Original Article # Survival disparities in patients with relapsed core-binding factor acute myeloid leukemia following allogeneic hematopoietic stem cell transplantation Ja Min Byun¹, Dong-Yeop Shin¹, Youngil Koh¹, Inho Kim¹, Dong Soon Lee², Sung-Soo Yoon¹ ¹Department of Internal Medicine, Seoul National University Hospital, College of Medicine, Seoul National University, Republic of Korea; ²Department of Laboratory Medicine, College of Medicine, Seoul National University, Republic of Korea Received June 16, 2016; Accepted October 19, 2016; Epub December 15, 2016; Published December 30, 2016 Abstract: Relapse rate of core-binding factor (CBF) acute myeloid leukemia (AML) is higher than expected. In attempts to investigate the role of hematopoietic stem cell transplantation (HSCT) as post-remission therapy for relapsed CBF-AML patients in second remission (CR2), we have conducted this study. This was a single-center retrospective study of relapsed *de novo* CBF-AML patients over 18 years old undergoing HSCT at CR2 between January 2000 and December 2015. Forty-two patients were divided into 2 groups according to their cytogenetics: 24 in t(8;21) group and 18 in t(16)/t(16;16) group. When cytogenetic profiles at relapse were compared to those at diagnosis, changes in chromosomal/karyotype abnormalities were observed in 66.7% and 25% of patients with t(8;21) and t(16)/t(16;16) (P = 0.002). t(8;21) patient relapsed more often compared to t(16)/t(16;16) patients (P = 0.007) and this translated into shorter overall survival for t(8;21) patients with 30.6% 3-year survival rate after HSCT, compared to t(16)/t(16;16) patients with 3-year survival rate at 64.5% (P = 0.041). The initial cytogenetics and first remission duration were identified as prognostic factors affecting survival. Among relapsed CBF-AML patients undergoing HSCT, those with t(8;21) are associated with worse prognosis compared to those with inv(16)/t(16;16) and this has to do with failure to achieve durable response with HSCT. Keywords: Core-binding factor, acute myeloid leukemia, hematopoietic stem cell transplantation, relapse, survival #### Introduction Core binding factor acute myeloid leukemia (CBF-AML) has traditionally been associated with favorable prognosis [1-3]. Such being the case, current consensus does not support benefits of allogeneic hematopoietic stem cell transplantation (HSCT) in first remission (CR₄) for CBF-AML patients [4, 5]. However, recent studies suggested higher than believed relapse rates ranging from 25 to 58% [6, 7] with heterogeneous prognosis according to distinct cytogenetic groups [8]. In a meta-analysis of several German AML trials, Schlenk et al. [9] showed patients with t(8;21) do worse than those with inv(16)/t(16;16) after relapse due to differences in response to salvage treatment. Considerably fewer patients with t(8;21) achieved complete remission (CR) after re-induction compared to those with inv(16)/t(16;16), leading to fewer patients receiving intensive consolidation therapy and this phenomenon translated into significantly inferior survival outcomes for patients with t(8;21). There have been studies reporting these patients with t(8;21) can gain a survival benefit from allogeneic HSCT [7]. However, there lack detailed reports on the role of HSCT as post-remission therapy for relapsed CBF-AML patients in second remission (CR2). To tackle this issue and subsequently establish risk-adaptive therapeutic strategies by characterizing high-risk groups, we have conducted retrospective analyses of relapsed CBF-AML patients undergoing HSCT. #### Material and methods Study design and subjects This was a retrospective longitudinal cohort study carried out at Seoul National University Hospital. Adult patients over 18 years of age **Table 1.** Characteristics of enrolled patients. Differences between groups were assessed using a Student's t-test or one-way analysis of variance for continuous variables, and Pearson chi-square test for categorical variables, as appropriate | | Total (%) | t(8;21) (%) | inv(16) (%) | p Value | |-------------------------------|------------------|-------------------|---------------|---------| | Baseline characteristics | | | | _ | | N | 42 | 24 (57.1) | 18 (42.9) | NA | | Male (%) | 23 (54.8) | 12 (50.0) | 11 (61.1) | 0.474 | | FAB | | | | | | MO | 5 (11.9) | 5 (20.8) | 0 | NA | | M1 | 1 (2.4) | 1 (4.2) | 0 | | | M2 | 12 (28.6) | 10 (41.7) | 2 (11.1) | | | M4 | 23 (54.8) | 8 (33.3) | 15 (83.3) | | | M5 | 1 (2.4) | 0 | 1 (5.6) | | | At diagnosis | | | | | | Age (years) ^a | 37 (18-63) | 39 (18-63) | 34 (19-59) | 0.578 | | BM blast (%) ^b | 53.1 (27.2) | 46.6 (23.7) | 61.7 (29.7) | 0.075 | | WBC count (109/L)b | 30.3 (44.7) | 14.2 (12.8) | 51.8 (61.2) | 0.006 | | Platelet count (109/L)b | 44.7 (22.2) | 40.5 (22.1) | 50.2 (21.8) | 0.178 | | Cytogenetics at diagnosis | | | | | | Sole | 21 (50.0) | 11 (54.8) | 10 (55.6) | 0.533 | | Combined | 21 (50.0) | 13 (54.2) | 8 (44.4) | | | At relapse | | | | | | Age (years) ^a | 38 (19-64) | 40 (19-64) | 36 (20-60) | 0.642 | | BM blast (%)b | 56.1 (28.6) | 59.6 (30.0) | 52.6 (27.0) | 0.482 | | WBC count (109/L)b | 8.1 (13.6) | 8.5 (14.4) | 7.6 (12.7) | 0.830 | | Platelet count (109/L)b | 61.6 (53.5) | 57.3 (32.6) | 67.2 (73.6) | 0.560 | | Cytogenetics at relapse | | | | | | Same | 23 (54.8) | 8 (33.3) | 15 (83.3) | 0.002 | | Different | 19 (45.2) | 16 (66.7) | 3 (16.7) | | | Increased ^c | 10 (52.6) | 9 (56.3) | 1 (33.3) | | | Decreased ^c | 9 (47.4) | 7 (43.8) | 2 (66.7) | | | NA not applicable: FAR French | -American-Britis | ch classification | P. RM hone ma | ar_ | NA, not applicable; FAB, French-American-British classification; BM, bone marrow; WBC, white blood cell. ^avalues are presented as median (range); ^bvalues are presented as mean (± standard deviation); ^cpercentage is out of the total number in respective "Different" row. Table 2. Additional chromosomal aberration | Туре | t(8;21) (N = 24) | | Time | inv(16) (N = 18) | | |---------|------------------|------|------------|------------------|------| | | Ν | % | Туре | Ν | % | | As sole | 11 | 45.8 | As sole | 10 | 55.6 | | -Y | 5 | 20.8 | Trisomy 22 | 4 | 22.2 | | -X | 5 | 20.8 | Trisomy 8 | 0 | 0 | | Others | 3 | 12.5 | Others | 4 | 22.2 | with de novo CBF-AML patients who experienced relapse after being treated with consolidative chemotherapy only after CR₁ and underwent HSCT between January 2000 and December 2015 were included. During the study period, a total of 298 AML patients received HSCT at our institution. Among them, 52 were identified as CBF-AML patients. After excluding 10 patients, 7 for undergoing upfront HSCT and 3 for secondary AML, 42 patients were included for evaluation. These 42 patients were divided into 2 groups according to their cytogenetics, t(8:21) and inv(16)/t(16;16) respectively. This study was conducted according to the Declaration of Helsinki and was approved by the institutional review board at Seoul National University (IRB No. H-1510029-708). #### Cytogenetic analyses The diagnosis of AML was made according to the World Health Organization Classification of Hematopoietic Neoplasms, which requires identification of 20% or more leukemic blasts in the bone marrow [10]. The French-American-British (FAB) classification was used to classify AML phenotypically [11]. All cytogenetic studies were performed at our center, whose satisfactory performance was monitored by a national external quality assurance scheme. Bone marrow cells were cultured for 24 hours then karyotype was analyzed using the standard G-banding technique. The karyotypes were constructed and chromosomal abnormalities were reported in accordance with the International System for Human Cytogenetic Nomenclature [12]. The cytogenetics at relapse was compared to the cytogenetics at AML diagnosis and then was triaged into "same" group or "different" group. The "different" group was further categorized into "increase in chromosomal abnormalities" and "decrease in chromosomal abnormalities" for subgroup analyses. **Table 3.** Parameters related to hematopoietic stem cell transplantation. Differences between groups were assessed using a Student's t-test or one-way analysis of variance for continuous variables, and Pearson chi-square test for categorical variables, as appropriate | | Total (%) | t(8;21) (%) | inv(16) (%) | p Value | |--------------------------------------------------|-----------|-------------|-------------|---------| | CR ₁ to relapse interval ^a | 9 (1-49) | 8 (1-49) | 11 (1-23) | 0.866 | | Relapse to HSCT interval ^a | 3 (0-55) | 3 (0-8) | 4 (2-55) | 0.152 | | Donor | | | | | | Matched related | 21 (50.0) | 11 (45.8) | 10 (55.6) | 0.772 | | Matched unrelated | 19 (45.2) | 12 (50.0) | 7 (38.9) | | | Others | 2 (4.8) | 1 (4.2) | 1 (5.6) | | | Conditioning | | | | | | Myeloablative | 19 (45.2) | 12 (50.0) | 7 (38.9) | 0.474 | | Reduced intensity | 23 (54.8) | 12 (50.0) | 11 (61.1) | | | Relapse after HSCT | 24 (57.1) | 18 (75) | 6 (33.3) | 0.007 | ${\rm CR_{1'}}$ first remission; HSCT, hematopoietic stem cell transplantation. $^{\rm a}$ values are presented as median (range). #### Statistical analysis The overall survival after HSCT (OS) and leukemia free survival after HSCT (LFS) curves were estimated using the Kaplan-Meier method. OSwas defined as the time from the date of HSCT to death of any cause while LFS was derived from the date of HSCT to that of relapse. If patients survived without relapse after HSCT or did not expire, parameters were censored on the latest date of follow-up when no relapse or death was confirmed. Cox proportional hazards model and logistic regression were used to identify significant prognostic indicators for survival. Differences between groups were assessed using a Student's t-test or one-way analysis of variance for continuous variables, and Pearson chi-square test for categorical variables, as appropriate. All data were analyzed using the Statistical Package for the Social Sciences software (IBM® SPSS® Statistics, version 22.0). A p value < 0.05 was considered to be statistically significant. #### Results #### Patient characteristics **Table 1** shows the characteristics of 42 relapsed CBF-AML patients included in this study at baseline and at relapse. Cytogenetic abnormalities generally matched morphologic classification by FAB. The patients with t(8;21) tended to be a little older than those with inv(16)/t(16;16) both at diagnosis and at relapse, but the difference did not show statistical significance. The white blood cell (WBC) count was significantly lower in t(8;21) group compared to inv(16)/t(16;16) group at diagnosis (P = 0.006) but the gap disappeared at relapse (P = 0.830). There were no differences regarding bone marrow (BM) blast count and platelet count at diagnosis and relapse between two groups. At diagnosis, 50% of all patients were associated with additional chromosomal aberration (**Table 2**). Loss of sex chromosome (LOS) was the most common abnormalities in t(8;21) group, while trisomy 22 was most common in inv(16)/ t(16;16) group. When cytogenetic profiles at relapse were compared to those at diagnosis, changes in cytogenetics were observed in 66.7% and 16.7% of patients with t(8;21) and inv(16)/t(16;16), respectively. #### Hematopoietic stem cell transplantation For patients with t(8;21), the median CR_1 duration was 8 months (range 1-49) and the interval from relapse to HSCT was 3 months (range 0-8) (**Table 3**). As for the source of hematopoietic stem cells, HLA-matched unrelated donors (12, 50.0%) contributed the most, and one patient underwent related haplo-transplantation. For patients with inv(16), the median CR_1 duration was 11 months (range 1-23) and the interval from relapse to HSCT was 4 months (range 2-55 months) (**Table 3**). HLA-matched related donors (11, 55%) were the most common source of hematopoietic stem cells in this group, and one patient underwent related haplo-transplantation. There were no significant differences between two groups with regards to donors, conditioning regimen, and the interval from relapse to HSCT. The proportion of patients with $\mathrm{CR_1}$ duration less than 6 months was higher in t(8;21), but the difference did not reach statistical significance (25.0% vs. 11.1%, P = 0.054, data not shown). Patients with t(8;21) seemed to relapse more often compared with patients with inv(16)/t(16;16) (P = 0.007). **Figure 1.** Kaplan-Meier curves for overall survival (OS) and leukemia free survival (LFS) after hematopoietic stem cell transplantation (HSCT). A: OS according to cytogenetics groups (P = 0.041). B: LFS according to cytogenetics groups (P = 0.009). #### Survival analysis The median follow-up duration was 21.3 months from relapse and estimated 2-year OS was 30.6% for t(8;21) patients and 67.7% for inv(16)/t(16;16) patients (P = 0.041, **Figure 1**). During the follow-up period, 23 patients died. The most common cause of death was sepsis (7, 30.4%), followed by graft-versus-host disease and related problems (5, 21.7%) and relapse or AML progression (5, 21.7%), then treatment-related mortality (TRM) (2, 8.7%). The cause of death was unknown in 4 (17.3%) patients. Patients with t(8:21) were associated with worse prognosis than those with inv(16)/ t(16;16), with shorter OS and LFS as shown in Figure 1. The median OS of t(8;21) was 10 months while that of inv(16) had not been reached. Further analysis showed in t(8;21), patients with LOS did worse than those without LOS (P = 0.001, Figure 3A). Also, higher WBC count at relapse was associated with shorter OS (P = 0.011, **Figure 2B**). Age and initial WBC count were not relevant to OS (data not shown). In inv(16)/t(16;16) group, neither the presence of trisomy 22 nor the WBC count at relapse affected OS (Figure 4). The median LFS of t(8:21) was 4.7 months while that of inv(16) had not been reached (P = 0.009, Figure 1B). ## Prognostic factors affecting survival after HSCT Table 4 shows the univariate analysis to identify prognostic variables for overall survival after HSCT. The cytogenetics at diagnosis and $\rm CR_1$ duration were associated with overall outcomes. Patients with t(8;21) were associated with worse outcomes than inv(16)/t(16;16) (HR 2.458, 95% CI 1.007-5.999). Likewise, patients with $\rm CR_1$ duration shorter than 6 months were associated with poor prognosis (HR 2.463, 95% CI 1.035-5.859). Although higher WBC count at relapse seems to be related to worse prognosis, the results did not reach statistical significance. In light of small sample size, multivariate analysis was not carried out. In patients with t(8;21), univariate analysis identified higher WBC at relapse (P = 0.016, HR 3.685, 95% CI 1.270-10.692) and LOS (P = 0.003, HR 4.977, 95% CI 1.724-14.135) as factors associated with survival. On the other hand, in patients with inv(16)/t(16;16), only CR₁ duration (P = 0.041, HR 5.920, 95% CI 1.071-32.709) was identified as prognostic variable (data not shown). #### Discussion Higher than expected relapse rate of CBF-AML has fueled scientific interest in this particular AML subgroup, and several groups have suggested relapsed CBF-AML is, in fact, a heterogeneous disease entity with different clinical outcomes and prognostic factors [9, 13, 14]. Although these reports have consistently shown that relapsed t(8;21) patients have worse prognosis than inv(16)/t(16;16) patients, they did not agree on the prognostic factors and more importantly, the standard of care for relapsed CBF-AML patients remain undetermined. The aim of this study was to assess the outcomes of CBF-AML patients in CR2 to evaluate the place of allogeneic HSCT in relapsed settings, and to identify high-risk groups. We found that about half of all relapsed CBF-AML patients achieved durable response with allogeneic HSCT at CR2. We also found that cytogenetics at initial diagnosis is important for overall survival. Patients with t(8;21) do worse than those with inv(16)/t(16;16), and those with additional chromosomal aberration were associated with poorer prognosis. The overall 3-year survival after HSCT was 44.8% in our study, which is comparable to previous Japanese study [7] who reported OS at 3 years of 48.0%. Taking into account that the reported OS for relapsed non-M3 AML is only 30% [15], we hypothesized a favorable therapeutic role of HSCT for relapsed CBF-AML patients at CR2. From univariate analysis, we found that longer CR₁ duration and harboring Figure 3. Kaplan-Meier curves for overall survival for t(8;21) patients. A: Grouped by loss of sex chromosome (LOS) (P = 0.001). B: Grouped by the white blood cell count at relapse (P = 0.011). Figure 4. Kaplan-Meier curves for overall survival for inv(16)/t(16;16) patients. A: Grouped by the presence of trisomy 22 (P = 0.687). B: Grouped by the white blood cell count at relapse (P = 0.599). inv(16)/t(16;16) were associated with better survival outcomes. Accordingly, patients with inv(16)/t(16;16) showed considerably better 3-year survival rate at 64.5% compared to patients with t(8;21) with 3-year survival rate at 30.6% (P = 0.041). There were 2 patients (4.8%) who expired due to TRM in our cohort, and both were in t(8;21) group. Although the careful interpretation of results is required, based on our findings, we, with some confidence, surmised that patients with inv(16)/t(16;16) can benefit more from allogeneic HSCT when relapsed. Since patients with t(8;21) were associated with shorter OS and higher relapse rate after HSCT, we sought to identify high-risk subset within this cytogenetic group. As results, we found that high WBC count at relapse (P = 0.011) and loss of sex chromosome (P = 0.010) were associated with poor prognosis (Figure 3). Interestingly, contrary to previous reports [7, 9, **Table 4.** Factors associated with survival after hematopoietic stem cell transplantation. Cox proportional hazards model and logistic regression were used to identify significant prognostic indicators for survival | Univariate | | | |---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | HR (95% CI) | p Value | | | | | | | 1 | 0.587 | | | 0.795 (0.347-1.189) | | | | | | | | 1 | 0.980 | | | 0.986 (0.335-2.904) | | | | | | | | 1 | 0.042 | | | 2.463 (1.035-5.859) | | | | | | | | 1 | 0.051 | | | 2.342 (0.997-5.502) | | | | | | | | 1 | 0.048 | | | 2.458 (1.007-5.999) | | | | | | | | 1 | 0.196 | | | 1.766 (0.755-3.943) | | | | | | | | 1 | 0.568 | | | 1.269 (0.559-2.881) | | | | | | | | 1 | 0.316 | | | 1.547 (0.659-3.629) | | | | | HR (95% CI) 1 0.795 (0.347-1.189) 1 0.986 (0.335-2.904) 1 2.463 (1.035-5.859) 1 2.342 (0.997-5.502) 1 2.458 (1.007-5.999) 1 1.766 (0.755-3.943) 1 1.269 (0.559-2.881) | | HR, hazard ratio; CR₁, first remission; WBC, white blood cell. 14], age did not affect the outcomes of HSCT (P = 0.955, data not shown). WBC count at initial AML diagnosis was not associated with HSCT outcomes, either (P = 0.425, data not shown). Interestingly, t(8;21) patients showed more chromosomal changes at relapse (P = 0.002). Sixteen (66.7%) patients in t(8;21) group showed changed cytogenetics at relapse compared to 3 (16.7%) patients in inv(16)/t(16;16). Patients with changed cytogenetics seem to be associated with worse prognosis (**Figure 2B**), but the difference did not reach statistical difference probably due to small sample size. When the changes in cytogenetics were further divided into "decreased" and "increased", decreased cytogenetics group was associated with the worst prognosis, but this too did not reach statistical significance (**Figure 2C**). The impact of changes in cytogenetics should be evaluated in more detail in a larger number of patients. One of the major pitfalls of our study is the small sample number. Because the prevalence of CBF-AML is less than 10% of all AML [16], our cohort is not small for a single center. However, the absolute size of the sample is unarguably small, leading to diminished statistical power. Another limitation is the lack of data on c-KIT mutation status. The prognostic implication of c-KIT mutation is well known [17-19], and almost all guidelines recommend checking for c-KIT mutational status in CBF-AML patients. Unfortunately from our cohort, c-KIT mutation status data solid enough for evaluation was available in only 3 patients (7.1%) due to reimbursement and technical issues. Likewise, there have been studies reporting the presence of *FLT3* internal tandem duplication (ITD) as a main bad prognosis factor in relapsed CBF-AML patients [20]. In our study, FLT3-ITD data was available in 20 (47.6%) patients, but it was positive in only 1 patient. Thus, the impact of FLT3-ITD was not evaluated. More comprehensive study with a larger sample size and detailed molecular data should ensue to corroborate our results. In conclusion, CBF-AML patients at CR2 show divergent clinical outcomes after allogeneic HSCT according to their initial cytogenetic abnormalities. For patients with inv(16)/t(16;16), allogeneic HSCT seems like a good salvage option, while for patients with t(8;21) more stratified approaches are needed. All in all, about half of CBF-AML patients can still acquire durable response with allogeneic HSCT at first relapse. #### Acknowledgements This study was supported by Korean Cancer Foundation (K20160520). #### Disclosure of conflict of interest None. Address correspondence to: Dr. Sung-Soo Yoon, Department of Internal Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongro-gu, Seoul 03080, Republic of Korea. Tel: +82-2-2072-3079; Fax: +82-2-762-9662; E-mail: ssysmc@snu. ac.kr #### References - [1] Grimwade D, Hills RK, Moorman AV, Walker H, Chatters S, Goldstone AH, Wheatley K, Harrison CJ, Burnett AK; National Cancer Research Institute Adult Leukaemia Working Group. Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom medical research council trials. Blood 2010; 116: 354-365. - [2] Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A, Paietta E, Willman CL, Head DR, Rowe JM, Forman SJ and Appelbaum FR. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a southwest oncology group/eastern cooperative oncology group study. Blood 2000; 96: 4075-4083. - [3] Byrd JC, Mrózek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC, Pettenati MJ, Patil SR, Rao KW, Watson MS, Koduru PR, Moore JO, Stone RM, Mayer RJ, Feldman EJ, Davey FR, Schiffer CA, Larson RA, Bloomfield CD; Cancer and Leukemia Group B (CALGB 8461). Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from cancer and leukemia group B (CALGB 8461). Blood 2002; 100: 4325-4336. - [4] Koreth J, Schlenk R, Kopecky KJ, Honda S, Sierra J, Djulbegovic BJ, Wadleigh M, DeAngelo DJ, Stone RM, Sakamaki H, Appelbaum FR, Dohner H, Antin JH, Soiffer RJ and Cutler C. Allogeneic stem cell transplantation for acute myeloid leukemia in first complete remission: systematic review and meta-analysis of prospective clinical trials. JAMA 2009; 301: 2349-2361. - [5] Gerds AT and Appelbaum FR. To transplant or not to transplant for adult acute myeloid leukemia: an ever-evolving decision. Clin Adv Hematol Oncol 2012; 10: 655-662. - [6] Appelbaum FR, Kopecky KJ, Tallman MS, Slovak ML, Gundacker HM, Kim HT, Dewald GW, Kantarjian HM, Pierce SR and Estey EH. The clinical spectrum of adult acute myeloid leukaemia associated with core binding factor translocations. Br J Haematol 2006; 135: 165-173. - [7] Kurosawa S, Miyawaki S, Yamaguchi T, Kanamori H, Sakura T, Moriuchi Y, Sano F, Kobayashi T, Yasumoto A, Hatanaka K, Yanada M, Nawa Y, Takeuchi J, Nakamura Y, Fujisawa S, Shibayama H, Miura I and Fukuda T. Prognosis of patients with core binding factor acute myeloid leukemia after first relapse. Haematologica 2013; 98: 1525-1531. - [8] Sinha C, Cunningham LC and Liu PP. Core binding factor acute myeloid leukemia: new prognostic categories and therapeutic opportunities. Semin Hematol 2015; 52: 215-222. - [9] Schlenk RF, Benner A, Krauter J, Buchner T, Sauerland C, Ehninger G, Schaich M, Mohr B, Niederwieser D, Krahl R, Pasold R, Dohner K, Ganser A, Dohner H and Heil G. Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: a survey of the german acute myeloid leukemia intergroup. J Clin Oncol 2004; 22: 3741-3750. - [10] Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellstrom-Lindberg E, Tefferi A and Bloomfield CD. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 2009; 114: 937-951. - [11] Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR and Sultan C. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med 1985; 103: 620-625. - [12] Brothman AR, Persons DL and Shaffer LG. Nomenclature evolution: Changes in the ISCN from the 2005 to the 2009 edition. Cytogenet Genome Res 2009; 127: 1-4. - [13] Hospital MA, Prebet T, Bertoli S, Thomas X, Tavernier E, Braun T, Pautas C, Perrot A, Lioure B, Rousselot P, Tamburini J, Cluzeau T, Konopacki J, Randriamalala E, Berthon C, Gourin MP, Recher C, Cahn JY, Ifrah N, Dombret H and Boissel N. Core-binding factor acute myeloid leukemia in first relapse: a retrospective study from the French AML Intergroup. Blood 2014; 124: 1312-1319. - [14] Marcucci G, Mrozek K, Ruppert AS, Maharry K, Kolitz JE, Moore JO, Mayer RJ, Pettenati MJ, Powell BL, Edwards CG, Sterling LJ, Vardiman JW, Schiffer CA, Carroll AJ, Larson RA and Bloomfield CD. Prognostic factors and outcome of core binding factor acute myeloid leukemia patients with t(8;21) differ from those of patients with inv(16): a cancer and leukemia group B study. J Clin Oncol 2005; 23: 5705-5717. #### Allogeneic HSCT in relapsed CBF-AML - [15] Kurosawa S, Yamaguchi T, Miyawaki S, Uchida N, Sakura T, Kanamori H, Usuki K, Yamashita T, Okoshi Y, Shibayama H, Nakamae H, Mawatari M, Hatanaka K, Sunami K, Shimoyama M, Fujishima N, Maeda Y, Miura I, Takaue Y and Fukuda T. Prognostic factors and outcomes of adult patients with acute myeloid leukemia after first relapse. Haematologica 2010; 95: 1857-1864. - [16] Deschler B and Lubbert M. Acute myeloid leukemia: epidemiology and etiology. Cancer 2006; 107: 2099-2107. - [17] Cairoli R, Beghini A, Grillo G, Nadali G, Elice F, Ripamonti CB, Colapietro P, Nichelatti M, Pezzetti L, Lunghi M, Cuneo A, Viola A, Ferrara F, Lazzarino M, Rodeghiero F, Pizzolo G, Larizza L and Morra E. Prognostic impact of c-KIT mutations in core binding factor leukemias: an Italian retrospective study. Blood 2006; 107: 3463-3468. - [18] Paschka P, Marcucci G, Ruppert AS, Mrozek K, Chen H, Kittles RA, Vukosavljevic T, Perrotti D, Vardiman JW, Carroll AJ, Kolitz JE, Larson RA, Bloomfield CD; Cancer and Leukemia Group B. Adverse prognostic significance of KIT mutations in adult acute myeloid leukemia with inv(16) and t(8;21): a cancer and leukemia group B study. J Clin Oncol 2006; 24: 3904-3911. - [19] Schnittger S, Kohl TM, Haferlach T, Kern W, Hiddemann W, Spiekermann K and Schoch C. KIT-D816 mutations in AML1-ETO-positive AML are associated with impaired event-free and overall survival. Blood 2006; 107: 1791-1799. - [20] de Labarthe A, Pautas C, Thomas X, de Botton S, Bordessoule D, Tilly H, de Revel T, Bastard C, Preudhomme C, Michallet M, Fenaux P, Bastie JN, Socie G, Cordonnier C, Dombret H; Acute Leukemia French Association. Allogeneic stem cell transplantation in second rather than first complete remission in selected patients with good-risk acute myeloid leukemia. Bone Marrow Transplant 2005; 35: 767-773.