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Valproic acid (VPA) suppresses the expression of SMAD4 
in prostate carcinoma by up-regulating miR-34a
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Abstract: SMAD4 plays an important role in epithelial-mesenchymal transition (EMT) and cancer metastasis. 
Previous studies have reported that valproic acid (VPA) suppresses prostate carcinoma (PCa) cell metastasis and 
down-regulates SMAD4 protein levels. However, the mechanism by which VPA regulates the expression of SMAD4 
in PCa cells remains unknown. We identified miRNAs that can complementarily bind to SMAD4 mRNA using www.
targetscan.com and searched PUBMED to identify miRNAs related to VPA. The miRNAs identified by both of the 
searches were selected. The expression of SMAD4 was analyzed after VPA treatment or transfection of pre-miRNAs 
or miRNA inhibitors. After VPA treatment, the levels of SMAD4 mRNA and protein were down-regulated whereas the 
expression of miR-20a, 34a, and 449a was up-regulated. Up-regulation of miR-34a mimicked the SMAD4-inhibiting 
effect of VPA, whereas down-regulation of miR-34a eliminated this effect in LNCaP and PC3 cells. These results 
indicate that VPA inhibits the expression of SMAD4 by up-regulating the expression of miR-34a.
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Introduction

Prostate carcinoma (PCa) is the most common 
cancer among men [1], and a high incidence of 
metastasis is the main reason for PCa mortali-
ty [2]. Epithelial-mesenchymal transition (EMT), 
or the morphological transformation from epi-
thelial cells to mesenchymal cells, is believed 
to be the major cause of cancer metastasis [3]. 
The development of EMT is controlled by a com-
plicated network that consists of diverse path-
ways including TGF-β, Notch, and Wnt [4]. TGF-β 
is considered the dominant regulator of EMT 
[5]. After the activation of TGF-β receptors on 
the cellular membrane, receptor-regulated 
SMADs (R-SMADs) bind to SMAD4 to comprise 
SMAD complexes [6]. SMAD4 is essential to the 
translocation of R-SMADs across the nuclear 
membrane and is the activation of EMT-related 
transcription factors [7]. This fact was con-
firmed previously by suppressing SMAD4 activ-
ity, which led to the inhibition of EMT [8].

Non-coding RNAs known as micro-RNAs (miR-
NAs) regulate the translation and induce the 

degradation of diverse mRNAs by binding to 
their 3’ UTR. Thousands of miRNAs have been 
discovered in recent years, and the assorted 
regulatory effects of miRNAs on cancer have 
been described [9]. Multiple miRNAs were con-
firmed to regulate EMT in PCa, including miR-1, 
29, 34, and 203 [10].

Histone acetyltransferases (HATs) and histone 
deacetylases (HDACs) reversibly change the 
status of histones and ultimately adjust the 
expression of genes relevant to cancer develop-
ment [11]. Inhibition of HDACs was confirmed to 
be a therapeutic approach to cancer [12]. 
Valproic acid (VPA), a clinically applied anticon-
vulsant drug, is considered an HDAC inhibitor 
[13] and been proven to inhibit PCa metastasis 
by suppressing the invasion and migration of 
PCa cells [14, 15]. We previously found that VPA 
down-regulates protein levels of SMAD4 [16]. In 
view of the interaction between VPA and miR-
NAs reported previously [17, 18], we believe 
that there may be miRNAs that mediate the 
SMAD4-inhibiting effect of VPA. In this study, 
we searched for miRNAs that could potentially 
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be involved in the interplay between SMAD4 
and VPA and then tested the correlation be- 
tween them.

Materials and methods

Cell culture and reagents

The LNCaP and PC3 cell lines (Chinese Acade- 
my of Science) were maintained in RPMI-1640 
medium (Thermo Fisher Scientific Inc., Wa- 
ltham, MA) mixed with 10% fetal bovine serum 
(FBS; Hyclone, Logan, UT). Cells were treated 
with VPA (Sigma Chemical Co., St. Louis, MO) at 
a concentration of 2.4 mmol/l. SMAD4 anti-
body (sc-7966, 1:1000 dilution) and β-actin 
antibody (sc-130301, 1:1000 dilution) were 
obtained from Santa Cruz Biotechnology 
(Dallas, TX).

The search for relevant miRNAs

First, we found miRNAs that could complemen-
tarily bind to the 3’ UTR of SMAD4 mRNA using 
www.targetscan.com. Second, miRNAs that 
have been proven to be related to VPA were 
identified using a text-mining method. We 
searched PUBMED using the keywords “VPA 
and (miR or miRNA or microRNA)” and selected 
the valid literature that described the direct or 
indirect relationship between VPA and any one 
of the miRNAs. The overlaps between miRNAs 
that could bind to SMAD4 mRNA and miRNAs 
related to VPA were considered relevant miR-
NAs in our study.

Transfection of pre-miRNAs and inhibitors

Pre-miRNAs and inhibitors of miR-20a, 34a, 
and 449a were purchased from Genetimes 
Technology, Inc. (Shanghai, China) and were 
separately transfected into PC3 cells using 
Lipofectamine-2000 Transfection Reagent (Life 
Technologies, Carlsbad, CA).

one hour. Afterwards, Chemiluminescent HRP 
Substrate (Millipore, Billerica, MA) was used to 
visualize the proteins using a LAS-4000 
Luminescent Image Analyzer (Fujifilm, Tokyo, 
Japan).

Quantitative RT-PCR

The mRNA levels of SMAD4 and miR-20a, 34a, 
124a, 144, and 449a were measured by qRT-
PCR using a Real Time (qPCR) Kit (TaKaRa 
Biotechnology Co., Tokyo, Japan). Primers of 
SMAD4, GAPDH, U6, and miR-20a, 34a, 124a, 
144, and 449a were purchased from Tiangen 
Biotech Co. (Beijing, China). The levels of 
SMAD4 mRNA and miRNAs were shown relative 
to the levels of GADPH and U6. 

Statistical analysis

The results are presented as the mean ± stan-
dard error (SE). The statistical significance was 
determined by Student’s t test (2-tailed) or the 
Mann-Whitney U test (2-tailed). P<0.05 was 
considered statistically significant.

Results

Search results

Analysis using www.targetscan.com revealed 
that tens of miRNAs could bind to the 3’ UTR  
of SMAD4 mRNA (Figure 1). Simultaneously, 
seven articles relevant to the relationship 
between VPA and miRNA were found in 
PUBMED. After the main text of each article 
was reviewed, miRNAs and relevant data were 
extracted and summarized in Table 1. Seven 
articles reported tens of miRNAs regulated by 
VPA respectively in human, mice, rats, and hip-
pocampi cells [17-23]. MiRNAs were listed and 
categorized in the table according to the effects 
of VPA. Accordingly, five miRNAs (miR-20a, 34a, 
124a, 144, and 449a), which are shown both in 

Figure 1. Search results from www.targetscan.org.

Western blot analysis

Cells were lysed in RIPA 
buffer. Extracts were su- 
bjected to electrophore-
sis and membrane trans-
fer. Next, the membranes 
were consecutively incu-
bated with SMAD4 anti-
body overnight and sec-
ondary antibodies for 

http://www.targetscan.org


VPA decreases SMAD4 via miR-34a

20468 Int J Clin Exp Med 2016;9(11):20466-20473

the Figure 1 and Table 1, were included as the 
target miRNAs in our study.

VPA inhibits the expression of SMAD4

SMAD4 mRNA and protein levels in LNCaP and 
PC3 cells were analyzed after exposure to VPA. 
Treatment with 1.2 and 2.4 mmol/l VPA reduced 
SMAD4 mRNA and protein levels in both cell 
lines (Figure 2), which is consistent with its 
expression-restraining effect on SMAD4.

VPA up-regulates miR-20a, 34a, and 449a

After VPA treatment, the levels of miR-20a, 
34a, 124a, 144, and 449a in both PC3 and 
LNCaP cells were analyzed. VPA induced the 
up-regulation of miR-20a, 34a, and 449a in a 

concentration-dependent manner, whereas the 
levels of miR-124a and 144 were not signifi-
cantly altered (Figure 3).

MiR-34a inhibits the expression of SMAD4

The transfection of pre-miRNAs of miR-20a or 
449a increased the protein levels of SMAD4 in 
both PC3 and LNCaP cells, whereas the trans-
fection of miR-20a or miR-449a inhibitors led 
to a decrease in the expression of SMAD4 in 
PC3 cells. In contrast, up-regulation of miR-34a 
by the transfection of pre-miRNAs of miR-34a 
significantly suppressed the expression of 
SMAD4 in LNCaP and PC3 cells, and the trans-
fection of miR-34a inhibitors induced signifi-
cantly higher protein levels of SMAD4 in both 
cell lines (Figure 4).

Table 1. MiRNAs regulated by VPA
Species Expression miRNAs References
Human Up-regulation miR-129, miR-134, miR-182, miR-194, miR-214, miR-221, miR-449a, and miR-519e [17-19]

Down-regulation miR-15a, miR-16, miR-30a-5p, miR-92a-1, miR-144, miR-222, and miR-451 [17, 18, 20]

Mice Up-regulation miR-10a, miR-143, miR-145, miR-199a, miR-206, and miR-214 [21]

Down-regulation miR-124a, miR-128a, miR-137, miR-383, and miR-491 [21]

Rats Up-regulation miR-331 [22]

Down-regulation miR-34a and miR-885-3p [22, 23]

Hippocampi Up-regulation miR-15a, miR-20a, miR-144, miR-376a, miR-465, and miR-518b [23]

Down-regulation let-7b, let-7c, miR-23b, miR-24, miR-30c, miR-34a, miR-105, miR-127, miR-128a, miR-143, miR-
181a, miR-188, miR-198, miR-216, miR-221, miR-302bc, and miR-410

[23]

Figure 2. Levels of SMAD4 protein and mRNA after VPA treatment. A and B. Treatment with 1.2 or 2.4 mmol/l VPA 
for 48 hours decreased SMAD4 expression in LNCaP cells and PC3 cells. C. VPA significantly down-regulated protein 
levels of SMAD4 in a concentration-dependent manner. D. qRT-PCR revealed that VPA significantly down-regulated 
mRNA levels of SMAD4 in a concentration-dependent manner. (*P<0.05).
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Down-regulation of miR-34a eliminates the 
SMAD4-inhibiting effect of VPA

VPA has been shown to inhibit the expression 
of SMAD4. However, the transfection of miR-
34a inhibitors restored SMAD4 expression in 
VPA-treated cells and eliminated the inhibitory 
effect of VPA on SMAD4 expression in LNCaP 
and PC3 cells (Figure 5).

Discussion

Thousands of miRNAs have been studied for 
their regulatory effects on tumorigenesis, can-
cer cell proliferation and other physiological 
processes [24]. Metastasis is an important pro-
cess regulated by many miRNAs, including 
miR-9 and miR-21 that promote metastasis 
and the let-7 family that has an inhibitory effect 
[25]. EMT plays central roles in the regulation of 
cancer metastasis [26]. Several studies have 
focused on the link between the miR-200 fam-
ily and EMT. Park and colleagues proved that 

the miR-200 family, including miR-200a, 200b, 
200c, and 141, are key inhibitors of EMT that 
target ZEB1/2 [27]. MiR-1, 15b, and 205 were 
also confirmed to reverse EMT by interacting 
with p53, BMI1, SIP1, Slug, and ZEB1/2 
[28-30]. 

MiR-34a was reported to inhibit metastasis of 
PCa [31] and other types of cancers [32, 33]. 
Du and colleagues investigated the regulation 
of EMT by miR-34a and reported that miR-34a 
suppresses EMT in tubular epithelial cells by 
targeting Notch1 and Jagged1 [34]. ZEB1, a 
transcription factor that induces the mesenchy-
mal property of cancer cells, is believed to pro-
mote EMT by inhibiting miR-34a expression. 
Consequently, we concluded that miR-34a may 
be the mechanism underlying several of molec-
ular events relevant to EMT [35]. The search 
results in our study indicated the possibility 
that miR-34a binds to the mRNA of EMT-
promoting SMAD4, which was confirmed by a 
previous study showing that miR-34a modu-

Figure 3. Levels of miR-20a, 34a, 
124a, 144, and 449a after VPA treat- 
ment. A. Treatment with 1.2 or 2.4 
mmol/l VPA for 48 hours increased 
miR-20a expression in a concentra-
tion-dependent manner in LNCaP 
cells and PC3 cells. B. Treatment 
with 2.4 mmol/l VPA for 48 hours 
increased the expression of miR-
34a, whereas VPA increased miR-
20a expression in a concentration-
dependent manner in PC3 cells. C 
and D. VPA treatment did not signifi-
cantly alter the levels of miR-124a 
and miR-144. E. VPA increased miR-
449a expression in a concentration-
dependent manner in LNCaP and 
PC3 cells. (*P<0.05).
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lates cardiac fibrosis by binding to SMAD4 
mRNA [36]. 

As shown in the previous study, VPA inhibits the 
migration and invasion of PCa cells [15, 16, 
37]. The E-cadherin-promoting effect of VPA in 
endometrial cancer cells was reported by Takai 
and colleagues [38]. Subsequently, additional 
evidence has emerged indicating that VPA 
increases the expression of epithelial markers 
and decreases the expression of mesenchymal 
markers, such as Vimentin and N-cadherin, in 
different cancers [39, 40]. However, the path-
ways or molecules that contribute to the EMT-
inhibiting effect of VPA are still not fully 
described. Our study found that VPA down-reg-

ulates both the mRNA and protein levels of 
SMAD4 in a concentration-dependent manner 
in LNCaP and PC3 cells. The expression of miR-
34a, which is up-regulated by VPA, is inversely 
correlated with the expression of SMAD4. 
Up-regulation of miR-34a mimicked the SMAD4- 
inhibiting effect of VPA, whereas down-regula-
tion of miR-34a eliminated this effect of VPA in 
LNCaP and PC3 cells. These results convince 
us that VPA inhibits SMAD4 expression by up-
regulating miR-34a and provide a basis for fur-
ther studies on the pharmacological mecha-
nism and rationalized utilization of VPA.

MiR-20a, an established oncogenic miRNA, is 
up-regulated in cancer tissues and promotes 

Figure 4. MiR-34a inhibits the expression of SMAD4. A. The transfection of pre-miR-34a decreased the expression 
of SMAD4, whereas the transfection of miR-20a or miR-449a increased the expression of SMAD4 in LNCaP and 
PC3 cells. B. The transfection of miR-34a inhibitors (i-miR-34a) increased the expression of SMAD4, whereas the 
transfection of miR-20a or miR-449a inhibitors decreased the expression of SMAD4 in LNCaP and PC3 cells. C. The 
change in SMAD4 expression after the transfection of pre-miR-34a, pre-miR-20a, and pre-miR-449a was significant 
in LNCaP and PC3 cells. D. The change in SMAD4 expression after the transfection of miR-34a inhibitors (i-miR-
34a) in LNCaP cells and after the transfection of miR-34a inhibitors (i-miR-34a), miR-20a inhibitors (i-miR-20a), and 
miR-449a inhibitors (i-miR-449a) in PC3 cells was also significant. (*P<0.05) “Control” represents the group that re-
ceived no treatment. “NC” (negative control) represents the group that cells were transfected with empty plasmids.
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the metastasis of gallbladder carcinoma, cervi-
cal carcinoma, and PCa [41-43]. Chang and col-
leagues reported that the up-regulation of miR-
20a in gallbladder carcinoma cells using miR-
20a mimics or miR-20a-expressing lentivirus 
significantly increased the levels of N-cadherin 
and Vimentin while decreasing the levels of 
E-cadherin, thereby confirming the EMT-
promoting effect of miR-20a [42]. Jiang and col-
leagues reported a contradictory result, show-
ing that over-expression of miR-20a in non-
small cell lung cancer cells inhibits migration 
and EMT [44]. These findings may indicate that 
there are differential expression levels and reg-
ulatory effects between cancers. MiR-449a, 
which acts as a tumor suppressor, was report-
ed to inhibit the metastasis of non-small cell 
lung cancer [45] and suppress the proliferation 
of PCa by targeting HDAC-1 [46]. In our study, 
the transfection of pre-miR-20a or pre-miR-
449a induced the up-regulation of SMAD4 pro-
tein levels, which may mainly be due to indirect 
effects. VPA-induced up-regulation of miR-34a 
decreased the expression of SMAD4 and con-
cealed the effect of miR-20a and miR-449a on 
SMAD4. This result is also evidence confirming 
that miR-34a is a crucial regulator in the pro-

cess by which VPA inhibits SMAD4 expression. 
The up-regulated expression of the anti-cancer 
miRNA miR-449a after VPA treatment implies 
that miR-449a may participate in other effects 
of VPA, providing us potential prospects for fur-
ther research.

In conclusion, we found that VPA up-regulates 
the expression of miR-20a, 34a, and 449a in 
LNCaP and PC3 cells. In addition, VPA inhibits 
the expression of SMAD4 by up-regulating the 
expression of miR-34a.
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