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Abstract: Chronic obstructive pulmonary disease is an inflammatory lung disease mainly caused by cigarette smoke 
inhalation. We aimed to evaluate the effect of tiotropium bromide, which is an anticholinergic bronchodilator, on 
inflammation and remodeling in the subacute cigarette exposure mice model. Thirty-five healthy 25-40 g male balb-
c mice were categorized into 3 groups: control group (n=7), those exposed to cigarette smoke (n=18), and those 
exposed to cigarette smoke and treated with tiotropium bromide (n=10). After 5 weeks, tiotropium or saline was 
administered to mice for a period of two weeks by inhalation. The mice were anesthetized, bronchoalveolar lavage 
was performed and lung tissues removed. Interleukin-1β (IL-1β), macrophage inflammatory protein-1α (MIP-1α), 
tumor necrosis factor α (TNF-α) measurements were made in BAL fluid. The lung tissues were fixated and sections 
were stained for morphological evaluation of the lung tissues. The presence of cells undergoing apoptosis and 
the macrophages were determined by immunohistochemical detection of caspase-3 and MAC387. We found that 
cigarette exposure significantly increased the IL-1β, TNF-α and MIP-1α levels. Furthermore, tiotropium significantly 
improved the IL-1β, TNF-α and MIP-1α levels (P<0.05). The smoke exposure group exhibited an increased thickness 
of the alveolar wall, pulmonary edema and hemorrhage, as well as infiltration of the inflammatory cells into the 
alveolar spaces. In the Thio group the interstitial fibrosis and inflammation were decreased compared to the smoke 
group. The numbers of MAC387-labeled cells and the caspase-3-labeled cells were higher in the smoke group than 
in the other groups (P<0.0001). Besides its bronchodilator effect, tiotropium may be a promising therapeutic choice 
to control inflammation and remodeling due to cigarette exposure.

Keywords: Chronic obstructive pulmonary disease, tiotropium bromide, smoking, bronchodilator agents, airway 
remodelling, inflammation

Introduction

Chronic obstructive pulmonary disease (COPD) 
is a disease characterized by progressive air-
way obstruction accompanied by increased 
chronic inflammation in the airways and pulmo-
nary parenchyme [1]. An inflammatory response 
to harmful particles or gases is observed. 
Cigarette smoke-related airway inflammation 
and remodeling, in particular, widening of the 
alveolar spaces and remodeling in the small air-
ways are the causes of airway obstruction [2, 
3]. Inflammation in the airways is known to 
develop before appearance of the typical path-
ological findings [4]. Oxidative stress observed 

as a result of pulmonary infiltration by neutro-
phils and macrophages contributes to the irre-
versible damage in the parenchyme and the 
airways, and molecular mechanisms start the 
pulmonary and systemic inflammations [5].

The effects of acetylcholine, a parasympathetic 
neurotransmitter, on the bronchomotor tonus 
and mucus secretion in submucosal glands 
within the respiratory tract are well known [6]. 
There are data present suggesting that acetyl-
choline regulates various functions about the 
inflammation and remodeling within the respi-
ratory tract in pulmonary diseases [7, 8]. 
Furthermore, acetylcholine is known to be syn-
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thesized particularly from the inflammatory 
cells and the airway epithelium in the neurons 
[9, 10].

Tiotropium bromide is a long-acting muscarinic 
antagonist (LAMA), which has been used in the 
treatment of COPD. Tiotropium prevents the 
binding of acetylcholine to muscarinic recep-
tors. Its muscarinic M3 receptor binding half-
life is longer, which induces bronchoconstruc-
tion [11]. The effects of tiotropiumun on pul- 
monary functions, COPD exacerbations and the 
quality of life in patients with COPD have been 
demonstrated in many clinical studies [12, 13]. 
Although various experimental studies have 
recently been conducted on the effects of 
tiotropiumun on pulmonary inflammation and 
remodeling, these effects are yet unclear. 

We aimed to evaluate the anti-inflammatory 
and anti-remodeling effects of tiotropium bro-
mide, which is a long-acting muscarinic antago-
nist in the subacute cigarette exposure model.

Material and methods

Animal groups and treatments

Thirty-five healthy 25-40 gram male balb-c 
mice were purchased from the Experimental 
Animal Centre of Uludag University Medical 
Faculty. The present study was approved by the 
Ethics Committee of The Kocaeli University 
Committee on the Use and Care of Animals 
approved the experiments (Ethical Committee 
no: KOÜ HADYEK 4/4-2015). All of the investi-
gations conformed to the 1996 National 
Academy of Science’s Guide for the Care and 
Use of Laboratory Animals. 

The mice were randomized into three groups. 
Control group (C) (n=7), the group exposed to 
cigarette smoke (CS) (n=18), and the group 
exposed to CS treated with tiotropium (Tio) 
(n=10). The mice were bred in SPF conditions 

and were maintained at a constant tempera-
ture and humidity, with ad libitum access to 
food and water. 

Cigarette smoke exposure

In the CS and tiotropium groups, the mice were 
exposed to cigarette smoke for 2 h twice daily, 
5 days per week for 5 weeks by using whole-
body Smoke Exposure System. Our whole-body 
Smoke Exposure System is similar to the sys-
tem designed and developed by the GMT R&D 
company. The mice were exposed to CS using 
available filtered cigarettes (12 mg tar/1.0 mg 
nicotine, Philip Morris, Richmond, VA). The sys-
tem basically included a cigarette smoke 
machine, mixing and dilution areas and two 
exposure areas. All areas were constructed 
using Plexiglas. The smoke exposure test con-
ditions conducted in this study have been pre-
sented in Table 1.

Drug administration

After the 5th week, tiotropium was applied to 
the tiotropium group, and saline was adminis-
tered to the control group as well as CS group 
once daily for 2 weeks. For inhalation, the mice 
were placed into an acrylic box (15×21×15 cm) 
with 5-8 animals in one box, and tiotropium 
bromide diluted in sterile saline (5 micrograms/
kg/day; Boehringer Ingelheim Pharma GmbH & 
Co. KG, Biberach, Germany) or sterile saline 
only were administered via ultrasonic nebulizer. 
In order to provide the air flow and exhaust of 
the aerosols, two exhaust holes of 1 cm were 
opened on one side of the box [14].

Collection of bronchoalveolar lavage fluid 
(BALF) and preparation of the lung tissue

For BALF analysis, the mice were anesthetized 
with pentobarbital (50 mg/kg-1, intraperitone-
ally), and, after having performed a tracheoto-
my, a custom-built cannula was inserted into 
the trachea. The lungs were lavaged three 
times with 0.5 ml of PBS. Following the lavage 
procedure, the lungs were removed for histo-
pathological evaluation. 

ELISA for Inflammatory cytokines

The BALF was centrifuged at 3000 rpm for 20 
min, and the supernatant was collected and 
stored at -40°C for subsequent measurement 
of IL-1β, MIP-1α, TNF-α.

Table 1. Smoke exposure test paramaters
Number of cigarettes 2
Puff time per minute for each cigarette 1
Puff drawing duration 2 seconds
Mainstream flow rate 1, 1 lt/min
Mainstream (puff) volume 37 cm3

Sidestream flow rate 4 lt/min
Clean air flow rate 8 lt/min
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The IL-1β, MIP-1α, and the TNF-α levels were 
analyzed with the ELISA kits using the Alisei 
Quality System Seac Radin Company analyser 
(Sunred, Shanghai). 

ylcarbazole (AEC) as chromogen. The negative 
controls comprised tissue sections incubated 
without primary antibody. Finally, the sections 
were mounted for counting [15, 16].

Figure 1. IL1β in the BALF (P=0.002) (A), TNFα levels in the BALF (P<0.001) 
(B), and MIP1α in the BALF (P=0.007) (C).

Immunohistochemical and 
Masson trichrome stainings

The lungs of all experimental 
groups were fixed with buff-
ered in 4% paraformaldehyde. 
Following fixation, the lung tis-
sues were embedded in par-
affin and sectioned at 5 µm. 
The paraffin sections were 
processed with caspase-3 
(Santa Cruz Biotechnology, 
Inc., sc-98785), Macrophage 
Marker Antibody (MAC387, 
Santa Cruz Biotechnology, 
Inc., sc-66204), immunostain-
ings and Masson trichrome 
staining as described below.

Paraffin sections were immu-
nostained with ImmunoCruzTM 
rabbit LSAB Staining System 
(sc-2051) or ImmunoCruzTM 
mouse ABC Staining System 
(sc-2017) for the caspase-3 
(1:200 dilution) or MAC387 
(1:200 dilution) antibodies. 
The paraffin-embedded tis-
sue slices were deparaffinized 
with xylene. The endogenous 
peroxidase activity was sto- 
pped by incubation in 0.3% 
hydrogen peroxide in metha-
nol. The tissue slices were 
hydrated with graded alcohol, 
treated with 10% normal 
serum, and then incubated 
with the primer antibody at 
4°C overnight. They were then 
incubated with the biotinylat-
ed anti-rabbit IgG or anti-
mouse IgG for 30 min at room 
temperature, and then with 
avidin D-horseradish peroxi-
dase or avidin and biotinylat-
ed horseradish peroxidase in 
10% normal goat serum for 
30 min at room temperature. 
The slices were then visual-
ized using 3,3’-Diaminoben- 
zidine (DAB) or 3-amino-4-eth-
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The sections were stained with Masson’s tri-
chrome and Hematoxylin and Eosin (HE) for 
morphological evaluation of the lung tissues. 
The sections were processed for conventional 
histology using the Masson’s Trichrome stain. 
Finally, images of the stained sections were 
captured with a Leica DFC295 HD color digital 
camera mounted on a Leica DM2500 micro-
scope and stored as Tagged Image File Format 
images. The images were processed with the 
Image analysis program to the area measure- 
ments.

Counting of caspase-3 and MAC387 labelled 
cells

The presence of cells undergoing apoptosis 
and the macrophages were determined by 
immunohistochemical detection of caspase-3 
and MAC387. We randomly selected four fields 
from the three sections through the lung tissue 
for each mouse. Caspase-3 and MAC387-
labeled cells were counted. 

Statistical analysis

Statistical analysis was performed using the 
computer software program SPSS for Windows 

(Version 17.0, SPSS Inc., USA). The data of this 
study were expressed as a mean ± standard 
deviation (SD). The differences among multiple 
groups were analyzed using the one-way ANOVA 
followed by post hoc Tukey test calculations for 
the inter-group comparisons. Significance was 
defined as a p-value of 0.05 (two-tailed). 

Results

The IL1β within the BAL fluid was determined  
to be 6.78±3.88 in the control group, 12.86± 
0.83 in the smoke exposure group, and 9.28± 
3.49 in the tiotropium group (P=0.02). The MIP 
within the BAL fluid was observed to be 
114.29±14.18 in the control group, 144.04± 
20.03 in the smoke exposure group, and 
125.46±19.024 in the tiotropium group (P= 
0.012). TNFα within the BAL fluid was deter-
mined to be 70.43±6.36 in the control group, 
98.28±5.15 in the smoke exposure group and 
74.73±21.20 in the tiotropium group (P< 
0.0001). When the IL1β, MIP1α and the TNFα 
levels within the BAL fluid were evaluated, 
increased cytokine levels were observed in 
smoke groups, whereas improvement was 
observed in tiotropium groups (Figure 1).

Figure 2. The control (A), smoke (B), Tio (C) groups 
are shown with Masson trichrome staining. The as-
terisks indicate stained fibrotic areas.
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We performed Masson trichrome staining for 
alveolar architecture and collagen to under-
stand the development of fibrosis. The control 
group demonstrated normal alveolar architec-
ture with the Masson trichrome staining 
(Figures 2A, 3A). 

The smoke exposure group exhibited an incre- 
ased thickness of the alveolar wall, pulmonary 
edema and hemorrhage, as well as infiltration 
of inflammatory cells into the alveolar spaces 

(Figures 2B, 3B). The alveolar spaces were 
filled with large, vacuolated and foamy macro-
phages. The macrophages in the alveolar spac-
es were larger than normal macrophages and 
described as hypertrophic and proliferative 
macrophages. The smoke exposure group 
exhibited a significant increase in the intersti-
tial fibrosis and inflammation. In addition, many 
multi-nucleated giant cells were identified with-
in the alveolar spaces. In the Thio group, the 
interstitial fibrosis and inflammation were 
decreased compared to the smoke group 
(Figures 2C, 3C, 4).

Caspase-3 labeling was undetectable in the 
control group (Figure 5A). The number of cas-
pase-3-labeled cells was higher in the smoke 
exposure group than in the other groups (Figure 
5B, P<0.0001). There was a significant decre- 
ase in the number of caspase-3 labeled cells in 
the tiotropium group compared to smoke group 
(Figures 5C, 6). 

The MAC387-labeled cells were greater in the 
number of the smoke group than in the control 
group (Figure 7B, P<0.0001). There was a sig-

Figure 3. Morphology of lung alveolar cells in the 
control (A), smoke (B) and Tio (C) groups with HE 
staining.

Figure 4. Area measurements using ImageJ with 
Masson’s trichrome staining.
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nificant decrease in the number of MAC387-
labeled cells in the tiotropium group compared 
to smoke group (Figures 7C, 8). 

Discussion

In our study, tiotropiumun-related improvement 
was observed in the levels of inflammatory 
cytokines IL-1β, MIP-1α, TNF-α in the BALF, 
which were increased due to smoking, and a 
decrease in the alveolar MAC387-labeled mac-

rophage count, apoptosis, alveolar Wall thick-
ness and interstitial fibrosis were observed. 

COPD has a chronic inflammatoy course. 
Chronic airway obstruction is believed to de- 
velop as a result of inflammatory responses 
leading to the remodeling and stenosis of the 
airways in response to various particles and 
gases and primarily, cigarette smoke. Various 
studies have been conducted on the role of 
inflammatory cell types and cytokines within 
the airways, and these have been demonstrat-
ed to be related to the development of COPD 
[17-19]. There are data suggesting the contri- 
bution of monocyte chemo-attractant protein 
(MCP-1), matrix metalloproteinase (MMP)-2, 
MMP-8, MMP-9, interleukin (IL)-1β, IL-6, IL-8, 
tumor necrosis factor (TNF)-α, mediators se- 
creted from these epithelial cells and the mac-
rophage inflammatory protein (MIP)-1α COPD 
development [20-22].

TNFα has an important role in the patholophysi-
ology of COPD [23]. TNFα is produced primarily 
in the alveolar macrophages and many other 
cells including mast cells, epithelial cells and T 

Figure 5. Representative images showing Cas-
pase-3 labeled cells in the lung in the control 
(A), smoke (B), Tio (C) groups. Arrowheads mean 
Caspase-3 labeled cells. Caspase-3 labelled 
cells were arranged in clusters of amorphous 
cells (arrowheads) in the smoke group (B).

Figure 6. The Caspase-3 labeled cell counts of 
groups in the lung for apoptotic cells.
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cells. TNFα induces IL8 expression and up-reg-
ulation of endothelial adhesion molecules, and 
provides neutrophil chemotaxis and migration. 
Additionally, CCL13 expression contributes to 
the chemotactic activities of eosinophils, mon- 
ocytes, T lymphocytes, and basophils [24, 25]. 
TNFα also activates the epithelial and smooth-
muscle cells [25, 26]. Increased TNFα levels 
have been determined in the sputum and blood 
samples of patients with COPD [27, 28].

IL-1α and β are proinflammatory cytokines that 
are produced within monocytes, macrophages 
and fibroblasts, which bind to the IL-1 receptor. 
IL1β is believed to have a role in smoke-induced 
emphysema and airway remodelling. It is known 
to be increased in the serum, sputum and BALF 
samples of patients with stable COPD [29, 30].

Macrophage inflammatory protein 1α (MIP-1α) 
induces monocyte and macrophage chemo- 
taxis and t lymphocyte subset [31]. MIP-1α 
mRNA expression has been shown to be 
increased in the pulmonary tissues and bron-
chial epithelium of smoker patients with emphy-
sema [32].

In our study, TNF, IL1β and MIP-1α levels were 
observed to be increased by the smoke expo-
sion compared to the control group. The levels 
of these cytokines were regressed with tiotro-
pium application. 

Vagal tone is increased in COPD. Various stud-
ies have shown that acetylcholine and the 
enzyme synthesizing it, choline-acetyl transfer-
ase (ChAT), have been dispersed in all of the 

Figure 7. Representative images showing 
MAC387 labeled cells in the lung in the control 
(A), smoke (B), and Tio (C) groups. Arrowheads 
mean MAC387 labeled cells.

Figure 8. The MAC387 labeled cell counts of groups 
in the lung for macrophage cells.
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airway epithelium and throughout the airways 
including inflammatory cells as well [33]. Mu- 
scarinic receptors have been known to be lo- 
cated in various cell types including epithelial 
and inflammatory cells. Macrophages secrete 
M3 receptor more frequently than M1 and M2 
in COPD, and the M1 and M3 receptors within 
the neutrophils tend to increase as well [34]. 
The acetylcholine-mediated autocrine and 
paracrine post-junctional target cell stimulation 
of muscarinic receptors leads to various inflam-
matory processes and results in remodeling. 
Through activation of the muscarinic receptor, 
acetylcholine stimulates the proliferation of the 
smooth muscle cells fibroblasts within the 
lungs and collagen synthesis in the fibroblasts 
[35, 36].

Tiotropium is a synthetic muscarinic receptor 
inhibitor and resmbles ipratropium structurally; 
however, it is cleaved at a slower rate and has 
higher receptor affinity [37, 38]. Thus, bindings 
to M3 and M1 receptors are provided with a 
single dose and prolonged improvement in clin-
ical respiratory parameters is provided [39, 
40]. In addition to the bronchodilatator effects 
of tiotropium, the inflammation reducing effect 
oftiotropium has begun to be investigated in 
experimental studies. 

In the allergic asthma model formed in Guinea 
pigs, tiotropiumun has been shown to inhibit 
airway smooth cell hypertrophy, mucus gland 
hypertrophy, goblet cell hyperplasia and inflam-
mation as well [41]. In the study of Cui et al., a 
chronic gastro-oesophageal reflux disease 
(GORD) model was formed by causing pulmo-
nary infection via HCL administration, and the 
data obtained indicated that muscarinic recep-
tor blockage via atropine or tiotropium prev- 
ented the airway inflammation and remodel- 
ing similar to dexamethasone. IL8 and ICAM1 
levels were shown to have increased, and epite-
lial and smooth muscle thicknesses were dem-
onstrated to be decreased with tiotropium 
application. No reduction was observed in the 
total cell count or macrophages, lymphocyte 
and neutrophil counts [42]. In another study  
on Guinea pigs, parenchymal neutophilia and 
goblet cell count were observed to have 
decreased, and a positive effect was observed 
in the muscularized vessels within the adventi-
tia layer or the cartilaginous airways, and no 
effect was observed on emphysema in the LPS-
induced COPD model. Hydroxyproline and air-

way wall collagen deposition formed by repeti-
tive lipopolysaccharide (LPS) application was 
observed to regress with thitropium treatment 
[43]. In another experimental study, goblet cell 
metaplasia was observed to regress with tiotro-
pium, and the total cell count and neutrophil 
count within BALF and LTB4 level were observ- 
ed to decrease in a NE-induced COPD model. 
Although the macrophage count was decreas- 
ed, the decrease was not statistically signifi-
cant [14]. In the study of Ohta et al., improve-
ment was observed in goblet cell metaplasia, 
thickness of airway smooth muscle and airway 
fibrosis, and a decrease was observed in the 
increased TGF b1 level in BALF with tiotropium 
in the asthma mice model [44]. In the study of 
Wollin et al., tiotropium treatment with 4-day-
exposure to cigarette smoke caused a decrease 
in BAL leukotriene B4, interleukin-6, keratino-
cyte derived chemokine, monocyte chemotac-
tic protein 1 (MCP1), macrophage inflammatory 
protein-1alpha and 2, and TNF alpha levels 
compared to the control group [45]. Kolahian et 
al. administered tiotropium treatment and 
4-day heavy cigarette smoke exposure in cats, 
and observed improvement in BAL IL6, 8, MCP1 
and TNFα. Furthermore, improvement was 
observed in the decreased total antioxidant 
level in the BALF, serum and pulmonary tissue 
due to cigarette smoke exposure with tiotropi-
um treatment [46]. In a recent study, the mice 
were exposed to cigarette smoke and infected 
with viruses, and observed a significant reduc-
tion in IL6, IFNγ, TNFα and KC levels and the 
neutrophil count in BALF with tiotropium treat-
ment [47].

Tiotropium, which has been demonstrated to 
have various positive effects on pulmonary 
inflammation and remodeling evaluated by dif-
ferent GORD related views in smoke exposure, 
COPD or asthma models, was observed to 
decrease inflammation and to have positive 
effects on remodeling in the subacute cigarette 
smoke exposure model in our study.

In our study, the increased inflammatory cyto-
kines IL1β, MIP1α and TNFα in BALF due to 
smoke exposure were observed to recover with 
tiotropium treatment. Moreover, the increased 
alveolar wall thickness, collagen deposits, 
inflammatory cell infiltration and increased 
macrophage infiltration in the smoke exposure 
group were observed to decrease with tiotropi-
um treatment. Increased cell apoptosis with 



Tiotropium bromide against cigarette exposure

22832	 Int J Clin Exp Med 2016;9(11):22824-22834

smoke exposure was also regressed with 
tiotropium.

One of the limited number of human studies 
evaluating the anti-inflammatory effect of th- 
iortopium was the randomized, placebo-con-
trolled study of Powrie et al. which investigated 
the effect of thotropium on the presence of 
inflammatory markers in sputum and blood, 
and on the frequency of the attacks. Although a 
reduced attack frequency was observed with 
tiotropium treatment, no improvement was 
observed in BAL IL6, MPO, IL8 or serum IL6  
and CRP levels [48]. In another study, the 
effects of tiotropium and salmeterol fluticasone 
propionate (SFP) on IL8 and MMP9 were com-
pared in induced sputum, and a significant 
cytokine level reducting effect of SFP was 
observed; however, no effect was observed on 
the total cell count or blood CRP [49]. In these 
studies, inflammation was evaluated using lim-
ited numbers of markers. 

Nevertheless, in various studies evaluating  
the anti-inflammatory effects of tiotropium in 
human, it was observed that these studies 
were based on the cytokines within the spu-
tum. Although there is no studiy evaluating the 
effect of tiotropium on mucus secretion, oxitro-
pium-induced cholinergic stimulus inhibition 
was observed to reduce the mucus production 
[50]. Thus, the concentrations of the cytokines 
within the mucus may be observed to be 
increased. We believe that BALF examination 
and using many cytokines and markers would 
be useful in evaluating the pulmonary inflam-
mation in human studies. 

In conclusion, tiotropiumun was observed to 
regulate the smoke exposure related increase 
in the levels of IL-1β, MIP-1α and TNF-α in the 
BALF, and to reduce the alveolar macrophage 
count, apoptosis, alveolar thickness and inter-
stitial fibrotic process in our study. Tiotropium, 
having a known bronchodilatator effect, is be- 
lieved to effective with its anti-inflammatory 
and anti-remodeling effects. Further studies 
investigating the effects of tiotropium on inflam-
mation and remodeling on human should also 
be carried out. 
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