Original Article Peroxisome proliferator-activated receptor gamma (PPARG) rs1801282 C>G polymorphism is associated with cancer susceptibility in asians: an updated meta-analysis

Yafeng Wang^{1*}, Yu Chen^{2*}, Heping Jiang^{3*}, Weifeng Tang⁴, Mingqiang Kang⁴, Tianyun Liu⁵, Zengqing Guo², Zhiqiang Ma⁶

¹Department of Cardiology, The People's Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan Province, China; ²Department of Medical Oncology, Fujian Provincial Cancer Hospital, Fuzhou, Fujian Province, China; ³Department of Emergency, Affiliated Jintan People's Hospital of Jiangsu University, Jintan, China; ⁴Department of Thoracic Surgery, The Union Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China; ⁵Department of Cardiology, The Second Clinical Medical College of Fujian Medical University, Quanzhou, Fujian Province, China; ⁶Department of Cardiothoracic Surgery, The People's Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong, Yunnan Province, China. *Equal contributors.

Received June 22, 2015; Accepted August 6, 2015; Epub August 15, 2015; Published August 30, 2015

Abstract: Peroxisome proliferator-activated receptor gamma (PPARG) is related to inflammation and plays an important role in the development of cancer. PPARG rs1801282 C>G polymorphism might influence the risk of cancer by regulating production of PPARG gene. Hence, a comprehensive meta-analysis was conducted to explore the association of PPARG rs1801282 C>G polymorphism with cancer susceptibility. An extensive search of PubMed and Embase databases for all relevant publications was carried out. A total of 38 publications with 16,844 cancer cases and 23,736 controls for PPARG rs1801282 C>G polymorphism were recruited in our study. Our results indicated that PPARG rs1801282 C>G variants were associated with an increased cancer risk in Asian populations and gastric cancer. In summary, the findings suggest that PPARG rs1801282 C>G polymorphism may play a crucial role in malignant transformation and the development of cancer.

Keywords: Cancer, polymorphism, peroxisome proliferator-activated receptor gamma, meta-analysis

Introduction

With the dramatic increase of the incidence of cancer and cancer-relative mortality, cancer has become one of the major public health burdens. For this reason, novel cancer biomarkers are needed urgently for prevention and early detection of malignance. Carcinogenesis is a very complicated process and has not been fully understood. It is believed that the development of cancer is influenced by susceptibility genes and environmental factors.

Peroxisome proliferator-activated receptor gamma (PPARG), a type of nuclear hormone receptor, acts as an important transcriptional regulator of cellular differentiation, carbohydrate and lipid metabolism [1]. PPARG also owns certain anti-inflammatory properties [2, 3]. Activation of PPARG reduces the production of multiple cytokines (e.g., interleukin (IL)-6, IL-8, and tumor necrosis factor-alpha) by antagonizing the role of the signal transducer and activator of transcription, nuclear factor kappa-B and transcription factors activator protein 1. which suppresses induction of the inflammatory response [4, 5]. Since PPARG has been supported to take part in cell growth and differentiation, it has been hypothesized that the disorder of PPARG contributes to malignant transformation and the development of cancer. The PPARG rs1801282 C>G polymorphism, a SNP in exon 2 of PPARG, encodes a proline \rightarrow alanine substitution at amino acid residue 12 (Pro12Ala). This mutation reduces the transcription of PPARy2 [3]. The PPARG rs1801282

C>G polymorphism has been extensively investigated and was found to be correlated with the risk of cardiovascular diseases and type 2 diabetes [6-9]. Furthermore, the evidence is mounting that *PPARG* rs1801282 C>G polymorphism might affect individual susceptibility to certain types of malignancy (e.g., gastric cancer, pancreatic cancer, breast cancer and colorectal cancer) [10-14].

Recently, the association between this polymorphism in *PPARG* gene and cancer risk was extensively examined. A meta-analysis supported that *PPARG* rs1801282 C>G polymorphism was associated with the increased risk of gastric cancer, but this polymorphism was not correlated with overall cancer risk [15]. Up to now, 43 publications focus on the correlation of the *PPARG* rs1801282 C>G polymorphism with cancer risk, and the observed results remain conflicting. In the present study, we harnessed an updated meta-analysis on the eligible studies to further investigate the association of *PPARG* rs1801282 C>G polymorphism with the risk of cancer.

Materials and methods

Search strategy

Eligible publications were extracted by exhaustively electronic search of PubMed and Embase databases using the following terms: (Peroxisome proliferator activated receptor gamma or PPAR γ or PPARG) and (polymorphism or SNP or mutation or variant) and (cancer or carcinoma or malignance). References of retrieved studies, comments, meta-analyses, reviews and letters were manually searched for additional publications. There was no limitation of

PPARG rs1801282 C>G polymorphism and cancer risk

	Dublication			y	Comple cize	
study	Publication	Ethnicity	Country	Cancer type	(case/control)	Genotype method
Konn et al	2013	Caucasians	Denmark	prostate cancer	370/370	RT-PCR
Martinez-Nava et al.	2013	mixed	Mexico	breast cancer	208/220	RT-PCR
Canbay et al	2012	Caucasians	Turkey	gastric cancer	86/129	PCB-RELP
Crous-Bou et al	2012	Caucasians	Israel	colorectal cancer	1780/1864	Illumina Beadstation and BeadExpress
Petersen et al	2012	Caucasians	Denmark	breast cancer	798/798	TagMan
Abuli et al	2012	Caucasians	Spain	colorectal cancer	515/502	MAI DLTOF MS
Tang et al	2011	mixed	LISA	nancreatic cancer	1070/1175	TagMan
lim et al	2011	Asians	Singanore	lung cancer	298/718	RT-PCR
Wulet al	2011	Asians	China	hreast cancer	291/589	RT-PCR
Bazargani et al	2011	Caucasians	Iran	gastric cancer	79/152	
Pinheiro et al	2010	Caucasians	LIK.	ovarian cancer	233/663	Tagman
Pinhoiro et al.	2010	Caucasians	UK	ovarian cancer	1120/1160	Tagman
Trillidic ot al	2010	mixed			208/281	Tagman
Fooinmover et al	2009	mixed	USA		206/381	TagMan
Fesinineyer et al.	2009	mixed	USA		05/100	Тадмал
wang et al.	2009	mixed	USA	prostate cancer	258/258	TaqMan
Kury et al.	2008	Caucasians	France	colorectal cancer	1023/1121	
Prasad et al.	2008	Asians	India	gastric cancer	62/286	
lanara et al.	2008	Asians	Japan	gastric cancer	215/201	PCR-RFLP
vogei et al.	2008	Caucasians	Denmark	lung cancer	403/744	TaqMan
Justenhoven et al.	2008	Caucasians	German	breast cancer	688/724	MALDI-TOF MS
Gallicchio et al.	2007	Caucasians	USA	breast cancer	61/933	TaqMan
Wang et al.	2007	Caucasians	USA	breast cancer	488/488	TaqMan
Mossner et al.	2007	Caucasians	German	melanoma	335/355	PCR-RFLP
Mossner et al.	2007	Caucasians	German	melanoma	497/435	PCR-RFLP
Vogel et al.	2007	Caucasians	Denmark	colorectal cancer	355/753	TaqMan
Zhang et al.	2007	Asians	China	lung cancer	45/45	DNA sequence
Vogel et al.	2007	Caucasians	Denmark	skin cancer	304/315	TaqMan
Kuriki et al.	2006	Asians	Japan	colorectal cancer	128/238	PCR-CTPP, PCR-RFLP
Theodoropoulos et al.	2006	Caucasians	Greece	colorectal cancer	222/200	PCR-RFLP
Liao et al.	2006	Asians	China	gastric cancer	104/104	PCR-RFLP
Siezen et al.	2006	Caucasians	The netherlands	colorectal cancer	204/399	DNA sequence
Siezen et al.	2006	Caucasians	The netherlands	colorectal cancer	487/750	DNA sequence
Slattery et al.	2005	mixed	USA	colorectal cancer	2371/2972	TaqMan
McGreavey et al.	2005	Caucasians	UK	colorectal cancer	478/733	TaqMan
Jiang et al.	2005	Asians	India	colorectal cancer	59/291	PCR-RFLP
Jiang et al.	2005	Asians	India	colorectal cancer	242/291	PCR-RFLP
Campa et al.	2004	Caucasians	Norway	lung cancer	250/214	TaqMan
Landi et al.	2003	Caucasians	Spain	colorectal cancer	139/326	TaqMan
Landi et al.	2003	Caucasians	Spain	colorectal cancer	238/326	TaqMan
Paltoo et al.	2003	Caucasians	Finland	prostate cancer	193/188	MALDI-TOF
Memisoglu et al.	2002	mixed	USA	breast cancer	725/953	PCR-RFLP
Smith et al.	2001	Caucasians	UK	Renal cell carcinoma	40/62	DGGE
Smith et al.	2001	Caucasians	UK	ovarian cancer	31/62	DGGE
Smith et al.	2001	Asians	Japan	ovarian cancer	28/215	DGGE
Smith et al.	2001	Asians	Japan	cervical cancer	20/215	DGGE
Smith et al.	2001	Asians	Japan	bladder cancer	31/215	DGGE
Smith et al.	2001	mixed	USA	ovarian cancer	26/80	DGGE
Smith et al.	2001	mixed	USA	endometrial cancer	69/80	DGGE
Smith et al.	2001	mixed	USA	prostate cancer	38/80	DGGE
Zhou et al.	2000	mixed	USA	glioblastoma	52/80	PCR
Zhou et al.	2000	Caucasians	German	glioblastoma	44/60	PCR

Table 1. Characteristics of all	included studies	in the	meta-anal	ysis
---------------------------------	------------------	--------	-----------	------

RT-PCR: reverse transcription-polymerase chain reaction. MALDI-TOF MS: Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry. PCR-RFLP: polymerase chain reaction-restriction fragment length polymorphism. PCR-CTPP: polymerase chain reaction with confronting two-pair primers. DGGE: denaturing gradient gel electrophoresis.

Church	Publication Case		Control		Case		Control					
Study	year	CC	CG	GG	CC	CG	GG	G	С	G	С	HVVE
Kopp et al.	2013	241	90	3	245	87	2	96	572	91	577	0.050905
Martı´nez-Nava et al.	2013	165	43	0	169	49	2	43	373	53	387	0.448105
Canbay et al.	2012	68	14	4	116	12	1	22	150	14	244	0.287345
Crous-Bou et al.	2012	710	102	0	1307	163	9	102	1522	181	2777	0.117069
Petersen et al.	2012	616	167	15	569	209	20	197	1399	249	1347	0.87691
Abuli et al.	2011	426	87	2	419	80	3	91	939	86	918	0.697001
Tang et al.	2011	826	216	10	871	236	23	236	1868	282	1978	0.140851
Lim et al.	2011	274	23	1	653	64	1	25	571	66	1370	0.660099
Wu et al.	2011	260	29	0	546	40	0	29	549	40	1132	0.392337
Bazargani et al.	2010	60	18	1	134	17	1	20	138	19	285	0.573866
Pinheiro et al.	2010	166	56	2	487	144	13	60	388	170	1118	0.540142
Pinheiro et al.	2010	831	228	16	882	241	13	260	1890	267	2005	0.441786
Tsilidis et al.	2009	165	37	1	295	68	6	39	367	80	658	0.370123
Fesinmeyer et al.	2009	60	22	1	139	27	0	24	142	27	305	0.254053
Wang et al.	2009	198	57	0	189	58	7	57	453	72	436	0.327667
Kury et al.	2008	822	194	7	896	212	13	208	1838	238	2004	0.9079
Prasad et al.	2008	39	18	5	214	67	5	28	96	77	495	0.926116
Tahara et al.	2008	194	21	0	193	8	0	21	409	8	394	0.773449
Vogel et al.	2008	301	93	9	544	187	13	111	695	213	1275	0.502205
Justenhoven et al.	2008	452	135	6	462	145	15	147	1039	175	1069	0.372101
Gallicchio et al.	2007	48	7	1	689	188	18	9	103	224	1566	0.223793
Wang et al.	2007	376	87	15	375	98	5	117	839	108	848	0.615475
Mossner et al.	2007	239	84	11	258	86	7	106	562	100	602	0.957311
Mossner et al.	2007	372	115	7	324	102	6	129	859	114	750	0.522918
Vogel et al.	2007	252	96	7	550	190	13	110	600	216	1290	0.460144
Zhang et al.	2007	39	6	0	41	4	0	6	84	4	86	0.755033
Vogel et al.	2007	220	83	1	232	77	6	85	523	89	541	0.894139
Kuriki et al.	2006	120	7	0	221	17	0	7	247	17	459	0.567742
Theodoropoulos et al.	2006	164	48	10	118	70	12	68	376	94	306	0.707193
Liao et al.	2006	84	17	3	95	9	0	23	185	9	199	0.644642
Siezen et al.	2006	160	40	1	325	70	2	42	360	74	720	0.389723
Siezen et al.	2006	387	92	8	596	146	8	108	866	162	1338	0.723797
Slattery et al.	2005	1840	496	35	2283	645	44	566	4176	733	5211	0.839204
McGreavey et al.	2005	366	80	9	403	100	10	98	812	120	906	0.202319
Jiang et al.	2005	46	13	0	230	57	4	13	105	65	517	0.768946
Jiang et al.	2005	194	44	4	230	57	4	52	432	65	517	0.768946
Campa et al.	2004	2	52	192	4	47	161	436	56	369	55	0.792322
Landi et al.	2003	111	15	3	243	61	5	21	237	71	547	0.60618
Landi et al.	2003	200	31	0	243	61	5	31	431	71	547	0.60618
Paltoo et al.	2003	121	64	8	128	54	6	80	306	66	310	0.916738
Memisoglu et al.	2002	563	148	14	752	190	11	176	1274	212	1694	0.795703
Smith et al.	2001	37	3	0	49	11	2	3	77	15	109	0.191855
Smith et al.	2001	27	4	0	49	11	2	4	58	15	109	0.191855
Smith et al.	2001	27	1	0	203	11	1	1	55	13	417	0.061618
Smith et al.	2001	19	1	0	203	11	1	1	39	13	417	0.061618

 Table 2. Distribution of PPARG rs1801282 C>G polymorphism genotype and allele among cases and controls

PPARG rs1801282 C>G polymorphism and cancer risk

Smith et al.	2001	29	2	0	203	11	1	2	60	13	417	0.061618
Smith et al.	2001	21	5	0	68	12	0	5	47	12	148	0.468322
Smith et al.	2001	56	13	0	68	12	0	13	125	12	148	0.468322
Smith et al.	2001	34	4	0	68	12	0	4	72	12	148	0.468322
Zhou et al.	2000	37	15	0	68	12	0	15	89	12	148	0.468322
Zhou et al.	2000	35	9	0	46	14	0	9	79	14	106	0.306283

HWE: Hardy-Weinberg equilibrium.

Table 3. Different com	parative genetic models	results of this r	meta-analysis in t	the subgroup a	analysis
by race					

Dahmaanahiana	0	Denvilation		Test of heterogeneity		
Polymorphism	Genetic comparison	Population	UR (95% CI); P	(p-Value, l ²)	Model	
rs1801282 C>G	GG+CG vs. CC	All	1.00 (0.93-1.07); 0.987	0.007, 35.7%	R	
		Asians	1.23 (1.01-1.50); 0.039	0.272, 17.6%	F	
		Caucasians	0.96 (0.88-1.05); 0.402	0.009, 43.2%	R	
		Mixed	0.98 (0.90-1.07); 0.656	0.305, 14.6%	F	
GG	GG vs. CG+CC	All	0.97 (0.83-1.14); 0.713	0.175, 16.8%	F	
		Asians	2.36 (1.15-4.86); 0.020	0.808, 0.0%	F	
		Caucasians	0.98 (0.80-1.18); 0.800	0.415, 3.3%	F	
		Mixed	0.76 (0.39-1.45); 0.399	0.055, 51.4%	R	
	GG vs. CC	All	0.94 (0.79-1.12); 0.511	0.101, 22.5%	F	
		Asians	2.43 (1.18-5.01); 0.016	0.785, 0.0%	F	
		Caucasians	0.94 (0.75-1.16); 0.543	0.302, 11.0%	F	
		Mixed	0.75 (0.39-1.46); 0.399	0.049, 52.6%	R	
	CG vs. CC	All	1.00 (0.93-1.07); 0.956	0.047, 26.3%	R	
		Asians	1.20 (0.98-1.47); 0.083	0.439, 0.5%	F	
		Caucasians	0.96 (0.88-1.05); 0.402	0.023, 37.9%	R	
		Mixed	0.99 (0.91-1.09); 0.870	0.488, 0.0%	F	
	G vs. C	All	1.00 (0.94-1.07); 0.952	0.001, 42.3%	R	
		Asians	1.25 (1.04-1.51); 0.018	0.145, 30.8%	F	
		Caucasians	0.97 (0.89-1.05); 0.466	0.005, 45.6%	R	
		Mixed	0.97 (0.89-1.05); 0.459	0.158, 30.3%	F	

F indicates fixed model; R indicates random model.

language and the last research was performed on July 15, 2014.

Inclusion and exclusion criteria

Inclusion criteria were defined as follows: (a) The publications assessed the association of *PPARG* rs1801282 C>G polymorphism with cancer risk; (b) The studies designed as a casecontrol or cohort study; (c) The sufficient data could be extracted to calculate an odds ratio (OR) with its 95% Cl; (d) In these articles, the genotype distributions among controls were consistent with Hardy-Weinberg equilibrium (HWE). The major exclusion criteria were: (a) not a case-control or cohort study; (b) overlapping data; (c) comments, letters, reviews, animal studies and editorials; (d) cancer prognosis and treatment. In certain publications, the data were reported on different subgroups; we treated them as separate studies.

Data extraction

From each eligible study, data were extracted independently by three authors (Y. Wang, Y. Chen and H. Jiang). The following terms were collected: the surname of first author, year of publication, country, numbers of subjects and genotype frequencies of cases and controls, cancer type, ethnicity, genotyping method, and evidence of HWE in controls. If there were any

Figure 2. Meta-analysis with a fixed-effect for the association of cancer risk with the *PPARG* rs1801282 C>G polymorphism in Asians (allele comparing model).

discrepancies, they were resolved following a discussion between all reviewers.

Statistical analysis

HWE in controls was tested by a web-based Pearson's χ^2 test (http://ihg.gsf.de/cgi-bin/hw/ hwa1.pl). We used crude ORs with corresponding 95% CIs as an assessment of the association between PPARG rs1801282 C>G polymorphism with cancer risk. A P<0.05 was considered significant. Heterogeneities were assessed using Cochran's Q-statistic and I² test. When I²>50% or P<0.10, there was significant heterogeneity, then the random-effects model was applied [16], otherwise, the fixed-effects model was used [17]. Subgroup analyses were conducted by ethnicity and cancer type. Sensitivity analysis was performed by nonparametric "trim-and-fill" method. The Begg's test and Egger's test were both used to determine the evidence of publication bias [18]. For publication bias test, statistical significance was defined as P<0.1. In our study, all the statistical analyses were conducted with Stata 12.0 software (StataCorp LP, College Station, TX) and *P* values were two-sided.

Results

Characteristics of studies

As shown in Figure 1, a total of 1101 publications were retrieved. According to the inclusion criteria and exclusion criteria, there were 38 publications (including 51 individual studies) on the PPARG rs1801282 C>G polymorphism [10, 11, 13, 14, 19-52]. Among them, fifteen investigated colorectal cancer [13, 14, 19-28], seven investigated breast cancer [12, 29-33, 35], five investigated ovarian cancer [36, 37], five investigated gastric cancer [10, 38-41], four investigated lung cancer [42-45], four investigated prostate cancer [37, 46-48], two investigated pancreatic cancer [11, 49], two investigated melanoma [50] and two investigated glioblastoma [51]. Other articles investigated skin cancer [52], endometrial cancer [37], bladder cancer [37], cervical cancer [37] and renal cell carcinoma [37]. Among these, 28 were from

PPARG rs1801282 C>G polymorphism and cancer risk

Table 4. Different comparative genetic models results of this meta-analysis in the subgroup analysis
by cancer type

Dolymorphism	Constis comparison	Concerture		Test of heterogeneity		
Polymorphism	Genetic companson	Cancer type	UR (95% CI); P	(p-Value, l ²)	Model	
rs1801282 C>G	GG+CG vs. CC	All	1.00 (0.93-1.07); 0.987	0.007, 35.7%	R	
		Prostate cancer	1.02 (0.82-1.27); 0.836	0.482, 0.0%	F	
		Breast cancer	0.93 (0.78-1.10); 0.395	0.076, 47.5%	R	
		Gastric cancer	2.22 (1.61-3.07); <0.001	0.922, 0.0%	F	
		Colorectal cancer	0.94 (0.87-1.02); 0.131	0.125, 30.6%	F	
		Pancreatic cancer	1.27 (0.61-2.65); 0.529	0.024, 80.2%	R	
		Lung cancer	0.95 (0.75-1.19); 0.636	0.623, 0.0%	F	
		Ovarian cancer	1.02 (0.86-1.21); 0.792	0.828, 0.0%	F	
		Melanoma	1.03 (0.83-1.29); 0.764	0.619, 0.0%	F	
		Glioblastoma	1.42 (0.53-3.79); 0.481	0.125, 57.6%	R	
		Other cancers	1.01 (0.74-1.37); 0.968	0.459, 0.0%	F	
	GG vs. CG+CC	All	0.97 (0.83-1.14); 0.713	0.175, 16.8%	F	
		Prostate cancer	0.76 (0.16-3.58); 0.726	0.104, 55.8%	R	
		Breast cancer	1.00 (0.51-1.98); 0.991	0.045, 55.9%	R	
		Gastric cancer	4.95 (1.86-13.16); 0.001	0.910, 0.0%	F	
		Colorectal cancer	0.86 (0.65-1.12); 0.258	0.770, 0.0%	F	
		Pancreatic cancer	1.02 (0.10-10.55); 0.985	0.126, 57.4%	R	
		Lung cancer	1.17 (0.80-1.72); 0.420	0.845, 0.0%	F	
		Ovarian cancer	0.98 (0.53-1.80); 0.946	0.497, 0.0%	F	
		Melanoma	1.35 (0.66-2.78); 0.409	0.506, 0.0%	F	
		Glioblastoma	NA	NA	NA	
		Other cancers	0.40 (0.10-1.51); 0.174	0.319, 14.5%	F	
	GG vs. CC	All	0.94 (0.79-1.12); 0.511	0.101, 22.5%	F	
		Prostate cancer	0.77 (0.16-3.81); 0.752	0.094, 57.7%	R	
		Breast cancer	0.97 (0.49-1.93); 0.930	0.039, 57.2%	R	
		Gastric cancer	5.51 (2.06-14.79); 0.001	0.920, 0.0%	F	
		Colorectal cancer	0.83 (0.63-1.09); 0.183	0.729, 0.0%	F	
		Pancreatic cancer	1.12 (0.09-13.61); 0.931	0.107, 61.6%	R	
		Lung cancer	1.49 (0.72-3.09); 0.287	0.756, 0.0%	F	
		Ovarian cancer	0.98 (0.54-1.81); 0.960	0.507, 0.0%	F	
		Melanoma	1.36 (0.66-2.80); 0.402	0.492, 0.0%	F	
		Glioblastoma	NA	NA	NA	
		Other cancers	0.39 (0.10-1.50); 0.172	0.319, 14.6%	F	
	CG vs. CC	All	1.00 (0.93-1.07); 0.956	0.047, 26.3%	R	
		Prostate cancer	1.05 (0.84-1.31); 0.684	0.693, 0.0%	F	
		Breast cancer	0.91 (0.80-1.02); 0.108	0.118, 40.9%	F	
		Gastric cancer	2.01 (1.44-2.82); <0.001	0.820, 0.0%	F	
		Colorectal cancer	0.95 (0.88-1.03); 0.207	0.113, 32.0%	F	
		Pancreatic cancer	1.26 (0.66-2.39); 0.485	0.050, 73.9%	R	
		Lung cancer	0.92 (0.73-1.17); 0.507	0.637, 0.0%	F	
		Ovarian cancer	1.03 (0.87-1.22); 0.747	0.872, 0.0%	F	
		Melanoma	1.01 (0.80-1.27); 0.914	0.763, 0.0%	F	
		Glioblastoma	1.42 (0.53-3.79); 0.481	0.125, 57.6%	R	
		Other cancers	1.08 (0.79-1.47); 0.642	0.578, 0.0%	F	
	G vs. C	All	1.00 (0.94-1.07); 0.952	0.001, 42.3%	R	

Prostate cancer	1.00 (0.82-1.21); 0.981	0.278, 22.1%	F
Breast cancer	0.94 (0.80-1.12); 0.515	0.040, 54.5%	R
Gastric cancer	2.26 (1.69-3.02); <0.001	0.909, 0.0%	F
Colorectal cancer	0.94 (0.88-1.01); 0.091	0.195, 23.4%	F
Pancreatic cancer	1.23 (0.59-2.60); 0.580	0.014, 83.4%	R
Lung cancer	1.00 (0.83-1.21); 0.993	0.743, 0.0%	F
Ovarian cancer	1.01 (0.87-1.18); 0.857	0.739, 0.0%	F
Melanoma	1.05 (0.86-1.29); 0.616	0.497, 0.0%	F
Glioblastoma	1.37 (0.58-3.23); 0.477	0.150, 51.8%	R
Other cancers	0.94 (0.71-1.24); 0.652	0.392, 2.5%	F

F indicates fixed model; R indicates random model.

Caucasians, 12 were from Asians and 11 were from mixed populations. The characteristics are summarized in **Table 1**. The genotype distributions are listed in **Table 2**.

Quantitative synthesis

In total, 51 studies with 16,844 cancer cases and 23,736 controls focused on the relationship of PPARG rs1801282 C>G polymorphism with cancer risk. Overall, our results did not support any statistical evidence of the association between PPARG rs1801282 C>G polymorphism and cancer. As Caucasians, Asians and mixed populations were involved in our study, we performed subgroup analyses base on different ethnicities. The results showed that PPARG rs1801282 C>G polymorphism was a risk factor for cancer in Asians: GG+CG vs. CC (OR, 1.23; 95% CI, 1.01-1.50; P = 0.039), GG vs. CG+CC (OR, 2.36; 95% CI, 1.15-4.86; P = 0.020), GG vs. CC (OR, 2.43; 95% CI, 1.18-5.01; P = 0.016) and G vs. C (OR, 1.25; 95% Cl, 1.04-1.51; P = 0.018) (Table 3; Figure 2). With respect to a subgroup analysis by cancer type, the results of the combined analyses showed that PPARG rs1801282 C>G polymorphism was associated with gastric cancer risk in five genetic models: GG+CG vs. CC (OR, 2.22; 95% CI, 1.61-3.07; P<0.001), GG vs. CG+CC (OR, 4.95; 95% CI, 1.86-13.16; P = 0.001), GG vs. CC (OR, 5.51; 95% CI, 2.06-14.79; P = 0.001), CG vs. CC (OR, 2.01; 95% CI, 1.44-2.82; P<0.001) and G vs. C (OR, 2.26; 95% Cl, 1.69-3.02; P<0.001) (Table 4).

Tests for publication bias

We used Begg's Funnel plot and Egger's test to examine publication bias of included studies. No statistical evidence of publication bias was identified in all genetic models (G vs. C: Begg's test P = 0.709, Egger's test P = 0.202; GG vs. CC: Begg's test P = 0.879, Egger's test P = 0.935; CG vs. CC: Begg's test P = 0.372, Egger's test P = 0.168; GG+CG vs. CC: Begg's test P = 0.380, Egger's test P = 0.157; GG vs. CG+CC: Begg's test P = 1.000, Egger's test P = 0.676; **Figure 3**).

Sensitivity analyses

Influence of the potential publication bias involved in the meta-analysis on the pooled ORs and CIs was assessed by non-parametric "trim-and-fill" method and the filling of any potential studies did not significantly altered the final decision, suggesting that our results were stable and statistically robust: GG+CG vs. CC (adjusted pooled OR, 0.971; 95% CI, 0.897-1.051; P = 0.464), GG vs. CG+CC (adjusted pooled OR, 1.025; 95% CI, 0.865-1.213; P = 0.779), GG vs. CC (adjusted pooled OR, 1.002; 95% CI, 0.835-1.203; P = 0.982), CG vs. CC (adjusted pooled OR, 0.975; 95% CI, 0.905-1.051; P = 0.506) and G vs. C (adjusted pooled OR, 0.982; 95% CI, 0.911-1.059; P = 0.641) (Figure 4).

Tests for heterogeneity

Heterogeneity was assessed by the χ^2 -based Q-test in overall genetic models and sub-group analyses. We explored the main source of heterogeneity in sub-group analyses of ethnicity and cancer type. In current study, Caucasians, mixed populations, breast cancer, pancreatic cancer and prostate cancer provided potential sources of heterogeneity.

Discussion

The *PPARG* rs1801282 C>G polymorphism has been popularly examined on the risk of many

Figure 3. For PPARG rs1801282 C>G polymorphism, Begg's funnel plot analysis for publication bias (allele comparing model).

Figure 4. For *PPARG* rs1801282 C>G polymorphism, Filled funnel plot of metaanalysis (allele comparing model).

cancers; however, the results of such studies are inconsistent. To address the gap, we performed an updated meta-analysis of published studies. The results indicated that *PPARG* rs1801282 C>G was not associated with the risk of overall cancer. The results from our subgroup analyses suggested that there was an effective modification of the cancer risk among Asians and gastric cancer patients.

Accumulating evidences demonstrated that the *PPARG* gene is related to malignance, which plays an important role in the pathogenesis of

multiple cancers in some clinical studies and animal models. The association between PPARG rs18012-82 C>G polymorphism and cancer risk has been widely explored. The prior study reported that PPARG rs1-801282 C>G polymorphism was associated with reduced transactivation activity, lower body mass index and improved insulin sensitivity among middleaged and elderly Caucasians [3]. PPARG gene variants may increase susceptibility of colorectal cancer by interruption of the metabolism of a high fat diet [53]. In the current study, a significantly increased risk of cancer correlated with PPARG rs1801282 C>G polymorphism was overt among Asians and gastric cancer patients. Our results suggest different cancerigenic mechanisms of different cancers and different population. A previous metaanalysis was performed to determine the effect of PPARG polymorphisms on the risk of cancer [15]. Comparing with that, our pooled analyses have some merits. First, this is a larger samples meta-analysis not only to analyze the association between PPARG

rs1801282 C>G and cancer susceptibility in different races and different cancer types, but also to support the rs1801282 C>G polymorphism is a risk factor in Asians and gastric cancer. Second, we carried out a more extensively pooled analysis by calculating five different comparison models and performing sub-group analyses.

Since heterogeneity across studies may affect the strengths of results, we conducted subgroup analyses. In our study, relatively high heterogeneity was observed. Then, the randomeffect model was utilized when significant heterogeneity was found. Meanwhile, to analyze the major source of heterogeneity, we conducted sub-group analyses by races and cancer types. Results of meta-analysis showed that heterogeneity greatly reduced or vanished in some sub-groups. We also performed nonparametric "trim-and-fill" method to verify the stability of our results. The adjusted ORs and Cls were not materially altered, suggesting that the results of our study were reliable and suggestive. The publication bias across studies for the correlation of *PPARG* rs1801282 C>G polymorphism with cancer risk was not observed.

Some limitations should be noted in this metaanalysis when interpreting the results. First of all, only published literatures were included in our study, some unpublished investigations that might also be fit for the inclusion criteria were ignored. Secondly, due to limited individual data (e.g., age, sex and other environmental factors) in some studies, we did not perform a more precise analysis, which limited further assessments to a certain extent. Finally, in some subgroups, sample sizes were relatively small, which might have insufficient power to get a reliable result. In the future, studies with larger sample sizes will be needed to validate these associations.

In conclusion, our findings suggest that *PPARG* rs1801282 C>G polymorphism is a candidate for susceptibility to gastric cancer and Asians. Further studies with larger samples and detailed environmental factors will be needed to confirm our results.

Acknowledgements

Grant support: The project was supported by the Natural Science Foundation of Fujian Province (Grant No. 2014J01298 and 2015J01435), the Medical Innovation Foundation of Fujian Province (Grant No. 2015-CX-9) and the National Clinical Key Specialty Construction Program.

Disclosure of conflict of interest

None.

Address correspondence to: Zhiqiang Ma, Department of Cardiothoracic Surgery, The People's Hospital of Xishuangbanna Dai Autonomous Prefecture, Jinghong 666001, China. E-mail: zyymazhiqiang@126.com; Zengqing Guo, Department of Medical Oncology, Fujian Provincial Cancer Hospital, Fuzhou 350014, China. E-mail: gzqfjfz@gmail.com

References

- Cho MC, Lee K, Paik SG and Yoon DY. Peroxisome Proliferators-Activated Receptor (PPAR) Modulators and Metabolic Disorders. PPAR Res 2008; 2008: 679137.
- [2] Robbins GT and Nie D. PPAR gamma, bioactive lipids, and cancer progression. Front Biosci (Landmark Ed) 2012; 17: 1816-1834.
- [3] Deeb SS, Fajas L, Nemoto M, Pihlajamaki J, Mykkanen L, Kuusisto J, Laakso M, Fujimoto W and Auwerx J. A Pro12Ala substitution in PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat Genet 1998; 20: 284-287.
- [4] Satoh T, Toyoda M, Hoshino H, Monden T, Yamada M, Shimizu H, Miyamoto K and Mori M. Activation of peroxisome proliferator-activated receptor-gamma stimulates the growth arrest and DNA-damage inducible 153 gene in non-small cell lung carcinoma cells. Oncogene 2002; 21: 2171-2180.
- Hutter S, Knabl J, Andergassen U and Jeschke U. The Role of PPARs in Placental Immunology: A Systematic Review of the Literature. PPAR Res 2013; 2013: 970276.
- [6] Wang X, Liu J, Ouyang Y, Fang M, Gao H and Liu L. The association between the Pro12Ala variant in the PPARgamma2 gene and type 2 diabetes mellitus and obesity in a Chinese population. PLoS One 2013; 8: e71985.
- [7] Li Y, Dai L, Zhang J, Wang P, Chai Y, Ye H, Zhang J and Wang K. Cyclooxygenase-2 polymor-phisms and the risk of gastric cancer in various degrees of relationship in the Chinese Han population. Oncol Lett 2012; 3: 107-112.
- [8] Youssef SM, Mohamed N, Afef S, Khaldoun BH, Fadoua N, Fadhel NM and Naceur SM. A Pro 12 Ala substitution in the PPARgamma2 polymorphism may decrease the number of diseased vessels and the severity of angiographic coronary artery. Coron Artery Dis 2013; 24: 347-351.
- [9] Lwow F, Dunajska K, Milewicz A, Laczmanski L, Jedrzejuk D, Trzmiel-Bira A and Szmigiero L. ADRB3 and PPARgamma2 gene polymorphisms and their association with cardiovascular disease risk in postmenopausal women. Climacteric 2013; 16: 473-478.
- [10] Canbay E, Kurnaz O, Canbay B, Bugra D, Cakmakoglu B, Bulut T, Yamaner S, Sokucu N, Buyukuncu Y and Yilmaz-Aydogan H. PPARgamma Pro12Ala polymorphism and gastric

cancer risk in a Turkish population. Asian Pac J Cancer Prev 2012; 13: 5875-5878.

- [11] Fesinmeyer MD, Stanford JL, Brentnall TA, Mandelson MT, Farin FM, Srinouanprachanh S, Afsharinejad Z, Goodman GE, Barnett MJ and Austin MA. Association between the peroxisome proliferator-activated receptor gamma Pro12Ala variant and haplotype and pancreatic cancer in a high-risk cohort of smokers: a pilot study. Pancreas 2009; 38: 631-637.
- [12] Petersen RK, Larsen SB, Jensen DM, Christensen J, Olsen A, Loft S, Nellemann C, Overvad K, Kristiansen K, Tjonneland A and Vogel U. PPARgamma-PGC-1alpha activity is determinant of alcohol related breast cancer. Cancer Lett 2012; 315: 59-68.
- [13] Landi S, Moreno V, Gioia-Patricola L, Guino E, Navarro M, de Oca J, Capella G; Bellvitge Colorectal Cancer Study Group. Association of common polymorphisms in inflammatory genes interleukin (IL)6, IL8, tumor necrosis factor alpha, NFKB1, and peroxisome proliferator-activated receptor gamma with colorectal cancer. Cancer Res 2003; 63: 3560-3566.
- [14] Theodoropoulos G, Papaconstantinou I, Felekouras E, Nikiteas N, Karakitsos P, Panoussopoulos D, Lazaris A, Patsouris E, Bramis J and Gazouli M. Relation between common polymorphisms in genes related to inflammatory response and colorectal cancer. World J Gastroenterol 2006; 12: 5037-5043.
- [15] Xu W, Li Y, Wang X, Chen B, Liu S, Wang Y, Zhao W and Wu J. PPARgamma polymorphisms and cancer risk: a meta-analysis involving 32,138 subjects. Oncol Rep 2010; 24: 579-585.
- [16] Hua Z, Li D, Xiang G, Xu F, Jie G, Fu Z, Jie Z, Da P and Li D. PD-1 polymorphisms are associated with sporadic breast cancer in Chinese Han population of Northeast China. Breast Cancer Res Treat 2011; 129: 195-201.
- [17] Bayram S, Akkiz H, Ulger Y, Bekar A, Akgollu E and Yildirim S. Lack of an association of programmed cell death-1 PD1.3 polymorphism with risk of hepatocellular carcinoma susceptibility in Turkish population: a case-control study. Gene 2012; 511: 308-313.
- [18] Egger M, Davey Smith G, Schneider M and Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629-634.
- [19] Crous-Bou M, Rennert G, Salazar R, Rodriguez-Moranta F, Rennert HS, Lejbkowicz F, Kopelovich L, Lipkin SM, Gruber SB and Moreno V. Genetic polymorphisms in fatty acid metabolism genes and colorectal cancer. Mutagenesis 2012; 27: 169-176.
- [20] Abuli A, Fernandez-Rozadilla C, Alonso-Espinaco V, Munoz J, Gonzalo V, Bessa X, Gonzalez D, Clofent J, Cubiella J, Morillas JD,

Rigau J, Latorre M, Fernandez-Banares F, Pena E, Riestra S, Paya A, Jover R, Xicola RM, Llor X, Carvajal-Carmona L, Villanueva CM, Moreno V, Pique JM, Carracedo A, Castells A, Andreu M, Ruiz-Ponte C, Castellvi-Bel S; Gastrointestinal Oncology Group of the Spanish Gastroenterological Association. Case-control study for colorectal cancer genetic susceptibility in EPICOLON: previously identified variants and mucins. BMC Cancer 2011; 11: 339.

- [21] Tsilidis KK, Helzlsouer KJ, Smith MW, Grinberg V, Hoffman-Bolton J, Clipp SL, Visvanathan K and Platz EA. Association of common polymorphisms in IL10, and in other genes related to inflammatory response and obesity with colorectal cancer. Cancer Causes Control 2009; 20: 1739-1751.
- [22] Kury S, Buecher B, Robiou-du-Pont S, Scoul C, Colman H, Le Neel T, Le Houerou C, Faroux R, Ollivry J, Lafraise B, Chupin LD, Sebille V and Bezieau S. Low-penetrance alleles predisposing to sporadic colorectal cancers: a French case-controlled genetic association study. BMC Cancer 2008; 8: 326.
- [23] Kuriki K, Hirose K, Matsuo K, Wakai K, Ito H, Kanemitsu Y, Hirai T, Kato T, Hamajima N, Takezaki T, Suzuki T, Saito T, Tanaka R and Tajima K. Meat, milk, saturated fatty acids, the Pro12Ala and C161T polymorphisms of the PPARgamma gene and colorectal cancer risk in Japanese. Cancer Sci 2006; 97: 1226-1235.
- [24] Slattery ML, Curtin K, Wolff R, Ma KN, Sweeney C, Murtaugh M, Potter JD, Levin TR and Samowitz W. PPARgamma and colon and rectal cancer: associations with specific tumor mutations, aspirin, ibuprofen and insulin-related genes (United States). Cancer Causes Control 2006; 17: 239-249.
- [25] McGreavey LE, Turner F, Smith G, Boylan K, Timothy Bishop D, Forman D, Roland Wolf C, Barrett JH; Colorectal Cancer Study Group. No evidence that polymorphisms in CYP2C8, CYP2C9, UGT1A6, PPARdelta and PPARgamma act as modifiers of the protective effect of regular NSAID use on the risk of colorectal carcinoma. Pharmacogenet Genomics 2005; 15: 713-721.
- [26] Jiang J, Gajalakshmi V, Wang J, Kuriki K, Suzuki S, Nakamura S, Akasaka S, Ishikawa H and Tokudome S. Influence of the C161T but not Pro12Ala polymorphism in the peroxisome proliferator-activated receptor-gamma on colorectal cancer in an Indian population. Cancer Sci 2005; 96: 507-512.
- [27] Vogel U, Christensen J, Dybdahl M, Friis S, Hansen RD, Wallin H, Nexo BA, Raaschou-Nielsen O, Andersen PS, Overvad K and Tjonneland A. Prospective study of interaction between alcohol, NSAID use and polymor-

phisms in genes involved in the inflammatory response in relation to risk of colorectal cancer. Mutat Res 2007; 624: 88-100.

- [28] Siezen CL, Bueno-de-Mesquita HB, Peeters PH, Kram NR, van Doeselaar M and van Kranen HJ. Polymorphisms in the genes involved in the arachidonic acid-pathway, fish consumption and the risk of colorectal cancer. Int J Cancer 2006; 119: 297-303.
- [29] Martinez-Nava GA, Burguete-Garcia AI, Lopez-Carrillo L, Hernandez-Ramirez RU, Madrid-Marina V and Cebrian ME. PPARgamma and PPARGC1B polymorphisms modify the association between phthalate metabolites and breast cancer risk. Biomarkers 2013; 18: 493-501.
- [30] Wu MH, Chu CH, Chou YC, Chou WY, Yang T, Hsu GC, Yu CP, Yu JC and Sun CA. Joint effect of peroxisome proliferator-activated receptor gamma genetic polymorphisms and estrogenrelated risk factors on breast cancer risk: results from a case-control study in Taiwan. Breast Cancer Res Treat 2011; 127: 777-784.
- [31] Gallicchio L, McSorley MA, Newschaffer CJ, Huang HY, Thuita LW, Hoffman SC and Helzlsouer KJ. Body mass, polymorphisms in obesity-related genes, and the risk of developing breast cancer among women with benign breast disease. Cancer Detect Prev 2007; 31: 95-101.
- [32] Wang Y, McCullough ML, Stevens VL, Rodriguez C, Jacobs EJ, Teras LR, Pavluck AL, Thun MJ and Calle EE. Nested case-control study of energy regulation candidate gene single nucleotide polymorphisms and breast cancer. Anticancer Res 2007; 27: 589-593.
- [33] Memisoglu A, Hankinson SE, Manson JE, Colditz GA and Hunter DJ. Lack of association of the codon 12 polymorphism of the peroxisome proliferator-activated receptor gamma gene with breast cancer and body mass. Pharmacogenetics 2002; 12: 597-603.
- [34] Vogel U, Christensen J, Nexo BA, Wallin H, Friis S and Tjonneland A. Peroxisome proliferatoractivated [corrected] receptor-gamma2 [corrected] Pro12Ala, interaction with alcohol intake and NSAID use, in relation to risk of breast cancer in a prospective study of Danes. Carcinogenesis 2007; 28: 427-434.
- [35] Justenhoven C, Hamann U, Schubert F, Zapatka M, Pierl CB, Rabstein S, Selinski S, Mueller T, Ickstadt K, Gilbert M, Ko YD, Baisch C, Pesch B, Harth V, Bolt HM, Vollmert C, Illig T, Eils R, Dippon J and Brauch H. Breast cancer: a candidate gene approach across the estrogen metabolic pathway. Breast Cancer Res Treat 2008; 108: 137-149.
- [36] Pinheiro SP, Gates MA, De Vivo I, Rosner BA, Tworoger SS, Titus-Ernstoff L, Hankinson SE and Cramer DW. Interaction between use of

non-steroidal anti-inflammatory drugs and selected genetic polymorphisms in ovarian cancer risk. Int J Mol Epidemiol Genet 2010; 1: 320-331.

- [37] Smith WM, Zhou XP, Kurose K, Gao X, Latif F, Kroll T, Sugano K, Cannistra SA, Clinton SK, Maher ER, Prior TW and Eng C. Opposite association of two PPARG variants with cancer: overrepresentation of H449H in endometrial carcinoma cases and underrepresentation of P12A in renal cell carcinoma cases. Hum Genet 2001; 109: 146-151.
- [38] Bazargani A, Khoramrooz SS, Kamali-Sarvestani E, Taghavi SA and Saberifiroozi M. Association between peroxisome proliferatoractivated receptor-gamma gene polymorphism (Pro12Ala) and Helicobacter pylori infection in gastric carcinogenesis. Scand J Gastroenterol 2010; 45: 1162-1167.
- [39] Prasad KN, Saxena A, Ghoshal UC, Bhagat MR and Krishnani N. Analysis of Pro12Ala PPAR gamma polymorphism and Helicobacter pylori infection in gastric adenocarcinoma and peptic ulcer disease. Ann Oncol 2008; 19: 1299-1303.
- [40] Tahara T, Arisawa T, Shibata T, Nakamura M, Wang F, Maruyama N, Kamiya Y, Nakamura M, Fujita H, Nagasaka M, Iwata M, Takahama K, Watanabe M, Hirata I and Nakano H. Influence of peroxisome proliferator-activated receptor (PPAR)gamma Plo12Ala polymorphism as a shared risk marker for both gastric cancer and impaired fasting glucose (IFG) in Japanese. Dig Dis Sci 2008; 53: 614-621.
- [41] Liao SY, Zeng ZR, Leung WK, Zhou SZ, Chen B, Sung JJ and Hu PJ. Peroxisome proliferator-activated receptor-gamma Pro12Ala polymorphism, Helicobacter pylori infection and noncardia gastric carcinoma in Chinese. Aliment Pharmacol Ther 2006; 23: 289-294.
- [42] Lim WY, Chen Y, Ali SM, Chuah KL, Eng P, Leong SS, Lim E, Lim TK, Ng AW, Poh WT, Tee A, Teh M, Salim A and Seow A. Polymorphisms in inflammatory pathway genes, host factors and lung cancer risk in Chinese female neversmokers. Carcinogenesis 2011; 32: 522-529.
- [43] Campa D, Zienolddiny S, Maggini V, Skaug V, Haugen A and Canzian F. Association of a common polymorphism in the cyclooxygenase 2 gene with risk of non-small cell lung cancer. Carcinogenesis 2004; 25: 229-235.
- [44] Vogel U, Christensen J, Wallin H, Friis S, Nexo BA, Raaschou-Nielsen O, Overvad K and Tjonneland A. Polymorphisms in genes involved in the inflammatory response and interaction with NSAID use or smoking in relation to lung cancer risk in a prospective study. Mutat Res 2008; 639: 89-100.
- [45] Zhang YTC, Mao W. The Pro12Ala polymorphism of peroxisome proliferator-activated re-

ceptor-gamma 2 gene in lung cancer. Zhejiang Medicine 2007; 29: 1257-1259.

- [46] Kopp TI, Friis S, Christensen J, Tjonneland A and Vogel U. Polymorphisms in genes related to inflammation, NSAID use, and the risk of prostate cancer among Danish men. Cancer Genet 2013; 206: 266-278.
- [47] Wang MH, Helzlsouer KJ, Smith MW, Hoffman-Bolton JA, Clipp SL, Grinberg V, De Marzo AM, Isaacs WB, Drake CG, Shugart YY and Platz EA. Association of IL10 and other immune response- and obesity-related genes with prostate cancer in CLUE II. Prostate 2009; 69: 874-885.
- [48] Paltoo D, Woodson K, Taylor P, Albanes D, Virtamo J and Tangrea J. Pro12Ala polymorphism in the peroxisome proliferator-activated receptor-gamma (PPAR-gamma) gene and risk of prostate cancer among men in a large cancer prevention study. Cancer Lett 2003; 191: 67-74.
- [49] Tang H, Dong X, Hassan M, Abbruzzese JL and Li D. Body mass index and obesity- and diabetes-associated genotypes and risk for pancreatic cancer. Cancer Epidemiol Biomarkers Prev 2011; 20: 779-792.
- [50] Mossner R, Meyer P, Jankowski F, Konig IR, Kruger U, Kammerer S, Westphal G, Boettger MB, Berking C, Schmitt C, Brockmoller J, Ziegler A, Stapelmann H, Kaiser R, Volkenandt M and Reich K. Variations in the peroxisome proliferator-activated receptor-gamma gene and melanoma risk. Cancer Lett 2007; 246: 218-223.

- [51] Zhou XP, Smith WM, Gimm O, Mueller E, Gao X, Sarraf P, Prior TW, Plass C, von Deimling A, Black PM, Yates AJ and Eng C. Overrepresentation of PPARgamma sequence variants in sporadic cases of glioblastoma multiforme: preliminary evidence for common low penetrance modifiers for brain tumour risk in the general population. J Med Genet 2000; 37: 410-414.
- [52] Vogel U, Christensen J, Wallin H, Friis S, Nexo BA and Tjonneland A. Polymorphisms in COX-2, NSAID use and risk of basal cell carcinoma in a prospective study of Danes. Mutat Res 2007; 617: 138-146.
- [53] Murtaugh MA, Ma KN, Caan BJ, Sweeney C, Wolff R, Samowitz WS, Potter JD and Slattery ML. Interactions of peroxisome proliferator-activated receptor {gamma} and diet in etiology of colorectal cancer. Cancer Epidemiol Biomarkers Prev 2005; 14: 1224-1229.