Review Article Does palonosetron have a positive effect than ramosetron on PONV? A meta-analysis of RCTs

Chengmao Zhou^{1,2}, Yu Zhu², Zhen Liu¹, Lin Ruan¹

¹Department of Anesthesiology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, China; ²Department of Surgery, Zhaoqing Medical College, Zhaoqing 526000, China

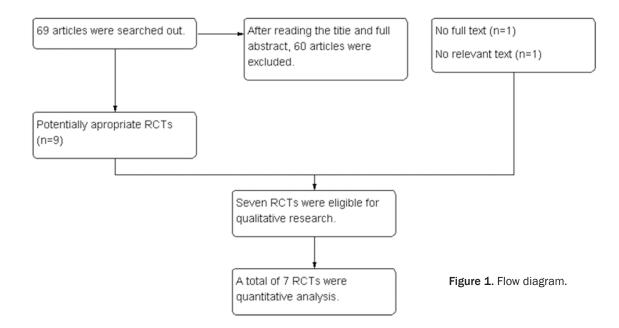
Received June 19, 2016; Accepted August 22, 2016; Epub December 15, 2016; Published December 30, 2016

Abstract: Background: General anesthesia is associated with an appreciably high rate of postoperative nausea and vomiting (PONV). This study was designed to conduct a meta-analysis on the effect and safety of palonose-tron versus ramosetron on preventing PONV via the most recently published randomized controlled trials (RCTs). Methods: We searched PubMed, EMbase, and The Cochrane Library for RCTs to compare the effect and safety of palonosetron with that of ramosetron. The meta-analysis was performed by employing Review Manager Version 5.2. Dichotomous outcomes were expressed as the relative risk (RR) with a 95% confidence interval (CI). Results: Seven studies, totaling 730 patients, were included in this study. The meta-analysis suggested that no statistically significant difference was found between ramosetron and palonosetron in the prevention of postoperative nausea (PON) and postoperative vomiting (POV) at different time periods within 48 hours after surgery. No significant side effects were observed between the two groups when the safety of ramosetron and palonosetron was compared (RR 1.10, 95% CI [0.75, 1.62]; P=0.64). Conclusion: This meta-analysis demonstrated that palonosetron was not superior to ramosetron on the prevention of POV and PON. In addition, no appreciable difference was recorded between the two groups on their side effects.

Keywords: Palonosetron, ramosetron, PONV, meta-analysis

Introduction

PONV is one of the most dreaded and distressing side-effects of general anesthesia, with an incidence of around 30% [1]. The incidences and risk factors for PONV are anesthesia-related and non-anesthesia-related. A lot of clinical studies have indicated that anesthesia-related risk factors for PONV include the administration of postoperative opioid analgesics and volatile anesthetics. However, the mechanism that underlies the two major risk factors, at present, still remains unclear [2].


In fact, failure to suppress PONV would increase the time to discharge, consume resource of the post-anesthesia care, and raise cost of medical care, though PONV is not a fatal medical complication [3]. Generally, cholinergic receptor antagonists, histamine receptor antagonists, 5 HT-3 receptor antagonists, dopamine antagonists, and other antiemetic drugs are employed to control PONV, of which, 5-HT3 receptor antagonists are most commonly used ones in post-anesthesia care. Palonosetron and ramosetron, the newly developed 5-HT3 receptor antagonists, show more prolonged and sustained activity than ondansetron, and they are very efficacious in preventing PONV [4, 5]. In order to present an updated evaluation of the effect of ramosetron, we conducted a metaanalysis on the effect and safety of ramosetron and palonosetron via the most recently published RCTs.

Material and methods

Inclusion and exclusion criteria

Research types randomized controlled trials (RCTs) Study subjects surgical patients Interventions group 1 was given palonosetron, while group 2 received ramosetron.

Outcome indicators the primary outcome included the incidence of PON and POV. The

secondary outcome included side effects (including headache, dizziness, and pruritis) of palonosetron and ramosetron. Exclusion criteria repeated studies, studies with incomplete data, and non-English language articles.

Search strategy

PUBMED, The Cochrane Library, and EMBASE were searched for all relevant published RCTs. The following search terms were used: "nausea", "vomiting", "surgery", "palonosetron", and "ramosetron".

Literatures screening and data extraction

Two reviewers independently screened literatures and extracted data on the basis of inclusion and exclusion criteria, then cross-checked with each other. The two discussed or consulted a third party when there was a disagreement.

Quality evaluation

The quality of the enrolled studies was assessed by adopting the Jadad scale, which analyzes the randomization method, blinding method, allocation concealment, and withdrawals and dropouts in the study. Jadad score \geq 3 means that the study is of high quality [6].

Statistical analysis

We conducted the meta-analysis via using RevMan 5.2. Enumeration data were presented

as relative risk (RR) with a 95% CI, and measurement data were expressed as weighted mean difference (WMD) with a 95% Cl. A heterogeneity test was done on included studies via χ^2 test, and when α =0.05 and P \leq 0.05, heterogeneity was considered present. Furthermore, a quantitative analysis was conducted on heterogeneity by adopting l² value, and heterogeneity existed when $I^2 \ge 50\%$. We adopted a fixed effects model to do a meta-analysis when there was no heterogeneity. A random-effects model was employed when each study showed statistical heterogeneity rather than clinical heterogeneity or when the differences had no significance. And a descriptive analysis approach was used when the heterogeneity was too large.

Results

Study identification and characteristics

We identified a total of 69 records by applying our search strategy. Studies published by Shin were excluded as there was no full text [7]. And one study, without relevant data, was excluded [8]. Only 7 studies were eligible for the metaanalysis after screening titles and abstracts and full texts of the included studies [9-15] (**Figure 1**). The characteristics of the included studies are presented in **Table 1**. Most of the studies, with a Jadad score of 5 or 6 (**Table 1**), were well designed RCTs.

Author (Published year)	Country	Head- count	Grouping	Surgical setting	Jadad score	Ran- domized method	Conceal- ment al- location	Blind ing
Chattopadhyay 2015	India	109	Palonosetron	Cesarean Delivery	6	2	1	2
			Ramosetron					
Kim SH 2015	Korea	88	Palonosetron	Gynecological laparoscopic surgery	6	2	1	2
			Ramosetron					
			Placebo					
Lee 2015	South Korea	105	Palonosetron	Laparoscopic gynecologic surgery	6	2	1	2
			Ondansetron					
			Ramosetron					
Park 2013	Korea	100	Palonosetron	Gynecological laparoscopic surgery	5	1	1	2
			Ramosetron					
Roh 2014	South Korea	196	Palonosetron	Lumbar Spinal Surgery	6	2	1	2
			Ramosetron					
Swaika 2011	India	87	Palonosetron	Laparoscopic cholecystectomy	5	1	1	2
			Ondansetron					
			Ramosetron					
Kim SH 2013	Korea	109	Palonosetron	Laparoscopic surgery	5	1	1	2
			Ondansetron					
			Ramosetron					

 Table 1. Characteristics and jadad score of the included studies in the meta-analysis

Outcomes

Primary outcomes

PON and POV: Seven studies, totaling 730 patients, were enrolled to treat with antiemetic drugs after surgery. In the 7 included studies, PON and POV events were observed at different time intervals within 48 hours after surgery. The meta-analysis showed that no statistically significant difference was found between palonosetron group and ramosetron group in PON at different time intervals in 48 hours after surgery: 0-2 hours (RR 0.87, 95% CI [0.36, 2.09]; P=0.76), 0-6 hours (RR 1.03, 95% CI [0.56, 1.87]; P=0.93), 6-24 hours (RR 0.86, 95% CI [0.46, 1.60]; P=0.64) or 24-48 hours (RR 0.86, 95% CI [0.47, 1.58]; P=0.63). However, during the 2-24 hour time period after surgery, ramosetron showed to be more efficacious than palonosetron (RR 0.34, 95% CI [0.17, 0.70]; P=0.003). The I^2 value of 65% implied that there was significant heterogeneity. Moreover, the pooled results were not influenced by further subgroup analyses based on different routes and doses of palonosetron and ramosetron, and all of these analyses were also affected by heterogeneity (Figure 2).

Palonosetron was as effective as ramosetron on POV. During some of the time periods in the 48 hours after surgery, palonosetron was proved to be more effective than ramosetron on POV: 0-2 hours (RR 1.65, 95% CI [0.69, 3.90]; P=0.26), 0-6 hours (RR 0.66, 95% CI [0.30, 1.44]; P=0.29), 2-24 hours (RR 0.61, 95% CI [0.31, 1.23]; P=0.17), 6-24 hours (RR 1.53, 95% CI [0.63, 3.74]; P=0.35) and 24-48 hours (RR 0.64, 95% CI [0.37, 1.09]; P=0.10). The I² value of 28% suggested no significant heterogeneity. The study conducted by Kim SH 2015 [8] was not enrolled into our meta-analysis because detailed PON and POV outcomes were not provided. And their results indicated that preoperative administration of a single intravenous dose of palonosetron showed no efficacy than that of ramosetron in reducing the incidence of PONV after surgery (Figure 3).

Secondary outcome

Side effects of palonosetron and ramosetron: Among the included 7 studies, 3 of them offered full data on side effects (headache, dizziness, and pruritus) of palonosetron or ramosetron after surgery. It turned out that observable side effects of palonosetron was no more than that of ramosetron (RR 1.10, 95% CI [0.75, 1.62]; P=0.64). The I² value of 0% suggested that there was no significant heterogeneity. Other studies, without providing detailed data on side effects, however, mentioned that no statistically significant difference was observed between palonosetron and ramosetron in their results (**Figure 4**).

Palonosetron and ramosetron and PONV

Study or Subgroup	palonose Events		ramose Events		Weight	Risk Ratio M-H, Random, 95% Cl	Risk Ratio M-H, Random, 95% Cl
2.1.1 0-2h	LIGING	Total	Liono	Total	TOM		
Chattopadhyay 2015	8	55	9	54	6.2%	0.87 [0.36, 2.09]	
Subtotal (95% CI)	Ŭ	55		54	6.2%	0.87 [0.36, 2.09]	
Total events	8	00	9	0.	OIL IV	0101 [0100, 2100]	
Heterogeneity: Not app	2000 2020		5				
Test for overall effect: 2		= 0.76)					
2.1.2 0-6h							
Lee 2015	6	35	6	35	5.2%	1.00 [0.36, 2.80]	
Park 2013	20	50	29	50	10.5%	0.69 [0.46, 1.04]	I − •−
Roh 2014	47	98	31	98	11.0%	1.52 [1.06, 2.17]	
Subtotal (95% CI)		183		183	26.7%	1.03 [0.56, 1.87]	↓ ◆
Total events	73		66				
Heterogeneity: Tau ² = I	0.20; Chi ² =	8.06, 0	f=2 (P=	0.02); F	²= 75%		
Test for overall effect: 2	Z = 0.08 (P	= 0.93)					
2.1.3 2-24h							
Chattopadhyay 2015	8	55	23	54	7.6%	0.34 [0.17, 0.70]	
Subtotal (95% CI)		55		54	7.6%	0.34 [0.17, 0.70]	-
Total events	8		23				
Heterogeneity: Not app	licable						
Test for overall effect: 2	Z = 2.96 (P	= 0.003)				
2.1.4 6-24h							
Kim SH 2013	6	36	20	38	6.9%	0.32 [0.14, 0.70]	
Lee 2015	3	35	4	35	3.4%	0.75 [0.18, 3.11]	
Park 2013	22	50	17	50	9.6%	1.29 [0.79, 2.13]	
Roh 2014	38	98	30	98	10.7%	1.27 [0.86, 1.87]	
Subtotal (95% CI)		219		221	30.6%	0.86 [0.46, 1.60]	
Total events	69		71				
Heterogeneity: Tau ² = 0 Test for overall effect: 2			df = 3 (P :	= 0.01);	I² = 72%		
2.1.5 24-48h							
Chattopadhyay 2015	10	55	18	54	7.9%	0.55 [0.28, 1.07]	_ →
Kim SH 2013	1	36	8	38	1.9%	0.13 [0.02, 1.00]	
Lee 2015	2	35	1	35	1.5%	2.00 [0.19, 21.06]	
Park 2013	13	50	12	50	7.9%	1.08 [0.55, 2.14]	
Roh 2014	29	98	21	98	9.7%	1.38 [0.85, 2.25]	
Subtotal (95% CI)		274		275	28.9%	0.86 [0.47, 1.58]	
Total events	55		60				
Heterogeneity: Tau ² = 0	0.23; Chi ² =	9.15.0	f=4 (P=	0.06): I	² = 56%		
Test for overall effect: 2							
Total (95% CI)		786		787	100.0%	0.85 [0.63, 1.15]	•
Total events	213		229				
Heterogeneity: Tau ² = I			df = 13 (P	= 0.00	04); l² = 65	5%	0.01 0.1 1 10 100
Test for overall effect: 2	•						Favours [experimental] Favours [control]
Test for subgrouP diffe	rences: Ch	nr= 6.2	4. df = 4 (f	² = 0.18	3). I ^z = 35.9	1%	

Figure 2. Forest plot of relative risk on PON between palonosetron and ramosetron treatment.

Publication bias

We adopted Begg's funnel plot to assess the potential publication bias of the included studies. And no publication bias was detected.

Discussion

This meta-analysis indicated that though ramosetron showed to be more effective than palonosetron in the 2-24 hours after treatment, no statistically significant difference was observed in the prevention of PON during any time periods within 48 hours after surgery between ramosetron and palonosetron. In addition, no statistically significant difference between palonosetron and ramosetron was found on the prevention of POV (0-2 hours, 0-6 hours, 2-24 hours, 6-24 hours, and 24-28 hours) during some of the time periods within 48 hours after surgery.

Palonosetron and ramosetron and PONV

	Experim		Contr			Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
1.1.1 0-2h							
Chattopadhyay 2015	6	55	7	54	9.9%	0.84 [0.30, 2.34]	
Swaika 2011	6	29	0	29	0.7%	13.00 [0.77, 220.64]	
Subtotal (95% CI)		84		83	10.6%	1.65 [0.69, 3.90]	-
Total events	12		7				
Heterogeneity: Chi ² = 3	3.69, df = 1	(P = 0.0)	05); I ² = 73	3%			
Test for overall effect: 2	Z = 1.13 (P	= 0.26)					
1.1.2 0-6h							
Lee 2015	1	35	1	35	1.4%	1.00 [0.07, 15.36]	
Park 2013	3	50	13	50	18.2%	0.23 [0.07, 0.76]	
Roh 2014	5	98	0	98	0.7%	• • •	
Subtotal (95% CI)		183		183	20.3%	0.66 [0.30, 1.44]	
Total events	9		14				
Heterogeneity: Chi ² = 6	6.71, df = 2	(P = 0.0)	$(3); I^2 = 70$	0%			
Test for overall effect: 2							
4 4 9 9 9 4							
1.1.3 2-24h	4.5				00.00		
Chattopadhyay 2015	10	55	16	54	22.6%	0.61 [0.31, 1.23]	
Subtotal (95% CI)		55		54	22.6%	0.61 [0.31, 1.23]	
Total events	10		16				
Heterogeneity: Not app							
Test for overall effect: 2	Z = 1.38 (P	= 0.17)					
1.1.4 6-24h							
Lee 2015	1	35	0	35	0.7%	3.00 [0.13, 71.22]	
Park 2013	4	50	5	50	7.0%	0.80 [0.23, 2.81]	
Roh 2014	3	98	1	98	1.4%	3.00 [0.32, 28.34]	
Swaika 2011	3	29	1	29	1.4%	3.00 [0.33, 27.18]	
Subtotal (95% CI)		212		212	10.5%	1.53 [0.63, 3.74]	-
Total events	11		7				
Heterogeneity: Chi ² = 1	1.90, df = 3	(P = 0.5)	59); I ² = 0°	%			
Test for overall effect: 2	Z=0.94 (P	= 0.35)					
1.1.5 24-48h							
Chattopadhyay 2015	14	55	21	54	29.7%	0.65 [0.37, 1.15]	
Lee 2015	0	35	0	35	2011 10	Not estimable	
Park 2013	ő	50	2	50	3.5%	0.20 [0.01, 4.06]	← ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Roh 2014	2	98	2	98	2.8%	1.00 [0.14, 6.96]	
Subtotal (95% CI)	-	238	2	237	36.0%	0.64 [0.37, 1.09]	◆
Total events	16	100	25				
Heterogeneity: Chi ² = 0		(P = 0.9)		%			
Test for overall effect: 2		•					
Total (95% CI)		772		760	100.0%	0.84 [0.61, 1.15]	•
Total events	58	112	69	109	100.070	0.04 [0.01, 1.15]	•
		12/0-		200			
Heterogeneity: Chi ² = 1 Test for overall effect: 2		•	0.10), 1-=	2070			0.01 0.1 1 10 100
	•		2 df = 4 /	D = 0 4	0) 18 - 24	F 706	avours [experimental] Favours [control]
Test for subgroup diffe	rences. Cr	II ⁻ = 0.2	2. ui = 4 (F = 0.1	o). P = 35	J.7 70	

Figure 3. Forest plot of relative risk on POV between palonosetron and ramosetron treatment.

Side effects of palonosetron were no fewer than that of ondansetron after surgery, when the total number of side effects (including headache, dizziness, and pruritus) were compared.

At present, the mechanism of ramosetron and palonosetron in preventing PONV remains unclear, but the drugs may act on by prohibiting 5-HT3 receptors sites in nucleus of the solitary tract (NTS) and area postrema [16, 17]. The doses of ramosetron and palonosetron were on the basis of similar studies in the Indian context [18, 19] on dose-ranging studies with regard to optimal adult dose of ramosetron and palonosetron.

However, several limitations of this meta-analysis should be taken into consideration. Firstly, the sample size for each time period was small, as the total number of patients enrolled was only 730. As the etiology behind the PONV is complex and multifactorial, and anaesthetic technique may also influence the incidence of

	palonos	etron	ramose	tron		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
3.1.1 Headache							
Chattopadhyay 2015	6	55	5	54	11.7%	1.18 [0.38, 3.63]	
Kim SH 2013	2	36	1	38	2.3%	2.11 [0.20, 22.29]	
Roh 2014	12	98	12	98	27.9%	1.00 [0.47, 2.12]	
Subtotal (95% CI)		189		190	41.9%	1.11 [0.61, 2.02]	+
Total events	20		18				
Heterogeneity: Chi ² = (0.37, df = 2	(P = 0.8)	3); I ² = 0%	6			
Test for overall effect: 2	Z=0.34 (P	= 0.73)					
3.1.2 Dizziness							
Chattopadhyay 2015	3	55	3	54	7.0%	0.98 [0.21, 4.65]	
Kim SH 2013	4	36	2	38	4.5%	2.11 [0.41, 10.83]	
Roh 2014	16	98	18	98	41.9%	0.89 [0.48, 1.64]	—
Subtotal (95% CI)		189		190	53.5%	1.00 [0.59, 1.71]	—
Total events	23	-	23				
Heterogeneity: Chi ² = (•	(2); I* = 0%	ò			
Test for overall effect: 2	2 = 0.02 (P	= 0.99)					
3.1.3 Pruritus							
Kim SH 2013	3	36	1	38	2.3%	3.17 [0.35, 29.06]	
Roh 2014	1	98	1	98	2.3%	1.00 [0.06, 15.76]	
Subtotal (95% CI)		134		136	4.6%	2.07 [0.39, 10.94]	
Total events	4		2				
Heterogeneity: Chi ² = (0.41, df = 1	(P = 0.5)	52); I ² = 0%	6			
Test for overall effect: 2	Z = 0.86 (P	= 0.39)					
Total (95% CI)		512		516	100.0%	1.10 [0.75, 1.62]	•
Total events	47		43				
Heterogeneity: Chi ² = 2		•	94); I² = 0%	6			0.01 0.1 1 10 100
Test for overall effect: 2						F	avours [experimental] Favours [control]
Test for subaroup diffe	erences: Ch	ni² = 0.6	6. df = 2 (F	P = 0.72	2). I ² = 0%	, ,	and the second second frame

Figure 4. Forest plot of relative risk on side effects between palonosetron and ramosetron treatment.

PONV Moreover, different studies adopted different administrations of ramosetron and palonosetron. As a result, the possibility of biases remains.

In summary, this meta-analysis demonstrated that there were no statistically significant differences in efficacy between palonosetron and ramosetron on the prevention of PON and POV. Besides, there was no difference between their effects on preventing their side effects.

Disclosure of conflict of interest

None.

Address correspondence to: Lin Ruan, Department of Anesthesiology, Affiliated Tumor Hospital of Guangxi Medical University, No. 71 River Road, Nanning 530021, China. Fax: +86-771-5312000; E-mail: RuanLin187@163.com

References

[1] Franck M, Radtke FM, Apfel CC, Kuhly R, Baumeyer A, Brandt C, Wernecke KD, Spies CD. Documentation of post-operative nausea and vomiting in routine clinical practice. J Int Med Res 2010; 38: 1034-1041.

- [2] Horn CC, Wallisch WJ, Homanics GE, Williams JP. Pathophysiological and neurochemical mechanisms of postoperative nausea and vomiting. Eur J Pharmacol 2014; 722: 55-66.
- [3] Habib AS, Chen YT, Taguchi A, Hu XH, Gan TJ. Postoperative nausea and vomiting following inpatient surgeries in a teaching hospital: a retrospective database analysis. Curr Med Res Opin 2006; 22: 1093-1099.
- [4] Mihara T, Tojo K, Uchimoto K, Morita S, Goto T. Reevaluation of the effectiveness of ramosetron for preventing postoperative nausea and vomiting: a systematic review and meta-analysis. Anesth Analg 2013; 117: 329-339.
- [5] Xiong C, Liu G, Ma R, Xue J, Wu A. Efficacy of palonosetron for preventing postoperative nausea and vomiting: a systematic review and meta-analysis. Can J Anaesth 2015; 62: 1268-1278.
- [6] Jadad AR, Moore RA, Carroll D, Jenkinson C, Reynolds DJ, Gavaghan DJ, McQuay HJ. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996; 17: 1-12.

- [7] Ys S, A K. Comparison of palonosetron with ramosetron in prevention of postoperative nausea and vomiting in patients undergoing gynecological laparoscopic surgery and receiving postoperative intravenous patient-controlled analgesia. European Journal of Anaesthesiology 2011; 28: 139.
- [8] Kim SH, Oh CS, Lee SJ. Efficacy of palonosetron and ramosetron on postoperative nausea and vomiting related to intravenous patientcontrolled analgesia with opioids after gynecological laparoscopic surgery (double-blinded prospective randomized controlled trial). J Anesth 2015; 29: 585-592.
- [9] Lee WS, Lee KB, Lim S, Chang YG. Comparison of palonosetron, granisetron, and ramosetron for the prevention of postoperative nausea and vomiting after laparoscopic gynecologic surgery: a prospective randomized trial. BMC Anesthesiol 2015; 15: 121-125.
- [10] Chattopadhyay S, Goswami S. Palonosetron versus ramosetron prophylaxis for control of postoperative nausea and vomiting after cesarean delivery under spinal anesthesia. J Obstet Gynaecol India 2015; 65: 28-33.
- [11] Roh GU, Yang SY, Shim JK, Kwak YL. Efficacy of palonosetron versus ramosetron on preventing opioid-based analgesia-related nausea and vomiting after lumbar spinal surgery: a prospective, randomized, and double-blind trial. Spine 2014; 39: 543-549.
- [12] Kim JS, Kim JY, Lee SJ, Park DK, Namgung H, Kim CN, Choi WJ, Baek MJ. Multicenter nonrandomized trial of ramosetron versus palonosetron in controlling chemotherapy-induced nausea and vomiting for colorectal cancer. Ann Surg Treat Res 2014; 87: 9-13.
- [13] Park SK, Cho EJ, Kang SH, Lee YJ, Kim DA. A randomized, double-blind study to evaluate the efficacy of ramosetron and palonosetron for prevention of postoperative nausea and vomiting after gynecological laparoscopic surgery. Korean J Anesthesiol 2013; 64: 133-137.

- [14] Kim SH, Hong JY, Kim WO, Kil HK, Karm MH, Hwang JH. Palonosetron has superior prophylactic antiemetic efficacy compared with ondansetron or ramosetron in high-risk patients undergoing laparoscopic surgery: a prospective, randomized, double-blinded study. Korean J Anesthesiol 2013; 64: 517-523.
- [15] Swaika S, Pal A, Chatterjee S, Saha D, Dawar N. Ondansetron, ramosetron, or palonosetron: Which is a better choice of antiemetic to prevent postoperative nausea and vomiting in patients undergoing laparoscopic cholecystectomy? Anesth Essays Res 2011; 5: 182-186.
- [16] Kim SH, Hong JY, Kim WO, Kil HK, Karm MH, Hwang JH. Palonosetron has superior prophylactic antiemetic efficacy compared with ondansetron or ramosetron in high-risk patients undergoing laparoscopic surgery: a prospective, randomized, double-blinded study. Korean J Anesthesiol 2013; 64: 517-523.
- [17] Park SK, Cho EJ, Kang SH, Lee YJ, Kim DA. A randomized, double-blind study to evaluate the efficacy of ramosetron and palonosetron for prevention of postoperative nausea and vomiting after gynecological laparoscopic surgery. Korean J Anesthesiol 2013; 64: 133-137.
- [18] Ansari MM, Siddiqui OA, Haleem S, Varshney R, Akhtar S, Khan FA. Comparison of ramosetron and ondansetron for control of post-operative nausea and vomiting following laparoscopic cholecystectomy. Indian J Med Sci 2010; 64: 272-280.
- [19] Laha B, Hazra A, Mallick S. Evaluation of antiemetic effect of intravenous palonosetron versus intravenous ondansetron in laparoscopic cholecystectomy: a randomized controlled trial. Indian J Pharmacol 2013; 45: 24-29.