell cycle distribution after knockdown of 
NRAGE in hDPCs and MDPC-23

To determine the role of NRAGE in cell cycle  
distribution, flow cytometric analysis was per-
formed. The results showed that H-shNRG 
group (70.7%) showed significantly G0G1 arrest 
compared with the H-shCON gruop (64.6%) 
(Figure 2A), while there are no significant differ-
ence between M-shCON and M-shNRG (Figure 
2B) (*P<0.05).

Knockdown of NRAGE inhibited the apoptosis 
of hDPCs and MDPC-23

The relative number of differently stained cells 
is shown using flow cytometry dot plots (Figure 
2C and 2D). We detected the percentage of 
apoptotic cells (Q2+Q4) in the shNRG groups 
and shCON groups of hDPCs (Figure 2C) and 
MDPC-23 (Figure 2D). Figure 2C showed that 
the percentage of apoptotic cells in H-shNRG 
group (21.5%) was significantly lower than in 
H-shCON group (32.5%). Figure 2D presented 
the same trend in MDPC-23 (30.6% in M-shNRG 
VS 41.3% in M-shCON). The results indicated 
that NRAGE knockdown significantly inhibited 
the apoptosis in both hDPCs and MDPC-23. 
(**P<0.01).

The NF-κB signaling pathway was activated 
after the knockdown of NRAGE in hDPCs and 
MDPC-23

After knockdown of NRAGE, we detected the 
translocation of p105/p50 using Immunofluo- 
rescence (Figure 3A and 3B), meanwhile we 
analyzed the protein expression of p-p65 by 
western blot (Figure 3C and 3D). P105/p50 
was detected transfer from cytoplasm to nucle-
ar after NRAGE knockdown in hDPCs (Figure 
3A), and the similar results also found in MDPC-
23 (Figure 3B). The expression of p-p65 in H- 
shNRG was higher than in H-shCON (Figure 3C), 
which was similar in MDPC-23 (Figure 3D). 
Those results indicated that NF-κB pathway 

Figure 2. Effect of NRAGE knockdown on cell cycle and apoptosis of hDPCs and MDPC-23. Flow cytometric assay 
was used to analyze cell cycle distribution. A. H-shNRG groups (70.7%) show significantly G0G1 arrest compared 
with the H-shCON groups (64.6%). B. No significant difference on MDPC-23. C and D. NRAGE knockdown signifi-
cantly inhibited the apoptosis (later apoptosis (Q2)+early apoptosis (Q4)) in both hDPCs and MDPC-23. The data 
shown are from three independent experiments (*P<0.05 and **P<0.01).



Knockdown of NRAGE inhibited the apoptosis in hDPCs and MCPC-23

10662 Int J Clin Exp Med 2015;8(7):10657-10667



Knockdown of NRAGE inhibited the apoptosis in hDPCs and MCPC-23

10663 Int J Clin Exp Med 2015;8(7):10657-10667

was activated after knockdown of NRAGE in 
hDPCs and MDPC-23.

NF-κB inhibitor could rescue the effect of 
NRAGE on the apoptosis in hDPCs and MDPC-
23

To further examine the role of NF-κB pathway in 
NRAGE mediated apoptosis of hDPCs and 
MDPC-23, a specific IKK inhibitor (BMS345541) 
was used to suppress the activity of NF-κB 
pathway during inducing apoptosis. The app- 
ropriate concentration of BMS345541 was  
chosen according to the results of CCK-8. We 
found that higher concentrations (3 and 5 uM 
BMS345541) significantly reduced the viability 
of hDPCs, whereas 2 uM BMS345541 did not 
affect viability of hDPCs (Figure 3E). Meanwhile, 
2 uM BMS345541 can significantly inhibited 
expression of p-I-B α (Figure 3F) in hDPCs 
which showed NF-kB pathway was inhibited. 
The similar results of 3uM BMS345541 on 
MDPC-23 was detected (Figure 3G and 3H). 
Thus 2 uM and 3 uM BMS345541 were chosen 
as the optimal dose for hDPCs and MDPC-23 in 
the following experiments, respectively. Flow 
cytometric analyses demonstrated that the 
apoptosis was reversed after H-shNRG and 
M-shNRG treating by optimal dose of BMS- 
345541 (Figure 4A and 4B). Those results  
indicated that NRAGE regulated apoptosis 
through the NF-κB signaling pathway. However, 
Flow cytometric analyses demonstrated that 
there was no significantly change on cycle dis-
tribution on H-shNRG (Figure 4C). Which means 
that NRAGE affect the cycle distribution might 
be through other signaling pathway, not NF-κB 
pathway.

Discussion

Dental pulp cells (DPCs) can form reparative 
dentin in response to the appropriate stimuli  
[3, 4], which including odontoblastic differenti- 
ation, cell cycle arrest and apoptosis. Cell cycle 
arrest is an important protection for DPCs 
response to stimuli. DPCs protect the pulp  

dentin complex by regulating cell cycle arrest 
response to heat shock during restorative pro-
cedures [7]. Dental pulp stem cells (DPSCs) 
respond to irradiation induced damage by per-
manent cell cycle arrest [8]. Meanwhile, the 
homeobox, msh-like 1 (MSX1) regulates cell 
cycle arrest to participate tooth germ develop-
ment [5]. Nuclear factor I-C regulates the cell 
cycle of DPSCs in tooth root development [6]. 
Apoptosis is necessary for odontoblasts to 
maintain an appropriate dentin deposition rate 
[25] and tooth development [26]. The differ-
ence of apoptosis and necrosis is that necrosis 
triggers inflammation, while apoptosis prevents 
it. Moreover, the modulation of autophagy and 
apoptosis plays a role in progression of periapi-
cal lesions [27]. Cell epithelial proliferation of 
radicular and dentigerous cyst is regulated by 
apoptosis [28]. Apoptosis is critical to tissue 
development and recovery response to internal 
and external stimuli [9, 11, 25]. Therefore, 
apoptosis is believed to prevent tissue damage 
[29] and may be play a important role in the 
minimization of dental pulp. 

NRAGE mainly participated in cell apoptosis, 
cell cycle and cell differentiation [13, 20]. 
NRAGE plays an essential role in developmen-
tal apoptosis of sympathetic neurons in vivo 
[20], which maybe involve in Prion diseases 
[30]. Meanwhile, NRAGE is an endogenous reg-
ulation for neuronal proliferation and differen-
tiation of PC12 cells [31]. According to our pre-
vious studies, NRAGE promotes odontoblastic 
differentiation of mouse dental pulp cells [24]. 
Therefore, it is important to explicit the effect of 
NRAGE on cell cycle distribution and apoptosis 
of DPCs. This is the first report to evaluate the 
effects of NRAGE on cell cycle distribution and 
apoptosis of hDPCs and MDPC-23.

In the present study, NRAGE was knocked down 
by recombinant lentivirus (Figure 1). Flow cy- 
tometry were used to detect cells undergoing 
apoptosis and cell cycle distribution. There was 
a significantly difference in cell cycle after 
knockdown of NRAGE in hDPCs. In H-shNRG 

Figure 3. Knockdown of NRAGE stimulated NF-κB signaling pathway in hDPCs and MDPCS-23. A and B. Immunofluo-
rescence showed that p105/p50 translocated from cytoplasm into nuclear after NRAGE knockdown in hDPCs (A. 
magnification: 400×) and MDPC-23 (B. magnification: 630×) (DAPI: blue; p105/p50: green). C and D. Protein level of 
p-p65 were enhanced in H-shNRG and M-shNRG groups. E and G. Cytotoxicity of NF-kB inhibitor BMS345541 on hD-
PCs and MDPC-23 at different concentration was analyzed by CCK-8. 2 um and 3 um BMS345541 are appropriate 
for hDPCs and MDPC-23, respectively. F and H. The inhibition effect of appropriate concentration of BMS345541 on 
hDPCs (2 um) and MDPC-23 (3 um). Western Blot showed that P-IkBα was downregulated at different time points. 
Data are shown as mean ± SD from three independent experiments. (*P<0.05 and **P<0.01). 
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Figure 4. Effect of NF-kB inhibitor on cell apoptosis and cell cycle distribution of H-shNRG and M-shNRG groups. A. The percentage of apoptotic cells in inhibitor 
treated H-shNRG (39.7%) was significantly higher than H-shNRG (23.6%). B. The percentage of apoptotic cells in inhibitor treated M-shNRG (40.8%) was significantly 
higher than M-shNRG (26.4%). C. Cell cycle distribution was not affected after H-shNRG treated by optimal dose of NF-kB inhibitor. The data shown are from three 
independent experiments. (*P<0.05 and **P<0.01).
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group, cells were arrested in G0G1 phase  
compared with H-shCON group (Figure 2A). 
Meanwhile, the relative numbers of apoptotic 
cells were lower in H-shNRG groups than in 
H-shCON groups, as well as MDPC-23. There 
were significant differences in the relative  
numbers of apoptosis cells between shNRG 
groups and shCON groups. These results  
suggested that knockdown of NRAGE inhibited 
the apoptosis of hDPCs and MDPC-23, which  
is consist with other studies. NRAGE protects 
cells from neuronal damage induced by apo- 
ptosis [23]. NRAGE plays an essential role in 
developmental apoptosis of sympathetic neu-
rons in vivo [20].

The NF-κB pathway is activated at sites of inju-
ry, and regulates apoptosis and the cell cycle. 
Previous researchers have proven that NRAGE 
interaction with Chi-1, XIAP and UNC5H regu-
lated the apoptosis through NF-κB pathway. 
NF-κB is a family of transcription factors that 
involved in many aspects of normal cellular 
functions [32] and have five original members 
such as p65 (Rel A), p50 (NF-κB1), p52 s(NF-
κB2), RelB, and c-Re l [33]. NF-κB pathway is an 
important regulator in cell apoptosis, which 
was the same as our present results. In this 
study, the protein level of p-p65 were upregu-
lated and p105/p50 translocated from cyto-
plasm to nuclear after knockdown of NRAGE, 
suggesting that the NF-κB pathway was acti-
vated after knockdown of NRAGE in hDPCs  
and MDPC-23. Moreover, after H-shNRG and 
M-shNRG treated by the optimal dose of NF-κB 
inhibitor (BMS345541), the relative number of 
apoptosis cells were enhanced. It means that 
the effect of NRAGE on hDPCs and MDPC-23 
were rescued by the NF-kB inhibitor, which  
suggested that knockdown of NRAGE inhibited 
apoptosis via activating NF-κB pathway in 
hDPCs and MDPC-23. While there are no differ-
ences on cell cycle distribution after cells treat-
ed by NF-κB inhibitor. Apoptosis plays an impor-
tant role in the formation of reparative dentin 
by providing room for new dentin and prevent-
ing stimuli [25]. Reparative and reactionary 
dentin is critical to dental pulp response to 
tooth injury and dental caries [34]. More inten-
sive investigations are necessary to elucidate 
relationships between NRAGE mediated apop-
tosis and odontoblastic differentiation of DPCs 
responds to external and internal stimuli in 
vivo.

In summary, NRAGE regulated cell apoptosis of 
hDPCs and MDPC-23 via activation of NF-κB 
pathway. While NRAGE regulated cell cycle dis-
tribution in hDPCs through other signaling path-
way, not NF-kB pathway. Furthermore, cell cycle 
of MDPC-23 was not regulated by NRAGE. 
Therefore, further studies are warranted to 
investigate other potential mechanisms associ-
ated with NRAGE-mediated biology effects of 
DPCs and MDPC-23.
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