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Review Article
Sphingosylphosphorylcholine in cancer progress
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Abstract: Sphingosylphosphorylcholine (SPC) is a naturally occurring bioactive sphingolipid in blood plasma, me-
tabolizing from the hydrolysis of the membrane sphingolipid. It has been shown to exert multifunctional role in cell 
physiological regulation either as an intracellular second messenger or as an extracellular agent through G protein 
coupled receptors (GPCRs). Because of elevated levels of SPC in malicious ascites of patients with cancer, the role 
of SPC in tumor progression has prompted wide interest. The factor was reported to affect the proliferation and/or 
migration of many cancer cells, including pancreatic cancer cells, epithelial ovarian carcinoma cells, rat C6 glioma 
cells, neuroblastoma cells, melanoma cells, and human leukemia cells. This review covers current knowledge of the 
role of SPC in tumor.
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Introduction

Sphingosylphosphorylcholine (SPC), sharing 
similar structure with sphingosine-1-phosphate 
(S1P) and lysophosphatidic acid (LPA), is an 
amphiphilic lysophospholipid composed of a 
sphingosine backbone and a hydrophilic phos-
phorylcholine. With the modulating function  
of the sphingolipids in cell physiology to be 
unveiled, SPC is now emerging as an increas-
ingly important lipid mediator possessing the 
potential of regulating cell proliferation, migra-
tion, differentiation, metabolism and cell death. 
SPC has been shown to be a multifunctional 
molecule in cardiovascular system, immune 
system, central nervous system and skin [1, 2]. 
Besides, elevated level of SPC was found in 
some pathological conditions as atopic derma-
titis, Niemann-Pick disease (NPD) and cancer 
[3-7]. With regard to tumor progression, SPC 
was reported to affect the proliferation and/or 
migration of pancreatic cancer cells, prostate 
cancer cells, epithelial ovarian carcinoma cells, 
rat C6 glioma cells, neuroblastoma cells, mela-
noma cells, and human leukemia cells. In this 
review, we will discuss the the current under-
standing of the role of SPC in tumor.

Origination and metabolism of SPC

Sphingolipids synthesis and metabolism is a 
series of enzymatic process precisely regulated 
by a multitude of enzymes. Even with limited 
information available about the origination 
pathway of SPC, two pivotal enzymes do involve 
in this process: sphingomyelin deacylase and 
autotoxin.

Sphingomyelin deacylase was first identified in 
bacteria Pseudomonassp TK4 as a 52KD pro-
tein capable of breaking down the N-Acyl link-
age of both glycosphingolipids and sphingomy-
elin [8]. The abnormally higher expression of 
sphingomyelin deacylase corresponds to the 
upregulated SPC level in the stratum corneum 
of AD patients [9]. Sphingomyelin hydrolysis can 
be catalyzed by either sphingomyelinase or 
sphingomyelin deacylase to produce ceramide 
and SPC, respectively [9, 10]. Thus the activity 
balance between the two enzymes may be a 
critical determination of these two lipid species 
level. For example, the excessive expression of 
the deacylase leads to the ceramide deficiency 
which partially accounts for the pathogenesis 
of atopic dermatitis [10]. Besides, as is the 
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case with other lipids, SPC production and 
release should be a precisely regulated pro-
cess. Incubation with endothelin-1 (ET-1) incre- 
ased the generation of SPC in cardiac myocytes 
[11]. Despite of no direct evidence, the activa-
tion of platelets is widely believed to promote 
the release of SPC into the blood [12]. Pharma- 
logical manipulation of the sphingomyelin deac-
ylase may provide a useful tool to understand 
the bioactive function of SPC [13]. Hence, it will 
be of grant value to determine the specific 
physiochemical or structural properties of this 
enzyme and its expression pattern in species 
and tissues.

Autotaxin, an ecto-nucleotide pyrophospha-
tase/phosphodiesterase (ENPP2), was found to 
show lysophospholipase D activity and extend-
ed its substrate specificity to glycerophospho-
lipids and phosphosphingolipid [14, 15]. Thus 
this enzyme is involved in the production of 
phospholipids species such as LPA, S1P. 
Autotaxin catalyzed release of choline from 
SPC to produce S1P. This seems to be the only 
subsequent metabolism mechanism of SPC 
uncovered until now. In addition, autotoxin is  
an exoenzyme exsisting in blood which could 
explain the rapid decay of the coronary per-
fused SPC [16]. But the metabolism pathway  
of this lipid specie inside the cell remains 
unknown. Unlike the sphingomyelin deacylase, 
the architecture of rodent autotoxin and the 
molecular mechanism involved in the LPA pro-
duction has been well analyzed [17]. This pro-
vides a foundation for the design and discovery 
of human ATX inhibitors. Besides, several spe-
cific inhibitors have been available now [18, 
19].

Effect of SPC on diverse cancer cells

SPC in endocrine tumors

SPC inhibits the proliferation of epithelial ovar-
ian carcinoma (EOC): SPC and another two bio-
active lysophospholipids, LPA and S1P, were 
present in ascitic fluids from patients with ovar-
ian cancer [20]. As well, SPC could inhibit the 
proliferation of ovarian cancer cells, which was 
accompanied by transient increases in cytosol-
ic free Ca2+ and rapid increases in tyrosine 
phosphorylation of specific cellular proteins, 
including the focal adhesion kinase p125FAK  
in HEY and OCC1 ovarian cancer cell lines [20]. 
Interleukin 8 (IL-8) is a proinflammatory and 

proangiogenic factor potentially involved in EOC 
development. LPA, S1P and SPC dose- and 
time-dependently upregulated IL-8 mRNA and 
protein levels in EOC (HEY, OCC1, and SKOV3) 
implicating the potential role of SPC in tumor 
inflammation [21]. The OGR1 receptor was first 
identified as a receptor in response to SPC  
eliciting DNA synthesis and cell proliferation 
through MAPK signaling in HEY ovarian cancer 
cell [22]. Following this report, several other 
structural related GPCRs for SPC were uncov-
ered. However, those receptor clusters were 
found to be PH sensitive and no more powerful 
evidence have been provided to confirm their 
role as SPC’s receptors [23-25]. G-protein-cou- 
pled receptor 4 (GPR4) is one of those recep-
tors. Microvascular density in cancer is associ-
ated with lymph node metastasis and clinical 
stage. Analysis of the relationship between 
GPR4 expression and clinical and pathological 
characteristics of EOC indicated that SPC might 
also affect EOC progression by targeting GPR4 
to promote microvascular density [26].

SPC inhibits the proliferation and migration of 
anaplastic thyroid carcinoma cell: SPC at 1 to 
10 µM could inhibit the proliferation and migra-
tion of thyroid cancer FRO cells in a GPCR-
dependent manner [27, 28]. The extracellular 
addition of SPC induced the rounding of FRO 
cells within 10 min. Accompanied by this mor-
phologic change was inhibited proliferation 
caused by retarded G1/S cell cycle and 
impaired migration. The effect of SPC on FRO 
cells was modulated via a PI3K-Akt and MAP 
kinase signaling pathway, and phospholipase 
C, protein kinase C, p38 kinase, or JUN were 
not involved with this process.

SPC in central nervous system malignancies

SPC increases membrane potentials of glioma 
cells: While information is lacking about its role 
in glioma cell proliferation and migration, SPC 
was reported to increase membrane potentials, 
modulate cellular phospholipid homeostasis 
and induce c-fos activation in rat C6 glioma 
cells [29]. SPC could significantly increase 
[14C] phosphatidylserine synthesis and decre-
ase level of 14C-labeled phosphatidylethanol-
amine for a role in cellular phospholipid homeo-
stasis. Pretreatment with pertussis toxin (PTX) 
could not reduce SPC-induced c-fos activation, 
which suggests a receptor-independent func-
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tion of SPC in C6 cells [30]. Exogenous SPC 
treatment did not stimulate phospholipase D  
in C6 glioma cells [31]. As well, sphingosine 
stimulated phosphatidylserine synthesis inde-
pendent of protein kinase C but was sup-
pressed by thapsigargin and cholesterol 3-sul-
fate (an amphiphilic anion) in glioma C6 and  
rat liver microsomes, so SPC may function as 
an amphiphilic compound. Thus, SPC may be 
involved in the serine base exchange reaction 
[32, 33]. 

SPC inhibits the growth of neuroblastoma cells: 
SPC at < 150 µM inhibited the growth of three 
mouse neuroblastoma cell lines, NS-20Y, 
Neuro2a, and N1E-115, with less effectiveness 
than the other two lysosphingolipids, lysosulfa-
tide and psychosine. Among the three kinds of 
lysosphingolipids, only SPC induced reversible 
neurite outgrowth and changed the lipid com-
position, modifying the amounts of cholesterol, 
sphingomyelin and ganglioside GM3 in all cell 
lines [34], which might be associated with the 
metabolism of SPC via sphingomyelin synthe-
sis. The exogenous [3-3H] SPC may be first 
degraded into phosphocholine and sphingo-
sine, the precursors of ceramide, which can be 
further synthesized to sphingomyelin [35].

SPC in digestive cancers

SPC inhibits the growth but promotes the 
migration of pancreatic cancer cells: The roles 

and mechanisms of SPC in pancreatic cancer 
cells are the clearest. SPC at 3 or 10 µM can 
inhibit the growth of the human pancreatic  
cancer cells MLA PaCa-2, PANC-1, PK-1 and 
PK-9 cells, possibly by regulating the cell cycle 
from the G1 to the S phase [36]. Furthermore, 
SPC affected cellular elasticity and migration  
of PANC-1 cancer cells by reorganization of  
keratin [37-39]. Phosphorylation of Keratin 8 
Ser431 regulated by MEK-ERK and Tgase-2- 
JNK signaling pathways was found required for 
SPC-induced keratin reorganization and conse-
quently enhanced migration of human epitheli-
al tumor cells [40, 41] (Figure 1).

SPC did not affect the growth of bladder carci-
noma cells: Research into the role of sphingo-
lipids in bladder carcinoma cells is limited. In 
2000, Jakobs et al. found that similar to S1P, 
SPC did not affect the growth of human bladder 
carcinoma (J82) cells and induced only a small, 
PTX-sensitive motile response in J82 cells. In 
addition, SPC could inhibit LPA (PTX-sensitive) 
but promote thrombin (PTX-insensitive)-stimu- 
lated cell motility without altering Rho-GTPase 
activation and the resulting actin stress fiber 
formation. Thus, the modulation of SPC on this 
process may due to GPCR expression on J82 
cells, which integrates various intra- and extra-
cellular signals [42].

SPC in Skin cancer

SPC in melanoma cells: SPC was reported to 
inhibit B16 murine melanoma cell migration 
and invasion, which was completely abolished 
by the S1P2-selective antagonist JTE013, sug-
gesting the role of S1P2 receptor in SPC medi-
ated process [43]. Notably, the involvement of 
SPC in melanogenesis process obtained exten-
sively attention besides its role in melanoma.

In cultured human melanocytes, SPC was first 
proposed to be a melanogenic stimulator since 
SPC at > 5 µM could elicit the activation of 
melanogenic related MITF-M/tyrosinase/c-kit 
signal pathway and MAPK signaling cascades 
[44]. However, a more elaborate research was 
performed in human epidermal melanocytes 
isolated from adolescent foreskins later. In  
this study, SPC at 1 to 10 µM concentration-
dependently inhibited melanin synthesis. In 
parallel, MITF-M and tyrosinase was sup-
pressed in both mRNA level and protein level 
[45]. To clarifying the confliction, mechanism of 

Figure 1. Effect of sphingosylphosphorylcholine 
(SPC) on pancreatic-cancer PANC-1 cells. SPC inhib-
its proliferation of PANC-1 cells by G1/S arresting 
and promotes PANC-1 migration dependent of Tgase 
or JNK-regulated phosphoralation of Keratin8 (K8).
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Table 1. Effect of sphingosylphosphorylcholine on cancer cells
Concentration Effect Cell type Pathway Ref.
3, 10 µM Proliferation↓; migration↑ Pancreatic cancer cells: MLA PaCa-2, PANC-1, PK-1 and PK-9 G1/S cell cycle arrest  

MEK/ERK Tgase-2/JNK  
Keratin 8 Ser431 phosphorylation

[36]

100 µM Apoptosis↑ Prostate cancer cells: DU 145, PC3 Receptor-independent; Ca2+ [41]
3 µM Proliferation↓ Epithelial ovarian carcinoma cells: HEY Ca2+; tyrosine phosphorylation of p125FAK [61]
< 150 µM Proliferation↓; neurite outgrowth↑ Mouse neuroblastoma cells: NS-20Y, Neuro2a, N1E-115 Metabolism of SPC via sphingomyelin synthesis [34]
10 µM Migration and invasion↓ Mouse B16 melanoma cells S1P2 receptor [43]
5 µM/15 µM Proliferation↓; differentiation↑ Human leukemia cells: HL-60 MEK/ERK [48]
10 µM Motile response↑ Human bladder carcinoma cells: J82 GPCRs [42] 
1-10 µM Proliferation and migration↓ Anaplastic thyroid carcinoma cells: FRO PI3K-Akt; MAPK [28]



The review of the effect of SPC on diverse cancer cells

11917 Int J Clin Exp Med 2015;8(8):11913-11921

SPC in melanogenesis was detailed investigat-
ed [46, 47]. SPC induced hypopigmentation in 
Mel-Ab cell, a mouse-derived spontaneously 
immortalized melanocyte cell line. The activa-
tion of Akt/mTOR and ERK signaling correlated 
with this hypopigmentation effect. Further, two 
phosphatases PP2A and DUSP6 responsible 
for the dephosphorylation of Akt and ERK 
respectively were both inhibited by SPC. Due to 
the different origination of those melanoma 
cells, it seems difficult to determine the actual 
role of SPC in melanogenesis. Further research 
should be performed.

SPC in blood cancers

SPC induces differentiation of human leukemia 
cells: SPC is a potentially novel differentiation-
inducing agent both for mouse embryo stem 
cells and certain human tumor cells depending 
on MEK-ERK signaling [2, 48]. As early as  
1991, SPC (5 µM) was found to be involved in 
adherence during macrophage differentiation 
of HL-60 cells (human pro-myelocytic leukemia 
cells) and as effective as sphingomyelin [49]. 
SPC at 12.5 µM could also induce the differen-
tiation of human NB4 promyelocytic leukemia 
cells via the MEK-ERK signaling pathway [48]. 
Besides, single-channel recording from micro-
somes incorporated in planar lipid bilayers 

diagnosis. However, efforts addressing blood 
sphingolipids as biomarkers of disease are still 
in their infancy [52]. Thus high sensitive and 
precise analyze or quantification methods for 
this bioactive lipid molecule in various physio-
logical and pathological conditions are in need. 
With the robust development of the mass spec-
trometry technology and its usage in lipids 
analyzation, the minor sphingolipid molecules 
including LPA, S1P and SPC are within the 
detectable range [53, 54]. By combining the  
lipids separation method as the HPLC or TLC 
with MS detecting and quantification system, 
the level of SPC in samples from both healthy 
people and patients with diverse diseases  
were evaluated [3, 16]. Under normal condition, 
SPC concentration in plasma and serum was 
estimated at 50 nM in plasma and 130 nM  
in serum. Under pathological condition such  
as the cerebrospinal fluid (CSF) of patients  
with SAH, the level of SPC was dramatically 
higher. The recently introduced electrospray 
ionization mass spectrometry (ESI-MS/MS) and 
hydrophilic interaction chromatography tandem 
mass spectrometry (HILIC-MS/MS) enabled the 
precise evaluation of the minor sphingolipid 
species from samples as various as blood, lipo-
proteins, tissues and cell cultures [55, 56] and 
could be possibly applied to the large clinical 
studies. The sphingolipids profile in ascites fluid 

Figure 2. SPC affects proliferation, migration, apoptosis and differentiation of 
cancer cells. SPC inhibits proliferation and migration of cancer cells by PI3K/
AKT, MAPK, MEK/ERK/Keratin8, Tgase2/JNK/Keratin8 pathway. The Ca2+, 
p125FAK, G1/S arrest was responsible for its inhibiting proliferation, and S1P2 
or other GPCRs was involved in its promoting migration. The increase of Ca2+ 
was associated with its promoting apoptosis function, and MEK/ERK was also 
involved in its promoting differentiation role.

revealed that GPCRs and 
phospholipase C were inv- 
olved in the modulation  
of SPC-stimulated Ca2+ in 
HL-60 cells [50, 51].

Overall, the reports about 
the function of SPC in can-
cers suggest a popular neg-
ative control of cancer cell 
proliferation or migration. 
Hence, targeting SPC may 
provide a novel strategy  
for tumor therapy (Table 1; 
Figure 2).

SPC detection and quanti-
fication

Since multiple studies have 
revealed the critical role of 
SPC in the pathogenesis of 
diverse diseases, it can be 
considered as a potential 
novel biomarker for clinical 
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from patients with ovarian cancer was deter-
mined by use of the ESI-MS/MS, many of the 
lysophospholipid species including SPC are 
shown to be upregulated [57]. Even much 
advance has been made in those MS instru-
ments dependent analyzation methods, there 
exist some disadvantages which hampered its 
massive application to the clinical diagnosis. To 
be the first, the typical sphingolipids species 
separation methods such as gas chromatogra-
phy or high-performance liquid chromatogra-
phy (HPLC) are generally time-consuming and 
may sometimes render the risk of incomplete 
separation of closely related lipid species. 
Besides, MS instruments are usually expensive 
and are not widely affordable. Thus, a much 
cost effective analyzation method for SPC mon-
itoring is needed. Aptamers, oligonucleotides 
that can bind with specific targets including 
proteins and lipid species, may help to solve 
these problems [58, 59]. Katsunori Horii et al. 
screened RNA aptamers from the random RNA 
pool which could specifically recognize and 
bind with SPC [60]. Based on this, they further 
developed quick and high sensitive enzyme-
linked aptamer assay system for SPC monitor-
ing. This was the first trial employing aptamers 
in sphingolipids detection and contributed to 
the practical monitoring of SPC in clinical.

Conclusion

SPC can be not only a promising biomarker for 
tumor diagnosis but also provides pharmalogi-
cal target for disease therapy. Thus it will be  
of remarkable significance to specifying its 
properties and bioactive functions. Much more 
research should be done in the following 
aspects: (a) The analysis of the enzymes 
involved in SPC production; (b) The elaboration 
of the action mechanism of SPC as the intracel-
lular and extracellular signal factor: the role of 
GPCRs and lipid raft; (c) The elucidation of fur-
ther clinical evidences and mechanisms of SPC 
in cancer; (d) The development of high sensitive 
and convenient detection technique for minor 
lipid species.
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