Original Article Identification of the risk factors for liver-related mortality in primary biliary cirrhosis patients: a case-control study in China

Xiaorui Liu^{1,2}, Jingjing Li^{1,2}, Lu Bai¹, Zujiang Yu¹, Quancheng Kan^{1,2}

Departments of ¹Infectious Diseases, ²Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China

Received April 6, 2016; Accepted September 22, 2016; Epub November 15, 2016; Published November 30, 2016

Abstract: Background: Primary biliary cirrhosis (PBC) is an autoimmune liver condition with relatively slow progression, leading to liver failure and death. We retrospectively investigated potential risk factors of liver-related mortality in patients with PBC. Methods: The data of patients with PBC at the First Affiliated Hospital of Zhengzhou University in China from 2007 to 2013 were included, specifically that of 91 deceased and 364 living (control) patients. Univariate and multivariate conditional logistic regression models were applied to determine potential risk factors of liver-related mortality, with calculations of odds ratios (ORs) and 95% confidence intervals (Cls). Results: The following features were statistically similar between the deceased and living patients: age, gender, nationality, the status of anti-human immunodeficiency virus antibody, anti-hepatitis C virus antibody, and hepatitis B surface antigen. A large proportion of deceased PBC patients (92.31%) had died of decompensated cirrhosis; the most common immediate cause was hemorrhagic shock (41.75%), then hepatic encephalopathy (38.45%). Independent risk factors for liver-related mortality were: hepatocellular carcinoma, elevated total bilirubin (TBIL), decreased albumin (ALB) and platelet levels, and non-response to ursodeoxycholic acid (P<0.001, all). Cutoff values of TBIL and ALB for prediction of poor prognosis were determined as 38.65 µmol/L and 34.8 g/L, respectively; the areas under the ROC curve were 0.771 and 0.758 (P<0.001), respectively. Conclusions: PBC patients with hepatocellular carcinoma, high total bilirubin, low albumin or platelet levels at the initial diagnosis of disease, or who do not response to UDCA, are prone to liver-related death.

Keywords: Primary biliary cirrhosis, liver-related mortality, hepatocellular carcinoma, risk factor, case-control study

Introduction

Primary biliary cirrhosis (PBC) is a cholestatic liver disease of slow progression, with a high female-to-male ratio (9:1) in middle-aged PBC patients [1-3]. Chronic nonsuppurative destruction of the bile ducts in PBC ultimately leads to liver cirrhosis or other adverse outcomes. In recent years, the prevalence of PBC has increased worldwide [4-6].

Currently, the treatment of PBC patients with ursodeoxycholic acid (UDCA) has been proven most efficacious. For those at the terminal stage or with liver failure, liver transplantation is the only curative option [7, 8]. The progression of PBC is accelerated by comorbidities such as hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, or alcohol intake [9]. Nevertheless, the potential risk factors for liverrelated mortality in PBC patients have not been fully clarified.

Previous studies have shown that baseline parameters may influence the prognosis of PBC patients; investigations have included histological stage, age, or serum bilirubin or albumin levels [10-13]. Furthermore, clinical symptoms at the time of diagnosis, such as fatigue and pruritus, may indicate acceleration of disease progression [14, 15]. There is evidence that UDCA treatment and sensitivity to medication may improve survival or biochemical test results [16-18].

Although some factors have been shown to affect prognosis in PBC, variations in study designs have left questions regarding the risk

Table 1. Clinical and demographic charac-teristics of PBC patients in case and controlgroups*

	Cases (%)	Controls (%)	P-value
Subjects, n	91	364	
Age, y	55 (35-84)	55 (31-86)	0.898
Gender			1.000
Male	11 (12.09)	44 (12.09)	
Female	80 (87.91)	320 (87.91)	
Nationality			0.084
Han	89 (97.80)	343 (94.23)	
Others	2 (2.20)	21 (5.77)	
HBsAg			1.000
Negative	90 (98.90)	360 (98.90)	
Positive	1 (1.10)	4 (1.10)	

Abbreviations: HBsAg, hepatitis B surface antigen. *Data are presented as the number (frequency) for categorical data, or as median (interquartile range) for continuous data, or as indicated. NA: not applicable.

factors of liver-related mortality. To investigate the potential risk factors for liver-related mortality in PBC patients, this retrospective study utilized the database of the First Affiliated Hospital of Zhengzhou University in China to compare the clinical data of 638 patients at different disease stages with that of 105 deceased PBC patients.

Material and methods

Study population and design

A total of 750 patients with PBC at the First Affiliated Hospital of Zhengzhou University from January 2007 to December 2013 were enrolled in our study. Among these patients, 105 were deceased and 638 were survived (control group). The patients' clinical and demographic information was acquired from the hospital database.

Diagnosis of PBC was based on at least 2 of the 3 following criteria: biochemical evidence of cholestasis with elevation of alkaline phosphatase activity; the presence of anti-mitochondrial antibodies (AMA); and if a biopsy was performed, histopathological evidence of nonsuppurative cholangitis and

the dest-ruction of small or medium-sized bile ducts. Excluded from the study were patients with Wilson's disease, primary sclerosing cholangitis, autoimmune hepatitis, or alpha-1 antitrypsin deficiency. We chose a ratio of 4 control inpatients to one deceased. Control subjects were matched to the deceased patients by gender, age (\pm 2 years), and duration of hospitalization (\pm 6 months). Of the 105 deceased patients, 91 had complete clinical histories and test information for inclusion; therefore 504 matched living controls were thus required for the study (**Figure 1**).

The Research Ethics Committee of the First Affiliated Hospital of Zhengzhou University approved this study. Due to the de-identified secondary data that were analyzed in this study, the committee waived the need for written informed consent from the patients.

Analysis of clinical factors

The following clinical features were considered in this analysis of the potential risk factors for liver-related mortality in PBC: disease stage, liver function, status of hepatitis virus infection, blood routine test results, hemostasis examination at the initial diagnosis of PBC, clinical history, comorbidities, clinical manifestations, and the use of UDCA. Liver cirrhosis was determined based on pathological examination of a liver biopsy, or by ≥ 2 imaging methods (e.g., angiography, computed tomography [CT], abdominal ultrasonography, or magnetic resonance imaging [MRI]) and clinical manifestations. Cirrhosis was confirmed using one imaging method and the presence of complications, such as hepatic encephalopathy, ascites, or esophageal varices, as well as liver fibrosis tests. Hepatocellular car-

		n	%
Main death diagnosis	Decompensated cirrhosis	84	92.31
	Hepatocellular carcinoma	7	7.69
Direct death cause	Hemorrhagic shock	38	41.75
	Hepatic encephalopathy	35	38.45
	Septic shock	9	9.90
	Hepatorenal syndrome	6	6.60
	Respiratory failure	3	3.30

 Table 2. Main death diagnosis and direct causes of death in the case group

cinoma (HCC) was diagnosed pathologically, by ≥ 2 imaging modalities, or by one imaging modality and serum α -fetoprotein (AFP) ≥ 400 ng/mL. The history of alcohol intake was defined as alcohol consumption ≥ 4 days/ week for ≥ 5 years [19]. A smoking history was defined as cigarette consumption ≥ 4 days/ week for ≥ 5 years [19].

Statistical analysis

Data are presented as the mean ± standard deviation or the percentage (number) of patients. The Mann-Whitney U test and the chisquared test were used for analyzing the nonparametric and independent variables, respectively. Univariate and multivariable conditional logistic regression models were used to calculate the odds ratio (OR) and 95% CI (confidence interval). Variables with a P-value <0.05 in a univariate analysis were subsequently adjusted by age and gender for a multiple logistic regression analysis. We determined the cutoff value of continuous risk factors for predicting the liver-related mortality by the receiver operator characteristic curve (ROC). A forward selection process was applied for model establishment. SPSS software (v16.0, SPSS, Chicago, IL, USA) was used for statistical analysis. A P-value < 0.05 was considered statistically significant.

Results

General characteristics of the study population

To estimate the risk factors for liver-related mortality in PBC, 91 deceased patients and 364 living patients (controls) identified from our database of 750 Chinese PBC patients over nearly 7 years of follow-up time were enrolled in this study (**Figure 1**; **Table 1**). Between the deceased PBC patients and the control group, there were no significant differences in mean age, gender, nationality, anti-HIV antibody, anti-HCV antibody and hepatitis B surface antigen (HBsAg) status. A large proportion of deceased PBC patients died of decompensated cirrhosis (92.31%, 84/91, and others died of HCC (7.69%, 7/91; **Table 2**).

In addition, the direct causes of mortality in deceased PBC patients were analyzed. Hemorrhagic shock was the most common direct cause of death (41.75%, 38/91), followed by hepatic encephalopathy (38.45%, 35/91). Other direct causes of death causes were septic shock (9.90%, 9/91), hepatorenal syndrome (6.60%, 6/91), and respiratory failure (3.30%, 3/91).

Risk factors in the univariate model

We first determined the potential risk factors of liver-associated death in PBC patients by applying an unadjusted univariate conditional logistic regression analysis (**Table 3**). PBC patients who had received a diagnosis of liver cirrhosis (any stage) had a 9.40-fold greater risk of mortality that did patients with chronic hepatitis only (95% CI=4.35-18.503), while the risk was 34-fold greater for those with HCC (95% CI=4.362-85.16). Diabetes mellitus and fatigue were associated with increased crude ORs for PBC-associated mortality. The use of UDCA and response to UDCA were associated with a lower risk of mortality.

Other risk factors for PBC-associated mortality were: reduced albumin (ALB) and platelet count (PLT) levels; and increased total bilirubin (TBIL), aspartate aminotransferase (AST), AST/ PLT ratio index (APRI), prothrombin time (PT), and international normalized ratio (INR). However, other factors, such as HBsAg positivity, AMA positivity, hypertension, history of smoking, history of alcohol abuse, and alanine transaminase (ALT), were all excluded from the univariate model.

Risk factors in the multivariate model

The following were included in multivariate logistic regression analysis: initial diagnostic stage, AST, TBIL, PLT, APRI, ALB, PT, INR, fatigue, type 2 diabetes mellitus, use of UDCA, and response to UDCA (**Table 4**). Adjustments

Risk factors for PBC-associated mortality

					of confey
Variables	Cases (%)	Controls (%)	uOR (95% CI)	В	P value
Follow-up time (month)	8 (3-77)	34 (3-84)	0.735 (0.667-0.810)	-0.308	0.000
Initial diagnostic stage					
Chronic hepatitis	7 (7.69)	126 (34.62)	1.000	-	-
LC	77 (84.62)	238 (65.38)	9.403 (4.35-18.503)	2.205	0.000
HCC	7 (7.69)	0	34.000 (4.362-85.16)	3.552	0.001
HBsAg					
Negative	90 (98.90)	360 (98.90)	1.000	-	-
Positive	1 (1.10)	4 (1.10)	1.000 (0.139-7.177)	0.000	1.000
HBcAb		· · · ·			
Negative	52 (57.14)	212 (58.24)	1.000	-	-
Positive	39 (42.86)	152 (41.76)	1.037 (0.684-1.570)	0.036	1.000
AMA	(, , , , , , , , , , , , , , , , , , ,	(, , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·		
Negative	3 (3.30)	19 (5.22)	1.000	-	-
Positive	88 (96.70)	345 (94.78)	1.686 (0.466-6.103)	0.522	0.426
ALB	29 (13-40)	35 (18-52)	0.828 (0.784-0.874)	-0.189	0.000
TBIL	52.8 (7.3-645.7)	22.9 (3.3-585.1)	1.009 (1.006-1.012)	0.009	0.000
AIT	60.0 (3-803)	53 (7-2740)	1 (0.998-1.001)	0.000	0.778
AST	94 (11-1601)	67 (17-1262)	1.002 (1.000-1.004)	0.002	0.029
ALP	260 (37-829)	249 (58-3036)	1 (0.999-1.001)	0.000	0.533
PIT	85 (23-325)	143 (10-443)	0 991 (0 987-0 995)	-0.009	0.000
APRI	1.09 (0.16-7.18)	0.55 (0.05-16.3)	1.483 (1.178-1.867)	0.394	0.001
PT	13 3 (9 4-45 4)	11.3 (8.3-28.9)	1 427 (1 258-1 618)	0.355	0.000
INR	1.15 (0.79-1.77)	0.99 (0.79-3.25)	11.756 (3.212-43.030)	2.464	0.000
Fatigue	(0.1 0)	0.00 (00 0			0.000
No	27 (29 67)	151 (41 48)	1 000	-	-
Yes	64 (70.33)	213 (58 52)	1 670 (1 019-2 737)	0.513	0.042
Pruritus				0.010	0.0.2
No	62 (68 13)	278 (76.37)	1 000	-	-
Yes	29 (31 87)	86 (23 63)	1 543 (0 920-2 591)	0 4 3 4	0 100
Diabetes mellitus	20 (02:01)	00 (20.00)	1010(0102021001)	0.101	0.100
No	73 (80 22)	327 (89 84)	1 000	-	-
Yes	18 (19 78)	37 (10 16)	2 341 (1 221-4 488)	0.851	0.010
Hypertension	10 (10.10)	01 (10.10)	2.041 (1.221 4.400)	0.001	0.010
No	85 (93 41)	312 (85 71)	1 000		
Yes	6 (6 59)	52 (14 29)	0 412 (0 169-1 005)	-0.886	0.051
Alcohol intake	0 (0.00)	02 (14.20)	0.412 (0.100 1.000)	0.000	0.001
No	85 (93 41)	343 (94 23)	1 000	_	_
Yes	6 (6 59)	21 (5 77)	1 185 (0 424-3 313)	0 170	0 747
Smoking	0 (0.00)	21 (0117)	1.100 (0112 1 0.010)	0.11.0	011 11
No	90 (98 90)	344 (94 51)	1 000	-	-
Yes	1 (1 10)	20 (5 49)	0 174 (0 022-1 359)	-1 747	0 095
Blood transfusion	1 (1.10)	20 (0.40)	0.114 (0.022 1.000)	1.141	0.000
No	89 (97 80)	348 (95 60)	1 000		
Ves	2 (2 20)	16 (4 40)	0 500 (0 115-2 175)	-0 693	0 355
	2 (2.20)	10 (4.40)	0.000 (0.110 2.11 0)	0.000	0.000
No	10 (10 99)	11 (3 02)	1 000	_	_
Yes	81 (89 01)	353 (96 98)	0 275 (0 117-0 648)	-1 291	0 003
Response to UDCA	UT (UU.UT)	000 (00.00)	0.210 (0.111-0.0+0)	1.201	0.000
Νο	62 (68 10)	117 (32 10)	1 000	_	_
Yes	29 (31 90)	247 (67 90)	0 212 (0 127-0 353)	-1 550	0 000
					0.000

Table 3. Univariate conditional logistic regression analysis of potential risk factors for PBC mortality

Abbreviations: uOR, unadjusted odds ratio; CI, confidence interval; LC, liver cirrhosis; HCC, hepatocellular carcinoma; HBsAg, hepatitis B surface antigen; HbcAb, hepatitis B core antibody; AMA, anti-mitochondrial antibodies; ALB, albumin; TBIL, total bilirubin; ALT, alanine transaminase; AST, aspartate aminotransferase; ALP, alkaline phosphatase; PLT, platelet count; APRI, AST/PLT ratio index; PT, prothrombin time; INR, international normalized ratio; UDCA, ursodeoxycholic acid.

SIS OF POLEITING TISK TACIOIS TOF PDC MORTAILLY					
Variables	aOR (95% CI)	В	P value		
Age	1.002 (0.982-1.022)	0.002	0.859		
Gender					
Male	0.991 (0.523-1.877)	-0.009	0.977		
Female	1.000	-	-		
Chronic hepatitis	1.000	-	-		
LC	1.339 (0.491-3.650)	0.292	0.568		
HCC	23.654 (2.601-215.077)	3.164	0.005		
AST	1.002 (0.998-1.005)	0.002	0.409		
TBIL	1.007 (1.003-1.011)	0.007	0.001		
PLT	0.995 (0.991-1.000)	-0.005	0.038		
APRI	0.900 (0.637-1.272)	-0.105	0.551		
ALB	0.891 (0.831-0.956)	-0.115	0.001		
PT	1.091 (0.918-1.296)	0.087	0.324		
INR	0.172 (0.000-106.709)	-1.759	0.592		
Fatigue					
No	1.000	-	-		
Yes	1.383 (0.711-2.690)	0.324	0.339		
Diabetes mellitus					
No	1.000	-	-		
Yes	2.217 (0.910-5.402)	0.796	0.080		
Use of UDCA					
No	1.000	-	-		
Yes	0.544 (0.171-1.731)	-0.608	0.303		
Response to UDCA					
No	1.000	-	-		
Yes	0.292 (0.160-0.533)	-1.232	0.000		

Table 4. Multivariate conditional logistic regression analysis of potential risk factors for PBC mortality

Abbreviations: aOR, adjusted odds ratio; CI, confidence interval; LC, liver cirrhosis; HCC, hepatocellular carcinoma; AST, aspartate aminotransferase; TBIL, total bilirubin; PLT, platelet count; APRI, AST/PLT ratio index; ALB, albumin; PT, prothrombin time; INR, international normalized ratio; UDCA, ursodeoxycholic acid.

were made for possible confounders (i.e., age and gender). Factors associated with a lower risk of death were: PLT elevated by 1×10^{9} /L (adjusted OR [aOR]=0.995, 95% CI: 0.991-1.000), ALB elevated by 1 g/L (aOR=0.891, 95% CI: 0.831-0.956), and response to UDCA (aOR=0.292, 95% CI: 0.160-0.533). Independent risk factors for liver-related mortality were: HCC at the initial diagnosis (aOR=23.654, 95% CI: 2.601-215.077, *P*=0.005) and TBIL elevated by 1 µmol/mL (aOR=1.007, 95% CI: 1.003-1.011).

Receiver operator characteristics

Because our multivariate analysis identified levels of TBIL, ALB, and PLT at initial diagnosis

as independent risk factors associated with PBC-associated mortality, we further determined the cutoff values of these continuous factors for predicting the survival of PBC patients by ROC analysis. As shown in Figure 2, the cutoff values of TBIL, ALB and PLT were 38.65 µmol/mL, 34.8 g/L, and 118×10⁹/L respectively, while the areas under the ROC were 0.771, 0.758, and 0.682 respectively. Negative predictive values of these three factors were 90.63%, 92.79% and 89.35%, respectively, which suggested that patients with levels of ALB and PLT above the cutoff value and TBIL under the cutoff value are at a lower risk for mortality.

Discussion

In this study, a hospital-based casecontrol study was conducted to identify the risk factors for liver-related mortality in Chinese patients with PBC. HCC, TBIL, ALB, and PLT levels at initial diagnosis were identified as the risk factors for liver-related mortality in these patients. We also found that, after controlling for potential confounders, response to UDCA therapy could reduce liver-related mortality.

The mortality rate of PBC patients is higher than that of the general population; the severity of disease has been significantly associated with the prognosis [8, 10, 20]. In the present study,

the control subjects were matched by age, gender, and the duration of hospitalization to explore potential factors that have not been previously considered. It has been reported that older age and gender were associated with the prognosis of PBC, and especially the development of HCC [21-23]. These variables were not included in the statistical models. There have been studies showing that early histological stages and asymptomatic patients were associated with better outcomes, while patients at later stages and with symptoms tended to have a higher risk of liver cirrhosis and mortality [8, 10]. In the present study, the univariate analysis showed that patients with HCC and liver cirrhosis had a higher risk of mortality. However, after adjusting for confounding

Figure 2. ROC curves of ALB, TBIL and PLT for prediction of liver-related mortality in PBC patients.

variables, only HCC was identified as an independent risk factor for PBC mortality, with a risk 23.654-fold higher than in patients without HCC.

The mainstay of therapy for PBC is UDCA (13-15 mg/kg/d); treatment with UDCA may influence the history and prognosis of PBC. Several studies have suggested that UDCA therapy could improve some biochemical test results and could reduce the rates of liver transplantation or death. In other words, the biochemical response to UDCA may predict the long-term outcomes of PBC [16-18]. Ter Borg et al. [13] and Corpechot et al. [24] reported that PBC patients, if treated at an early stage, had a survival rate comparable to that of a standardized general population [13, 24]. Moreover, placebo-controlled trials have shown that UDCA therapy could improve histological features and delay histological progression [25, 26]. However, there have been several studies that failed to show a beneficial effect of UDCA in PBC [27-29], perhaps because the follow-up periods were not sufficiently long to provide a convincing conclusion. In our study, the subjects were followed for approximately 7 years, and we conclude that a favorable response to UDCA can reduce the rate of mortality in PBC patients, as in earlier studies.

At an early stage, PBC has no influences on allcause mortality, while the presence of viral infection, such as HBV or HCV infection, accelerates disease progression [9]. However, in the present study it appears that HBsAg positivity was not associated with risk of PBC mortality. This may be because few patients were coinfected with HBC or HCV. Several studies have reported that ALB, TBIL, ALP, PLT, and APRI were associated with adverse outcomes or predicted complications of PBC [13, 30-33]. In our study, the unadjusted univariate analysis indicated that ALB, TBIL, AST, PLT, APRI, PT, and INR at initial diagnosis were associated with liver-related mortality in PBC. After adjusting for confounding variables, only ALB, TBIL and PLT remained as independent risk factors. This finding could predict prognosis to some extent.

It should be noted that the current study has several limitations. Although we analyzed many potential factors, a number of other factors (such as blood glucose level) were not included for analysis because of the potential association with alcohol intake and diabetes mellitus. Secondly, histological stage is a pivotal factor for evaluating disease progression. However, because biopsies were not consistently performed, determination of clinical stage was based on biochemical tests and clinical manifestations, and not on histological results. Thirdly, medical interventions such as drugs for diabetes mellitus and hypertension, with the exception of UDCA, may influence the prognosis of disease, but in this study we could not obtain details because the patients could not provide clear indications. Fourthly, anti-glycoprotein-210 and anti-centromere antibodies have been identified as risk factors for PBC progression [21]. At our hospital, testing for these parameters has only recently begun and we lacked the information for the patients in this study. Finally, this was a single-center study, although the patients came from all over the country. Our results warrant a multicenter, prospective study to confirm our conclusions.

In summary, we demonstrated that HCC, reduced ALB and PLT, and increased TBIL levels at initial diagnosis were the independent risk factors for liver-related mortality in patients with PBC. Moreover, PBC patients who responded favorably to UDCA treatment had a lower risk for liver-related mortality. All of these conditions should be systemically considered when evaluating the progression of PBC.

Disclosure of conflict of interest

None.

Address correspondence to: Quancheng Kan, Departments of Infectious Diseases and Pharmacy, First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou 450052, China. Tel: +86-371-67966942; Fax: +86-371-67966942; E-mail: grklxr@163.com

References

- Heathcote EJ. Management of primary biliary cirrhosis. The American Association for the Study of Liver Diseases practice guidelines. Hepatology 2000; 31: 1005-1013.
- [2] Das A, Ben-Menachem T, Cooper GS, Chak A, Sivak MV Jr, Gonet JA and Wong RC. Prediction of outcome in acute lower-gastrointestinal haemorrhage based on an artificial neural network: internal and external validation of a predictive model. Lancet 2003; 362: 1261-1266.
- [3] Kaplan MM and Gershwin ME. Primary biliary cirrhosis. N Engl J Med 2005; 353: 1261-1273.
- [4] James OF, Bhopal R, Howel D, Gray J, Burt AD and Metcalf JV. Primary biliary cirrhosis once rare, now common in the United Kingdom? Hepatology 1999; 30: 390-394.
- [5] Kim WR, Lindor KD, Locke GR 3rd, Therneau TM, Homburger HA, Batts KP, Yawn BP, Petz JL, Melton LJ 3rd and Dickson ER. Epidemiology and natural history of primary biliary cirrhosis in a US community. Gastroenterology 2000; 119: 1631-1636.
- [6] Prince MI and James OF. The epidemiology of primary biliary cirrhosis. Clin Liver Dis 2003; 7: 795-819.
- [7] Yamagiwa S and Ichida T. Recurrence of primary biliary cirrhosis and primary sclerosing cholangitis after liver transplantation in Japan. Hepatol Res 2007; 37 Suppl 3: S449-454.
- [8] Lindor KD, Gershwin ME, Poupon R, Kaplan M, Bergasa NV, Heathcote EJ; American Association for Study of Liver Diseases. Primary biliary cirrhosis. Hepatology 2009; 50: 291-308.
- [9] Rigopoulou EI, Zachou K, Gatselis NK, Papadamou G, Koukoulis GK and Dalekos GN. Primary biliary cirrhosis in HBV and HCV patients: Clinical characteristics and outcome. World J Hepatol 2013; 5: 577-583.
- [10] Christensen E, Neuberger J, Crowe J, Altman DG, Popper H, Portmann B, Doniach D, Ranek L, Tygstrup N and Williams R. Beneficial effect of azathioprine and prediction of prognosis in primary biliary cirrhosis. Final results of an international trial. Gastroenterology 1985; 89: 1084-1091.
- [11] Carbone M, Mells GF, Pells G, Dawwas MF, Newton JL, Heneghan MA, Neuberger JM, Day DB, Ducker SJ, Consortium UP, Sandford RN, Alexander GJ and Jones DE. Sex and age are determinants of the clinical phenotype of primary biliary cirrhosis and response to ursode-

oxycholic acid. Gastroenterology 2013; 144: 560-569, e567; quiz e513-564.

- [12] Shapiro JM, Smith H and Schaffner F. Serum bilirubin: a prognostic factor in primary biliary cirrhosis. Gut 1979; 20: 137-140.
- [13] Ter Borg PC, Schalm SW, Hansen BE, van Buuren HR; Dutch PBC Study Group. Prognosis of ursodeoxycholic Acid-treated patients with primary biliary cirrhosis. Results of a 10-yr cohort study involving 297 patients. Am J Gastroenterol 2006; 101: 2044-2050.
- [14] Jones DE, Al-Rifai A, Frith J, Patanwala I and Newton JL. The independent effects of fatigue and UDCA therapy on mortality in primary biliary cirrhosis: results of a 9 year follow-up. J Hepatol 2010; 53: 911-917.
- [15] Quarneti C, Muratori P, Lalanne C, Fabbri A, Menichella R, Granito A, Masi C, Lenzi M, Cassani F, Pappas G and Muratori L. Fatigue and pruritus at onset identify a more aggressive subset of primary biliary cirrhosis. Liver Int 2015; 35: 636-641.
- [16] Shi J, Wu C, Lin Y, Chen YX, Zhu L and Xie WF. Long-term effects of mid-dose ursodeoxycholic acid in primary biliary cirrhosis: a meta-analysis of randomized controlled trials. Am J Gastroenterol 2006; 101: 1529-1538.
- [17] Lammert C, Juran BD, Schlicht E, Chan LL, Atkinson EJ, de Andrade M and Lazaridis KN. Biochemical response to ursodeoxycholic acid predicts survival in a North American cohort of primary biliary cirrhosis patients. J Gastroenterol 2014; 49: 1414-1420.
- [18] Shi TY, Zhang LN, Chen H, Wang L, Shen M, Zhang X and Zhang FC. Risk factors for hepatic decompensation in patients with primary biliary cirrhosis. World J Gastroenterol 2013; 19: 1111-1118.
- [19] Loomba R, Yang HI, Su J, Brenner D, Barrett-Connor E, Iloeje U and Chen CJ. Synergism between obesity and alcohol in increasing the risk of hepatocellular carcinoma: a prospective cohort study. Am J Epidemiol 2013; 177: 333-342.
- [20] Jackson H, Solaymani-Dodaran M, Card TR, Aithal GP, Logan R and West J. Influence of ursodeoxycholic acid on the mortality and malignancy associated with primary biliary cirrhosis: a population-based cohort study. Hepatology 2007; 46: 1131-1137.
- [21] Nakamura M, Kondo H, Mori T, Komori A, Matsuyama M, Ito M, Takii Y, Koyabu M, Yokoyama T, Migita K, Daikoku M, Abiru S, Yatsuhashi H, Takezaki E, Masaki N, Sugi K, Honda K, Adachi H, Nishi H, Watanabe Y, Nakamura Y, Shimada M, Komatsu T, Saito A, Saoshiro T, Harada H, Sodeyama T, Hayashi S, Masumoto A, Sando T, Yamamoto T, Sakai H, Kobayashi M, Muro T, Koga M, Shums Z, Norman GL and Ishibashi H.

Anti-gp210 and anti-centromere antibodies are different risk factors for the progression of primary biliary cirrhosis. Hepatology 2007; 45: 118-127.

- [22] Guilbert E, Bullet J, Sandali O, Basli E, Laroche L and Borderie VM. Long-term rejection incidence and reversibility after penetrating and lamellar keratoplasty. Am J Ophthalmol 2013; 155: 560-569, e562.
- [23] Suzuki A, Lymp J, Donlinger J, Mendes F, Angulo P and Lindor K. Clinical predictors for hepatocellular carcinoma in patients with primary biliary cirrhosis. Clin Gastroenterol Hepatol 2007; 5: 259-264.
- [24] Corpechot C, Carrat F, Bahr A, Chretien Y, Poupon RE and Poupon R. The effect of ursodeoxycholic acid therapy on the natural course of primary biliary cirrhosis. Gastroenterology 2005; 128: 297-303.
- [25] Corpechot C, Carrat F, Bonnand AM, Poupon RE and Poupon R. The effect of ursodeoxycholic acid therapy on liver fibrosis progression in primary biliary cirrhosis. Hepatology 2000; 32: 1196-1199.
- [26] Angulo P, Batts KP, Therneau TM, Jorgensen RA, Dickson ER and Lindor KD. Long-term ursodeoxycholic acid delays histological progression in primary biliary cirrhosis. Hepatology 1999; 29: 644-647.
- [27] Goulis J, Leandro G and Burroughs AK. Randomised controlled trials of ursodeoxycholicacid therapy for primary biliary cirrhosis: a meta-analysis. Lancet 1999; 354: 1053-1060.
- [28] Rudic JS, Poropat G, Krstic MN, Bjelakovic G and Gluud C. Ursodeoxycholic acid for primary biliary cirrhosis. Cochrane Database Syst Rev 2012; 12: CD000551.

- [29] Gong Y, Huang Z, Christensen E and Gluud C. Ursodeoxycholic acid for patients with primary biliary cirrhosis: an updated systematic review and meta-analysis of randomized clinical trials using Bayesian approach as sensitivity analyses. Am J Gastroenterol 2007; 102: 1799-1807.
- [30] Tomiyama Y, Takenaka K, Kodama T, Kawanaka M, Sasaki K, Nishina S, Yoshioka N, Hara Y and Hino K. Risk factors for survival and the development of hepatocellular carcinoma in patients with primary biliary cirrhosis. Intern Med 2013; 52: 1553-1559.
- [31] Huang YL, Yao DK, Hu ZD, Sun Y, Chen SX, Zhong RQ and Deng AM. Value of baseline platelet count for prediction of complications in primary biliary cirrhosis patients treated with ursodeoxycholic acid. Scand J Clin Lab Invest 2013; 73: 17-23.
- [32] Trivedi PJ, Bruns T, Cheung A, Li KK, Kittler C, Kumagi T, Shah H, Corbett C, Al-Harthy N, Acarsu U, Coltescu C, Tripathi D, Stallmach A, Neuberger J, Janssen HL and Hirschfield GM. Optimising risk stratification in primary biliary cirrhosis: AST/platelet ratio index predicts outcome independent of ursodeoxycholic acid response. J Hepatol 2014; 60: 1249-1258.
- [33] Corpechot C, Carrat F, Poupon R and Poupon RE. Primary biliary cirrhosis: incidence and predictive factors of cirrhosis development in ursodiol-treated patients. Gastroenterology 2002; 122: 652-658.