Original Article

Glutathione S-transferase M1 polymorphism and susceptibility to colorectal cancer: an updated meta-analysis

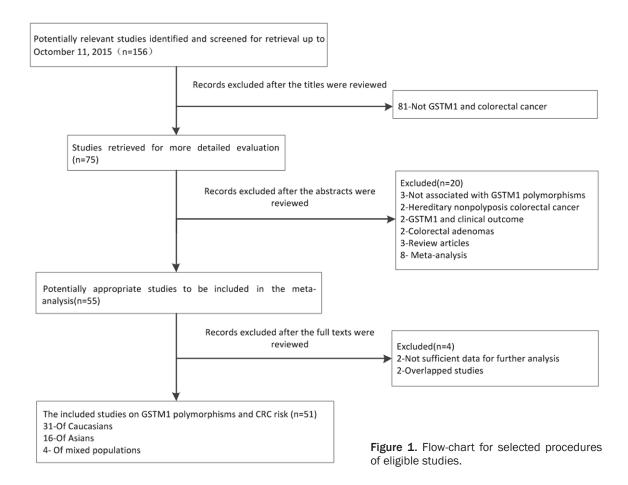
Kailing Chen¹, Yan Zhao², Lin Liu³, Cunying Cui³, Yan Wang¹, Chengzeng Wang¹

¹Department of Ultrasound, Affiliated Tumor Hospital of Zhengzhou University, Henan Tumor Hospital, Zhengzhou, China; ²Department of Interventional Radiology and Ultrasound, Henan Tumor Institute, Henan, China; ³Department of Cardiovascular Ultrasound, Henan Provincial People's Hospital, Zhengzhou, Henan Province, China

Received March 27, 2016; Accepted June 21, 2016; Epub November 15, 2016; Published November 30, 2016

Abstract: Objective: To provide a more precise meta-analysis of glutathione S-transferase M1 (*GSTM1*) polymorphism in estimating the risk of colorectal cancer (CRC). Methods: We conducted a comprehensive literature search in Science, PubMed, and Embase for reports on *GSTM1* genetic deficiency and susceptibility to CRC up to Oct 11, 2015. Odds ratios (ORs) with 95% confidence intervals (Cls) were adopted to evaluate results. Statistical analysis was performed using SAS software and RevMan 5.0. Results: The present meta-analysis included 17,050 cases and 23,704 controls from 51 independent case-control studies. The data indicated an overall OR of 1.13 (95% Cl, 1.06 to1. 21, P_{heterogeneity}<0.00001), which suggested that CRC risk may increase in the individuals with GSTM1 null genotype. In subgroup by race, a positive relationship between GSTM1 null polymorphism and CRC risk was observed in Caucasians (OR=1.14, 95% Cl, 1.04 to 1.24) and Asians (OR=1.12, 95% Cl, 1.03 to 1.21). The CRC incidence was significantly higher in the colon than in the rectum (OR=1.17, 95% Cl, 1.04 to 1.32). However, we did not identify positive correlations in sex, smoking status, and tumor subset. The results of sensitivity analysis were stable and there was no publication bias. Conclusions: GSTM1 null genotype may increase CRC risk.

Keywords: Glutathione S-transferase M1, polymorphism, colorectal cancer, risk, meta-analysis


Introduction

Colorectal cancer (CRC) has already been the third most prevalent malignant tumor worldwide, being ranked after lung and gastric cancer [1]. CRC is a leading etiology of morbidity and mortality in the world because approximately 1.2 million have it and over 0.6 million died of it every year [2].

Although some patients have a family history of CRC, the majority of CRC cases are sporadic. Epidemiological evidence suggests that external environmental factors combined with genetic factors may play important roles in the development of sporadic CRC [3]. Environmental carcinogens such as polycyclic aromatic hydrocarbons (PAH), heterocyclic amines and nitrosamines, are typically absorbed due to poor dietary habits, tobacco smoking, and excessive alcohol consumption [4]. Efficient

metabolism of those carcinogens is protective against CRC [5-7]. However, the capacity to eliminate carcinogens from the human body varies among individuals. Deficiencies in the critical enzymes for the metabolism of carcinogens may lead to the development of cancer [8, 9]. For example, the glutathione S-transferase (GST, chromosome 1p13.3) proteins are a super-family of proteins that perform phase II detoxification reactions of PAHs and other carcinogens [10]. GSTs include seven cytosolic isoenzymes, and GSTM, GSTT, and GSTP are the three most common cytosolic isoenzymes. Glutathione S-transferase M 1 (GSTM1) genetic polymorphisms lead to altered activity levels of enzymes involving in the metabolism of PAHs, thus affecting carcinogen clearance [6, 7, 10]. Hence, the studies above have demonstrated that variance in enzyme activity induced by gene polymorphisms may lead to different CRC risk in individuals.

Colorectal cancer risk

The deletion of both alleles of the GSTM1 gene is regarded as the GSTM1-null genotype, which is a common polymorphism of the GSTM1 gene [11, 12]. Since the relevance between GSTM1 polymorphism and CRC risk was raised for the first time in 1993 [13], many studies about it have been reported. However, these results are controversial. To provide a more precise assessment for the association between GSTM1 null genotype and CRC risk, we conducted the present meta-analysis.

Materials and methods

Literature search

We implemented a comprehensive literature search of Science, PubMed, and Embase using search terms as follows: "colorectal cancer", "CRC", "colorectal neoplasm", "colorectal carcinoma", "colon cancer", "colonic neoplasm", "rectum neoplasm", "rectal cancer", "GSTM1", "glutathione s-transferase M1", "glutathione s-transferase null 1", "genotype", "genetic poly-

morphism" or "polymorphism". To identify potentially pertinent studies, an extensive manual search was conducted by reviewing the references of studies enrolled in this study and relevant reviews.

Selection of eligible studies and selection criteria

In total, 156 papers were identified by our search. By reviewing the titles of these papers, 81 papers were excluded, and 75 articles were retrieved for more detailed evaluation. Twenty studies were excluded after the abstracts were reviewed. The full texts of 55 papers were reviewed. Among those papers, two did not provide sufficient data [14, 15]. In addition, the data in four papers overlapped [16-19], so two of the four papers were excluded based on the criteria described below [18, 19]. Finally, 51 papers were included in this meta-analysis [13, 16, 17, 20-67]. The details of selected procedures for the 51 papers are presented in **Figure**

Colorectal cancer risk

Table 1. Characteristics of studies included in the meta-analysis

	D:		 	Genotype distribution				
First author	Year	Country	Racial descent	Source of		Case	Control	
			uescent	controls	Null	Present	Null	Present
Zhong [13]	1993	UK	Caucasian	HB^\dagger	110	86	94	131
Chenevix-Trenh [20]	1995	Australia	Caucasian	NR‡	64	68	101	99
Katoh [21]	1996	Japan	Asian	PB	56	47	55	71
Deakin [22]	1996	UK	Caucasian	HB	135	117	316	261
Gou [23]	1996	China	Asian	PB [§]	7	12	6	17
Gertig [24]	1998	USA	Caucasian	PB	114	97	117	104
Edmund [25]	1998	Japan	Asian	HB	128	172	89	94
Slattery [26]	1998	America	Caucasian	PB	808	759	1004	885
Abdel-Rahman [27]	1999	Egypt	Asian	HB	37	26	30	15
Welfare [28]	1999	UK	Caucasian	PB	102	94	90	88
Zhang [29]	1999	Sweden	Caucasian	PB	44	50	55	54
Gawronskazklarz [30]	1999	Poland	Caucasian	NR	46	24	72	73
Butler [31]	2001	Australia	Caucasian	HB	106	97	108	92
Loktionov [32]	2001	UK	Caucasian	PB	133	73	208	147
Saadat [33]	2001	Iran	Asian	NR	25	21	53	78
Tiemersma [34]	2002	Netherlands	Caucasian	PB	58	44	285	252
Ye [35]	2002	UK	Caucasian	NR	20	21	33	49
Sachse [36]	2002	UK	Caucasian	PB	206	284	291	302
Laso [37]	2002	Spain	Caucasian	HB	133	114	158	138
Sgambato [38]	2002	Italy	Caucasian	НВ	32	12	53	47
Nascimento [39]	2003	Brazil	Mixed	HB	50	52	134	166
Slattery [40]	2003	America	Mixed	PB	404	397	546	467
van der Hel [41]	2003	Netherlands	Caucasian	PB	88	124	369	396
van der Logt [42]	2004	Hungary	Caucasian	HB	291	209	242	258
Ates [43]	2004	Netherlands	Caucasian	PB	184	186	203	212
Kiss [44]	2005	Turkey	Asian	HB	98	83	88	116
Huang [45]	2006	America	Mixed	PB	257	297	371	503
Little [46]	2006	UK	Caucasian	PB	131	110	221	162
Martinez [47]	2006	Spain	Caucasian	PB	87	55	149	180
Probst-Hensch [16]	2006	Singapore	Asian	PB	132	168	525	643
Skjelbred [48]	2007	Norway	Caucasian	PB	55	53	151	148
Yeh [17]	2007	China	Asian	HB	402	321	410	323
Yoshida [49]	2007	Japan	Asian	PB	36	30	62	59
Csejtei [50]	2008	Hungary	Caucasian	HB	60	42	46	51
Pande [51]	2008	America	Caucasian	PB	52	68	113	144
Matakova [52]	2009	Slovakia	Caucasian	PB	100	83	220	202
Zupa [53]	2009	Italy	Caucasian	HB	61	31	68	53
Epplein [54]	2009	America	Caucasian	PB	91	82	147	166
Cleary [55]	2010	Canada	Caucasian	PB	616	550	684	608
Hlavata [56]	2010	Czech	Caucasian	HB	267	228	241	254
Wang [57]	2010	India	Asian	HB	100	202	76	215
Yang [58]	2010	China	Asian	PB	189	133	731	522
Darazy [59]	2011	Lebanon	Asian	PB	25	32	12	58
Nisa [60]	2012	Japan	Asian	PB	549	1506	567	1767
Hezova [61]	2012	Czech	Caucasian	PB	100	97	101	117

Rudolph [62]	2012	Germany	Caucasian	PB	932	822	923	844
Ebrahimkhani [63]	2012	Iran	Asian	HB	1	268	1	281
Vogtmann [64]	2013	China	Asians	PB	201	134	379	259
Djansugurova [65]	2014	Kazakhstan	Mixed	NR	125	124	87	158
Procopciuc [66]	2014	Romania	Caucasian	HB	90	60	65	97
Kassab [67]	2014	Tunisia	Asian	НВ	104	43	87	41

[†]Hospital-based study; ‡Population-based study; §Not reported.

Table 2. Main results of all ORs in the present meta-analysis

	Null	versus prese	ent
N*	OR	95% CI	P#
8,242	1.13	1.06-1.21	<0.00001
5,608	1.14	1.04-1.24	<0.0001
2,125	1.12	1.03- 1.21	0.02
83	1.45	1.02- 2.07	0.69
1,756	1.02	0.93-1.12	0.16
1,536	0.94	0.85-1.03	0.06
1,419	1.09	0.94-1.26	0.04
1,501	1.01	0.92-1.12	0.15
2,738	1.17	1.04-1.32	0.006
1,006	1.19	0.95-1.48	0.009
658	1.01	0.78-1.30	0.009
936	1.09	0.97-1.22	0.02
	8,242 5,608 2,125 83 1,756 1,536 1,419 1,501 2,738 1,006	N* OR 8,242 1.13 5,608 1.14 2,125 1.12 83 1.45 1,756 1.02 1,536 0.94 1,419 1.09 1,501 1.01 2,738 1.17 1,006 1.19 658 1.01	8,242 1.13 1.06-1.21 5,608 1.14 1.04-1.24 2,125 1.12 1.03-1.21 83 1.45 1.02-2.07 1,756 1.02 0.93-1.12 1,536 0.94 0.85-1.03 1,419 1.09 0.94-1.26 1,501 1.01 0.92-1.12 2,738 1.17 1.04-1.32 1,006 1.19 0.95-1.48 658 1.01 0.78-1.30

^{*}Number of cases. *P-value for heterogeneity.

The inclusion criteria were as follows: (a) case-control or prospective study in humans; (b) investigated the relationships between GSTM1 polymorphism and CRC risk, (c) sufficient data which includes odds ratios (ORs) and 95% confidence intervals (Cls), and (d) full-text article written in English. If multiple publications were available for overlapping populations, we selected the publication that provided the most detailed information or had the largest sample size.

Data extraction

To minimize bias, all data were extracted independently and cross-checked by two researchers. For each eligible study, information was extracted as follows: year of publication, first author's surname, country of the participants,

study design (categorized as hospital-based case-control studies, population-based case-control studies or cohort studies), sex of the participants, smoking status, tumor location, tumor subset, and number of participants with the GSTM1 null genotype or an intact GSTM1 gene (number of cases and controls).

Statistical analysis

ORs with 95% CIs were adopted to estimate the association between CRC risk and GSTM1 polymorphisms. A chi-square-based Q-statistical test and the l^2 score were applied to quantify the between-study heterogeneities [68]. When the heterogeneity was considered to be of significance (P<0.05), a random-effect model (RE) was applied, as previously described by Der Simonian and Laird [69]. In contrast, a fixedeffect model (FE) was used when the heterogeneity was insignificant, as previously described by Mantel and Haenszel [70]. The results of these two models were similar, indicating the lack of between-study heterogeneity. Then, analyses were stratified according to ethnicity, sex, smoking status, tumor location, and tumor subset. Additionally, the sensitivity analysis was applied to assess the stability of our

The publication bias was measured by Begg's funnel plot and Egger's regression test [71]. All statistical tests were conducted using the Review Manager (v.5.0; Oxford, England), STATA (v.12.1; STATA Corp. College Station, TX, USA) and Statistical Analysis System software (v.9.1.3; SAS Institute, Cary, NC). All statistical tests were 2-sided. *P*<0.05 was considered statistically significant.

Results

Eligible studies [13, 16, 17, 20-67]

A total of 51 studies with 17,050 patients and 23,704 controls were selected to evaluate the

Cturks or Cub	Experim		Cont		Moint	Odds Ratio	Ver	Odds Ratio
Study or Subgroup	Events		Events			M-H, Random, 95% CI		M-H, Random, 95% CI
zhong 1993	110	196	94	225	1.9%	1.78 [1.21, 2.62]		
Chenevix-Trench 1995	64	132	101	200	1.6%	0.92 [0.59, 1.43]		T
Katoh 1996	56	103	55	126	1.2%	1.54 [0.91, 2.60]		
Gou 1996	7	19	6	23	0.3%	1.65 [0.44, 6.17]		
Deakin 1996	135	252	316	577	2.5%	0.95 [0.71, 1.28]		Ť
Edmund 1998	128	300	89	183	2.0%	0.79 [0.54, 1.14]		7
Slattery 1998	808	1567	1004	1889	3.9%	0.94 [0.82, 1.07]	1998	†
Gertig 1998	114	211	117	221	1.9%	1.04 [0.72, 1.52]	1998	T
Welfare 1999	102	196	90	178	1.8%	1.06 [0.71, 1.59]	1999	+
Zhang 1999	44	94	55	109	1.2%	0.86 [0.50, 1.50]	1999	
Gawronska-szklarz 1999	46	70	72	145	1.0%	1.94 [1.08, 3.51]	1999	
Abdel-Rahman 1999	37	63	30	45	0.6%	0.71 [0.32, 1.58]	1999	
Loktionov 2001	133	206	208	355	2.1%	1.29 [0.90, 1.84]	2001	-
Butler 2001	106	203	108	200	1.8%	0.93 [0.63, 1.38]	2001	+
Saadat 2001	25	46	53	131	0.8%	1.75 [0.89, 3.45]		
sgambato 2002	32	44	53	100	0.7%	2.36 [1.09, 5.11]		
Tiemersma 2002	58	102	285	537	1.6%	1.17 [0.76, 1.79]		+
Sachse 2002	206	490	291	593	2.9%	0.75 [0.59, 0.96]		
laso 2002	133	247	158	296	2.2%	1.02 [0.73, 1.43]	2002	I
Ye 2002	20	41	33	82	0.7%	1.41 [0.66, 3.01]		
nascimento 2003	50	102	134	300	1.5%	1.19 [0.76, 1.87]		+
van der Hel 2003	88	212	369	765	2.4%	0.76 [0.56, 1.04]		-
Slattery 2003	404	801	546	1013	3.4%	0.87 [0.72, 1.05]	2003	4
van der Logt 2004	184	370	203	415	2.6%	1.03 [0.78, 1.37]		
_	291	500	242	500	2.8%			_
Kiss 2004	98	181	88	204		1.48 [1.16, 1.91]		
Ates 2005	131	241	221	383	1.8%	1.56 [1.04, 2.33]		
Little 2006		554	371	303 874	2.3%	0.87 [0.63, 1.21]	2006	_
Huang 2006	257				3.2%	1.17 [0.95, 1.45]		\perp
Probst-Hensch 2006	132	300	525	1168	2.8%	0.96 [0.75, 1.24]		
Martinez 2006	87	142	149	329	1.8%	1.91 [1.28, 2.85]		<u> </u>
Yeh 2007	402	723	410	733	3.2%	0.99 [0.80, 1.21]		\perp
Skjelbred 2007	55	108	151	299	1.6%	1.02 [0.65, 1.58]		<u>T</u>
Yoshida 2007	36	66	62	121	1.0%	1.14 [0.63, 2.08]		
Pande 2008	52	120	113	257	1.6%	0.97 [0.63, 1.51]		T
Csejtei 2008	60	102	46	97	1.1%	1.58 [0.90, 2.77]	2008	
Epplein2009	91	173	147	313	1.9%	1.25 [0.86, 1.82]		T
Matakova 2009	100	183	220	422	2.1%	1.11 [0.78, 1.57]		T
Zupa2009	61	92	68	121	1.1%	1.53 [0.87, 2.69]	2009	
Cleary 2010	616	1166	684	1292	3.7%	1.00 [0.85, 1.17]	2010	†
Wang 2010	100	302	76	291	2.1%	1.40 [0.98, 2.00]	2010	_
Yang 2010	189	322	731	1253	2.8%	1.01 [0.79, 1.30]	2010	+
Hlavata 2010	267	495	241	495	2.8%	1.23 [0.96, 1.58]	2010	_
Darazy 2011	25	57	12	70	0.6%	3.78 [1.68, 8.51]	2011	
Nisa 2012	549	2055	567	2334	3.9%	1.14 [0.99, 1.30]	2012	 -
Ebrahimkhani2012	1	269	1	282	0.1%	1.05 [0.07, 16.85]		ı
Rudolph 2012	932	1754	923	1767	3.9%	1.04 [0.91, 1.18]		ı
Hezova 2012	100	197	101	218	1.9%	1.19 [0.81, 1.76]		
Vogtmann 2013	201	335	379	638	2.7%	1.03 [0.78, 1.34]		
Procopciuc 2014	90	150	65	162	1.5%	2.24 [1.42, 3.52]		
Djansugurova 2014	125	249	87	245	2.0%	1.83 [1.28, 2.63]		
Kassab 2014	104	147	87	128	1.3%	1.14 [0.68, 1.91]		+
Total (95% CI)		17050		23704	100.0%	1.13 [1.06, 1.21]		•
Total events	8242		11237					
Heterogeneity: Tau ² = 0.03	Chi2 = 10	7.69, df	= 50 (P <	0.00001	l); l² = 54%	5		0.01 0.1 1 10 1
Test for overall effect: Z = 3								0.01 0.1 1 10 1

Figure 2. Forest plot of the association between the GSTM1 null polymorphism and colorectal cancer risk in the overall population. Note: GSTM1: *Glutathione S-transferase M 1.*

association between CRC risk and GSTM1 polymorphism [13, 16, 17, 20-67]. All eligible studies were English publication. The main characteristics of these eligible studies are shown in **Table 1** including 16 studies from Asians, 31 studies from Caucasians, and 4 studies from mixed populations. Of the 4 studies from mixed

populations, only 2 studies were performed in African population [39, 45]. Additionally, among the 51 studies, 28 were population-based, 18 were hospital-based, and the other 5 did not report the study design. For all eligible studies, the distribution of genotypes was in accordance with Hardy-Weinberg equilibrium (HWE).

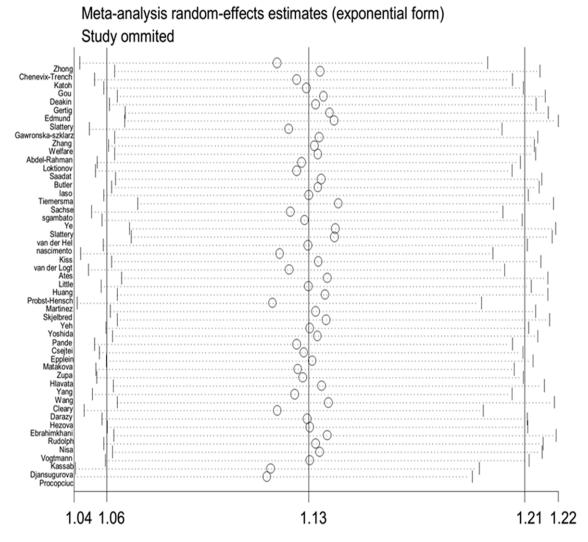
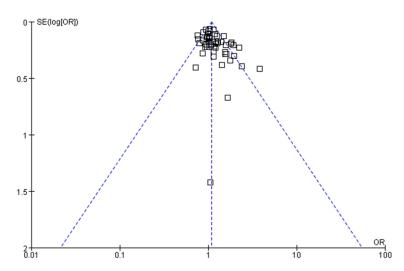


Figure 3. Sensitivity analysis of the present meta-analysis.

Overall


The main outcome of the heterogeneity test and our meta-analysis are shown in **Table 2**. The ORs were calculated for the GSTM1 null genotype versus intact GSTM1 genotypes. CRC risk was significantly higher in the individuals with GSTM1 null genotype than in the individuals with GSTM1 gene (OR=1.13, 95% CI=1.06-1.21, $P_{\rm heterogeneity}$ <0.00001, RE model, **Figure 2**).

Subgroup meta-analysis

In subgroup analysis by race, a significantly increased association between GSTM1 null polymorphism and CRC risk was obtained in Caucasians (OR=1.14, 95% CI=1.04-1.24) and Asians (OR=1.12, 95% CI=1.03-1.21). The num-

ber of African patients is so small and it may not reach adequate sample size. A sensitivity analysis was performed and indicated no significant difference. This suggested that each study or all studies enrolled in this study did not affect overall results of this study, namely that results obtained by this study possessed statistical stability (**Figure 3**).

In the subgroup analysis by tumor location, the GSTM1 null genotype was associated with an increased risk of CRC in the colon (OR=1.17, 95% Cl=1.04-1.32) but not in the rectum (OR=1.19, 95% Cl=0.95-1.48). However, in the analyses stratified by sex, tumor subset and smoking status, no significant association with the GSTM1 null genotype was found. The main

Figure 4. Funnel plots of publication bias in the meta-analysis of the association between genetic polymorphisms of GSTM1 and CRC risk.

outcomes of the heterogeneity test and our meta-analysis are presented in **Table 2**.

Publication bias

Begg's funnel plot and Egger's regression test were carried out to estimate publication biases of all eligible literatures. As depicted in **Figure 4**, the shape of the funnel plot for the overall population is symmetrical, which suggested no publication bias. The results of the Egger's test provided statistical evidence for funnel plot symmetry.

Discussion

Genetic polymorphisms have been reported to alter enzyme activity and lead to individual variation in the risk of cancer [14, 72-75]. Since the first report in the UK of an association of the GSTM1 gene deletion with an increased risk to CRC, approximately 1,800 articles have attempted to identify the relationship between GSTM1 genotypes and cancers, for example, breast cancer, lung cancer, gastric cancer, and prostate cancer, over the past 22 years [10]. However, the results of those studies are contradictory, especially for the studies on colorectal carcinoma [6, 13, 16, 17, 20-67]. We performed an updated meta-analysis that included 51 studies with 17,050 cases and 23,704 control subjects. Based on the cumulative evidence, this study may be a more comprehensive meta-analysis regarding the relationship between the GSTM1variant allele and CRC risk. The main findings of the present meta-analysis suggest that the GSTM1 null genotype contributes to CRC risk in the overall populations, which is consistent with previous studies [76, 77]. Our results also further indicate that GSTM1 plays a key role in CRC carcinogenesis. This is conducive to understanding the correlation between GSTM1 and risk of CRC.

In subgroup analysis by race, we found that the GSTM1 null genotype increased CRC risk in Caucasians and Asians,

and this result is consistent with the results obtained by earlier studies [13, 30, 38, 44, 47, 65, 66, 76, 77]. We also found that the OR for Africans was slightly higher than that for Asians and Caucasians. These findings indicate that GSTM1 polymorphisms may play different roles on CRC risk in different ethnic groups [78, 79]. However, only 2 of the 51 included studies explored the effect of GSTM1 polymorphisms in Africans. Owing to the limited number of African subjects examined (249 cases and 627 controls), larger, well-designed, precise epidemiological studies are required to verify our results.

In the subgroup analysis by tumor location, we observed a significantly higher to risk of colon cancer in individuals with GSTM1-null genotype. Similar results were reported by other previous studies [13, 38, 53]. However, other studies reported no correlation between GSTM1 genotype and colon cancer location [20, 22, 24]. This inconsistency may be due to differences in the expression level of GSTM1 genes in different cell types along the human gastro-intestinal tract [79].

In the analyses stratified by sex, smoking status, and tumor subset, no significant association between GSTM1 polymorphism and CRC risk was identified. However, some studies have demonstrated that increases in CRC risk is associated with those variables in the individuals with the GSTM1 null genotype [13, 21, 27,

32, 49]. Various studies failed to draw the same conclusion regarding the possible association between GSTM1 deletion and distal CRC [17, 20, 21, 24, 26, 29, 35, 37-39, 42, 62, 65]. This may be due to the relatively small sample sizes in these studies, and different ethnicities, different high-risk gene frequencies and different sources of control subjects among these studies. Moreover, there was potential for misclassification of smoking status and tumor subset in our study. Smoking status and tumor subset were reported only in 2920 cases and 1594 cases among 8242 cases, respectively. This may also contribute to different results. Similar to previous meta-analyses, various limitations of our study should be taken into account. First, CRC is a consequence of the interaction of multiple risk factors, such as unhealthy diet, physical inactivity, gender, and age. However, owing to the limited data in the included studies, we were unable to make a more precise assessment by excluding those confounding factors. Furthermore, the pathogenesis of CRC is only partially understood, and researchers intend to explore the interactions of multiple genes encoding enzymes involved in the metabolism of carcinogens and the involvement of those interactions in CRC pathogenesis [66]. Second, in some of the subgroup analyses, the sample size seemed to be relatively small. Thus, the subgroup analyses may not have adequate power to detect true relationships. Finally, our meta-analysis only included published studies, which may potentially have biased the findings.

Overall, the updated meta-analysis demonstrated that the GSTM1 null genotype may contribute to CRC risk in the overall population. Owing to the limitations mentioned above, additional randomized controlled trials or larger epidemiological studies that are, well-designed are warranted to verify our findings.

Disclosure of conflict of interest

None.

Address correspondence to: Chengzeng Wang, Department of Ultrasound, Affiliated Tumor Hospital of Zhengzhou University, No. 127, Dongming Road, Zhengzhou 450008, China. Tel: +86-024-310851-95; Fax: +86-024-31085195; E-mail: czwang1022@ 126.com

References

- [1] Jorgensen ML, Young JM, Solomon MJ. Optimal delivery of colorectal cancer follow-up care: improving patient outcomes. Patient Relat Outcome Meas 2015; 6: 127-138.
- [2] Siegel R, Desantis C, Jemal A. Colorectal cancer statistics. CA Cancer J Clin 2014; 64: 104-117.
- [3] Stigliano V, Sanchez-Mete L, Martayan A, Anti M. Early-onset colorectal cancer: a sporadic or inherited disease? World J Gastroenterol 2014; 20: 12420-12430.
- [4] Warshawsky D. Polycyclic aromatic hydrocarbons in carcinogenesis. Environ Health Perspect 1999; 107: 317-319.
- [5] Sørensen M, Autrup H, Olsen A, Tjønneland A, Overvad K, Raaschou-Nielsen O. Prospective study of NAT1 and NAT2 polymorphisms, tobacco smoking and meat consumption and risk of colorectal cancer. Cancer Lett 2008; 266: 186-190.
- [6] Brody H. Lung cancer. Nature 2014; 513: S1.
- [7] Tenesa A, Dunlop MG. New insights into the aetiology of colorectal cancer from genomewide association studies. Nat Rev Genet 2009; 10: 353-358.
- [8] Economopoulos KP, Sergentanis TN. GSTM1, GSTT1, GSTP1, GSTA1 and colorectal cancer risk: a comprehensive meta-analysis. Eur J Cancer 2010; 46: 1617-1631.
- [9] Gilliland FD, Li YF, Saxon A, Diaz-Sanchez D. Effect of glutathione-S-transferase M1 and P1 genotypes on xenobiotic enhancement of allergic responses: randomised, placebo-controlled crossover study. Lancet 2004; 363: 119-125.
- [10] Hayes JD, Flanagan JU, Jowsey IR. Glutathione transferases. Annu Rev Pharmacol Toxicol 2005; 45: 51-88.
- [11] Kang SG, Lee HJ, Choi JE, An H, Rhee M, Kim L. Association study between glutathione Stransferase GST-M1, GST-T1, and GST-P1 polymorphisms and tardive dyskinesia. Hum Psychopharmacol 2009; 24: 55-60.
- [12] Mannervik B, Board PG, Hayes JD, Listowsky I, Pearson WR. Nomenclature for mammalian soluble glutathione transferases. Methods Enzymol 2005; 401: 1-8.
- [13] Zhong S, Wyllie AH, Barnes D, Wolf CR, Spurr NK. Relationship between the GSTM1 genetic polymorphism and susceptibility to bladder, breast and colon cancer. Carcinogenesis 1993; 14: 1821-1824.
- [14] Saeed HM, Alanazi MS, Nounou HA, Salaby MA, Semlali A, Azzam N, Aljebreen A, Alharby O, Parine NR, Shaik J, Arafaha M. Cytochrome P450 1A1, 2E1 and GSTM1 gene polymorphisms and susceptibility to colorectal cancer

- in the Saudi population. Asian Pac J Cancer Prev 2013; 14: 3761-3768.
- [15] Aghajany-Nasab M, Panjehpour M, Samiee SM, Rahimi F, Movahedian A. Glutathione Stransferase mu gene variants and colorectal cancer development—use of sequence-specific probes for an Iranian population. Asian Pac J Cancer Prev 2011; 12: 1511-1515.
- [16] Probst-Hensch NM, Sun CL, Van Den Berg D, Ceschi M, Koh WP, Yu MC. The effect of the cyclin D1 (CCND1) A870G polymorphism on colorectal cancer risk is modified by glutathione-S-transferase polymorphisms and isothiocyanate intake in the Singapore Chinese Health Study. Carcinogenesis 2006; 27: 2475-2482.
- [17] Yeh CC, Sung FC, Tang R, Chang-Chieh CR, Hsieh LL. Association between polymorphisms of biotransformation and DNA-repair genes and risk of colorectal cancer in Taiwan. J Biomed Sci 2007; 14: 183-193.
- [18] Koh WP, Nelson HH, Yuan JM, den Berg DV, Jin A, Wang R, Yu MC. Glutathione S-transferase (GST) gene polymorphisms, cigarette smoking and colorectal cancer risk among Chinese in Singapore. Carcinogenesis 2011; 32: 1507-1511.
- [19] Yeh CC, Lai CY, Hsieh LL, Tang R, Wu FY, Sung FC. Protein carbonyl levels, glutathione Stransferase polymorphisms and risk of colorectal cancer. Carcinogenesis 2010; 31: 228-233.
- [20] Chenevix-Trench G, Young J, Coggan M, Board P. glutathione s-transferase m1 and t1 polymorphisms: susceptibility to colon cancer and age of onset. Carcinogenesis 1995; 16: 1655-1657.
- [21] Katoh T, Nagata N, Kuroda Y, Itoh H, Kawahara A, Kuroki N, Ookuma R, Bell DA. Glutathione S-transferase MI (GSTM1) and T I (GSTT1) genetic polymorphism and susceptibility to gastric and colorectal adenocarcinoma. Carcinogenesis 1996; 17: 1855-1859.
- [22] Deakin M, Elder J, Hendrickse C, Baldwin B, Pantin C, Wild N, Leopard P, Bell DA, Jones P, Duncan H, Brannigan K, Alldersea J, Fryer AA, Strange RC. Glutathione S-transferase GSTT1 genotypes and susceptibility to cancer: studies of interactions with GSTM1 in lung, oral, gastric and colorectal cancers. Carcinogenesis 1996; 17: 881-884.
- [23] Guo JY, Wan DS, Zeng RP, Zhang Q. The polymorphism of GSTM1, mutagen sensitivity in colon cancer and healthy control. Mutat Res 1996; 372: 17-22.
- [24] Gertig DM, Stampfer M, Haiman C, Hennekens CH, Kelsey K, Hunter DJ. Glutathione S-transferase GSTM1and GSTT1 polymorphisms and colorectal cancer risk: a prospective study.

- Cancer Epidemiol Biomarkers Prev 1998; 7: 1001-1005.
- [25] Lee E, Huang Y, Zhao B, Seow-Choen F, Balakrishnan A, Chan SH. Genetic polymorphism of conjugating enzymes and cancer risk: GSTM1, GSTT1, NAT1 and NAT2. J Toxicol Sci 1998; 23: 140-142.
- [26] Slattery ML, Potter JD, Samowitz W, Bigler J, Caan B, Leppert M. NAT2, GSTM-1, cigarette smoking, and risk of colon cancer. Cancer Epidemiol Biomarkers Prev 1998; 7: 1079-1084.
- [27] Abdel-Rahman SZ, Soliman AS, Bondy ML, Wu XF, El-Badawy SA, Mahgoub KG, Ismail S, Seifeldin IA, Levin B. Polymorphism of glutathione S-transferase loci GSTM1 and GSTT1 and susceptibility to colorectal cancer in Egypt. Cancer Lett 1999: 142: 97-104.
- [28] Welfare M, MonesolaAdeokun A, Bassendine MF, Daly AK. Polymorphisms in GSTP1, GSTM1, and GSTT1 and susceptibility to colorectal cancer. Cancer Epidemiol Biomarkers Prev 1999; 8: 289-292.
- [29] Zhang H, Ahmadi A, Arbman G, Zdolsek J, Carstensen J, Nordenskjold B, Soderkvist P, Sun XF. Glutathione S-transferase T1 and M1 genotypes in normal mucosa, transitional mucosa and colorectal adenocarcinoma. Int J Cancer 1999; 84: 135-138.
- [30] Gawrońska-Szklarz B, Lubiński J, Kladny J, Kurzawski G, Bielicki D, Wójcicki M, Sych Z, Musial HD. Polymorphism of GSTM1 gene in patients with colorectal cancer and colonic polyps. Exp Toxicol Pathol 1999; 51: 321-325.
- [31] Butler WJ, Ryan P, Roberts-Thomson IC. Metabolic genotypes and risk for colorectal cancer. J Gastroenterol Hepatol 2001; 16: 631-635.
- [32] Loktionov A, Watson MA, Gunter M, Stebbings WS, Speakman CT, Bingham SA. Glutathione-S-transferase gene polymorphisms in colorectal cancer patients: interaction between GSTM1 and GSTM3 allele variants as a riskmodulating factor. Carcinogenesis 2001; 22: 1053-1060.
- [33] Saadat I, Saadat M. Glutathione S-transferase M1 and T1 null genotypes and the risk of gastric and colorectal cancers. Cancer Lett 2001; 169: 21-26.
- [34] Tiemersma EW, Kampman E, Bueno de Mesquita HB, Bunschoten A, van Schothorst EM, Kok FJ, Kromhout D. Meat consumption, cigarette smoking, and genetic susceptibility in the etiology of colorectal cancer: results from a Dutch prospective study. Cancer Causes Control 2002; 13: 383-393.
- [35] Ye Z, Parry JM. Genetic polymorphisms in the cytochrome P450 1A1, glutathione S-transferase M1 and T1, and susceptibility to colon cancer. Teratog Carcinog Mutagen 2002; 22: 385-392.

- [36] Sachse C, Smith G, Wilkie MJ, Barrett JH, Waxman R, Sullivan F, Forman D, Bishop DT, Wolf CR; Colorectal Cancer Study Group. A pharmacogenetic study to investigate the role of dietary carcinogens in the etiology of colorectal cancer. Carcinogenesis 2002; 23: 1839-1849.
- [37] Laso N, Lafuente MJ, Mas S, Trias M, Ascaso C, Molina R, Ballesta A, Rodriguez F, Lafuente A. Glutathione S-transferase (GSTM1 and GS-TT1)-dependent risk for colorectal cancer. Anticancer Res 2002; 22: 3399-3403.
- [38] Sgambato A, Campisi B, Zupa A, Bochicchio A, Romano G, Tartarone A, Galasso R, Traficante A, Cittadini A. Glutathione S-transferase (GST) polymorphisms as risk factors for cancer in a highly homogeneous population from southern Italy. Anticancer Res 2002; 22: 3647-3652.
- [39] Nascimento H, Coy CS, Teori MT, Boin IF, Góes JR, Costa FF, Lima CS. Possible influence of glutathione S-transferase GSTT1 null genotype on age of onset of sporadic colorectal adenocarcinoma. Dis Colon Rectum 2003; 46: 510-515.
- [40] lattery ML, Edwards S, Curtin K, Schaffer D, Neuhausen S. Associations between smoking, passive smoking, GSTM-1, NAT2, and rectal cancer. Cancer Epidemiol Biomarkers Prev 2003; 12: 882-889.
- [41] van der Hel OL, Bueno de Mesquita HB, Roest M, Slothouber B, van Gils C, van Noord PA, Grobbee DE, Peeters PH. No modifying effect of NAT1, GSTM1, and GSTT1 on the relation between smoking and colorectal cancer risk. Cancer Epidemiol Biomarkers Prev 2003; 12: 681-682.
- [42] van der Logt EM, Bergevoet SM, Roelofs HM, van Hooijdonk Z, te Morsche RH, Wobbes T, de Kok JB, Nagengast FM, Peters WH. Genetic polymorphisms in UDP-glucuronosyl transferases and glutathione S-transferases and colorectal cancer risk. Carcinogenesis 2004; 25: 2407-2415.
- [43] Ateş NA, Tamer L, Ateş C, Ercan B, Elipek T, Ocal K, Camdeviren H. Glutathione S-transferase M1, T1, P1 genotypes and risk for development of colorectal cancer. Biochem Genet 2005; 43: 149-163.
- [44] Kiss I, Németh A, Bogner B, Pajkos G, Orsós Z, Sándor J, Csejtey A, Faluhelyi Z, Rodler I, Ember I. Polymorphisms of glutathione-S-transferase and arylamine N-acetyltransferase enzymes and susceptibility to colorectal cancer. Anticancer Res 2004; 24: 3965-3970.
- [45] Huang K, Sandler RS, Millikan RC, Schroeder JC, North KE, Hu J. GSTM1 and GSTT1 polymorphisms, cigarette smoking, and risk of colon cancer: a population-based case-control study in North Carolina (United States). Cancer Causes Control 2006: 17: 385-394.

- [46] Little J, Sharp L, Masson LF, Brockton NT, Cotton SC, Haites NE, Cassidy J. Colorectal cancer and genetic polymorphisms of CYP1A1, GS-TM1 and GSTT1: a case-control study in the Grampian region of Scotland. Int J Cancer 2006; 119: 2155-2164.
- [47] Martínez C, Martín F, Fernández JM, García-Martín E, Sastre J, Díaz-Rubio M, Agúndez JA, Ladero JM. Glutathione S-transferases mu 1, theta 1, pi 1, alpha 1 and mu 3 genetic polymorphisms and the risk of colorectal and gastric cancers in humans. Pharmacogenomics 2006; 7: 711-718.
- [48] Skjelbred CF, Saebø M, Hjartåker A, Grotmol T, Hansteen IL, Tveit IL, Hoff G, Kure EH. Meat, vegetables and genetic polymorphisms and the risk of colorectal carcinomas and adenomas. BMC Cancer 2007; 7: 228.
- [49] Yoshida K, Osawa K, Kasahara M, Miyaishi A, Nakanishi K, Hayamizu S, Osawa Y, Tsutou A, Tabuchi Y, Shimada E, Tanaka K, Yamamoto M, Takahashi J. Association of CYP1A1, CYP1A2, GSTM1 and NAT2 gene polymorphisms with colorectal cancer and smoking. Asian Pac J Cancer Prev 2007; 8: 438-444.
- [50] Csejtei A, Tibold A, Varga Z, Koltai K, Ember A, Orsos Z, Feher G, Horvath OP, Ember I, Kiss I. GSTM, GSTT and p53 polymorphisms as modifiers of clinical outcome in colorectal cancer. Anticancer Res 2008; 28: 1917-1922.
- [51] Pande M, Amos CI, Osterwisch DR, Chen JY, Lynch PM, Broaddus R, Frazier ML. Genetic variation in genes for the xenobiotic-metabolizing enzymes CYP1A1, EPHX1, GSTM1, GSTT1, and GSTP1 and susceptibility to colorectal cancer in Lynch syndrome. Cancer Epidemiol Biomarkers Prev 2008; 17: 2393-2401.
- [52] Matakova T, Sivonova M, Halasova E, Mistuna D, Dzian A, Masar J, Dobrota D. Polymorphisms of biotransforming enzymes (GSTs) and their association with colorectal cancer in the Slovak population. Neoplasma 2009; 56: 422-427.
- [53] Zupa A, Sgambato A, Bianchino G, Improta G, Grieco V, Torre GL, Campisi B, Traficante A, Aieta M, Cittadini A. GSTM1 and NAT2 polymorphisms and colon, lung and bladder cancer risk: a case-control study. Anticancer Res 2009; 29: 1709-1714.
- [54] Epplein M, Wilkens LR, Tiirikainen M, Dyba M, Chung FL, Goodman MT, Murphy SP, Henderson BE, Kolonel LN, Marchand LL. Urinary isothiocyanates; glutathione S-transferase M1, T1, and P1 polymorphisms; and risk of colorectal cancer: the Multiethnic Cohort Study. Cancer Epidemiol Biomarkers Prev 2009; 18: 314-320.
- [55] Cleary SP, Cotterchio M, Shi E, Gallinger S, Harper P. Cigarette smoking, genetic variants

- in carcinogen-metabolizing enzymes, and colorectal cancer risk. Am J Epidemiol 2010; 172: 1000-1014.
- [56] Hlavata I, Vrana D, Smerhovsky Z, Pardini B, Naccarati A, Vodicka P, Novotny J, Mohelnikova-Duchonova B, Soucek P. Association between exposure-relevant polymorphisms in CYP1B1, EPHX1, NQ01, GSTM1, GSTP1 and GSTT1 and risk of colorectal cancer in a Czech population. Oncol Rep 2010; 24: 1347-1353.
- [57] Wang J, Jiang J, Zhao Y, Gajalakshmi V, Kuriki K, Suzuki S, Nagaya T, Nakamura S, Akasaka S, Ishikawa H, Tokudome S. Genetic polymorphisms of glutathione S-transferase genes and susceptibility to colorectal cancer: a case-control study in an Indian population. Cancer Epidemiol 2011: 35: 66-72.
- [58] Yang G, Gao YT, Shu XO, Cai QY, Li GL, Li HL, Ji BT, Rothman N, Dyba M, Xiang YB, Chung FL, Chow WH, Zheng W. Isothiocyanate exposure, glutathione S-transferase polymorphisms, and colorectal cancer risk. Am J Clin Nutr 2010; 91: 704-711.
- [59] Darazy M, Balbaa M, Mugharbil A, Saeed H, Sidani H, Abdel-Razzak Z. CYP1A1, CYP2E1, and GSTM1 gene polymorphisms and susceptibility to colorectal and gastric cancer among Lebanese. Genet Test Mol Biomarkers 2011; 15: 423-429.
- [60] Nisa H, Budhathoki S, Morita M, Toyomura K, Nagano J, Ohnaka K, Kono S, Ueki T, Tanaka M, Kakeji Y, Maehara Y, Okamura T, Ikejiri K, Futami K, Maekawa T, Yasunami Y, Ichimiya H, Terasaka R. Microsomal epoxide hydrolase polymorphisms, cigarette smoking, and risk of colorectal cancer: the Fukuoka Colorectal Cancer Study. Mol Carcinog 2013; 52: 619-626.
- [61] Hezova R, Bienertova-Vasku J, Sachlova M, Brezkova V, Vasku A, Svoboda M, Radová L, Kiss I, Vyzula R, Slaby O. Common polymorphisms in GSTM1, GSTT1, GSTP1, GSTA1 and susceptibility to colorectal cancer in the Central European population. Eur J Med Res 2012; 17: 17.
- [62] Rudolph A, Hein R, Hoffmeister M, Forsti A, Hemminki K, Risch A, Brenner H, Chang-Claude J. Copy number variations of GSTT1 and GSTM1, colorectal cancer risk and possible effect modification of cigarette smoking and menopausal hormone therapy. Int J Cancer 2012; 131: E841-848.
- [63] Ebrahimkhani S, Asgharian AM, Nourinaier B, Ebrahimkhani K, Vali N, Abbasi F, Zali MR. Association of GSTM1, GSTT1, GSTP1 and CY-P2E1 single nucleotide polymorphisms with colorectal cancer in Iran. Pathol Oncol Res 2012; 18: 651-656.
- [64] Vogtmann E, Xiang YB, Li HL, Cai QY, Wu QJ, Li GL, Yang G, Waterbor JW, Levitan EB, Zhang B,

- Zheng W, Shu XO, Cruciferous vegetables, glutathione S-transferase polymorphisms, and the risk of colorectal cancer among Chinese men. Ann Epidemiol 2014; 24: 44-49.
- [65] Djansugurova L, Zhunussova G, Khussainova E, Iksan O, Afonin G, Kaidarova D, Parker MI. Association of DCC, MLH1, GSTT1, GSTM1, and TP53 gene polymorphisms with colorectal cancer in Kazakhstan. Tumour Biol 2015; 36: 279-289.
- [66] Procopciuc LM, Osian G. GSTM1-null genotype as a risk factor for sporadic colorectal cancer in a Romanian population. Association with the NAT2-rapid-acetylator phenotype and exposure to environmental factors. Cancer Invest 2014; 32: 53-62.
- [67] Kassab A, Msolly A, Lakhdar R, Gharbi O, Miled A. Polymorphisms of glutathione-S-transferases M1, T1, P1 and susceptibility to colorectal cancer in a sample of the Tunisian population. Med Oncol 2014; 31: 760.
- [68] Der Simonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177-188.
- [69] Lau J, Ioannidis JP, Schmid CH. Quantitative synthesis in systematic reviews. Ann Intern Med 1997; 127: 820-826.
- [70] Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 1959; 22: 719-748.
- [71] Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629-634.
- [72] Hamachi T, Tajima O, Uezono K, Dekker E, van Krieken JH, Nagengast FM, Peters WH. CY-P1A1, GSTM1, GSTT1 and NQ01 polymorphisms and colorectal adenomas in Japanese men. World J Gastroenterol 2013; 19: 4023-4030.
- [73] Zhao ZQ, Guan QK, Yang FY, Zhao P, Zhou B, Chen ZJ. System review and metaanalysis of the relationships between five metabolic gene polymorphisms and colorectal adenoma risk. Tumour Biol 2012; 33: 523-535.
- [74] Northwood EL, Elliott F, Forman D, Barrett JH, Wilkie MJ, Carey FA, Steele RJ, Wolf R, Bishop T, Smith G. Polymorphisms in xenobiotic metabolizing enzymes and diet influence colorectal adenoma risk. Pharmacogenet Genomics 2010; 20: 315-336.
- [75] Rebbeck TR. Molecular epidemiology of the human glutathione S-transferase genotypes GSTM1 and GSTT1 in cancer susceptibility. Cancer Epidemiol Biomarkers Prev 1997; 6: 733-743.
- [76] Teng Z, Wang L, Zhang J, Cai S, Liu Y. Glutathione S-transferase M1 polymorphism and colorectal cancer risk in Chinese population. Tumour Biol 2014: 35: 2117-2121.

Colorectal cancer risk

- [77] Cai X, Yang L, Chen H, Wang C. An updated meta-analysis of the association between GSTM1 polymorphism and colorectal cancer in Asians. Tumour Biol 2014; 35: 949-953.
- [78] Naveen AT, Adithan C, Padmaja N, Shashindran CH, Abraham BK, Satyanarayanamoorthy K, Anitha P, Gerard N, Krishnamoorthy R. Glutathione S-transferase M1 and T1 null genotype distribution in South Indians. Eur J Clin-Pharmacol 2004; 60: 403-406.
- [79] Strange RC, Faulder CG, Davis BA, Hume R, Brown JA, Cotton W, Hopkinson DA. The human glutathione S-transferases: studies on the tissue distribution and genetic variation of the GST1, GST2 and GST3 isozymes. Ann Hum Genet 1984; 48: 11-20.