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Abstract: Background: Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is involved in tumor pro-
gression and may serve as a prognostic biomarker for various cancers. Objective: This meta-analysis aimed to 
reveal the association between MALAT1 expression and survival in solid tumors. Methods: A literature search was 
performed via electronic retrieval until August 2015. Different clinical outcomes of overall survival (OS) and disease-
free survival (DFS) were analyzed. Pooled hazard ratios (HRs) or odds ratios (ORs) and 95% confidence intervals 
(CIs) were calculated to evaluate the relationship of high MALAT1 expression with survival rates and clinicopatho-
logical characteristics. Results: Fourteen studies with 1468 patients were included in this meta-analysis. MALAT1 
overexpression was highly associated with OS of 1.64 (95% CI: 1.29-2.10) and DFS of 2.26 (95% CI: 1.66-3.08). 
MALAT1 overexpression was also significantly associated with tumor size (OR = 2.34; 95% CI = 1.14-4.79), tumor 
stage (OR = 1.48; 95% CI = 1.09-2.01), depth of invasion (OR = 1.49; 95% CI = 1.05-2.11), and lymph node metas-
tasis (OR = 2.06; 95% CI = 1.19-3.58). Conclusion: MALAT1 overexpression is obviously ascribed to poor prognosis 
in numerous cancers, and MALAT1 may serve as a biomarker for the progression of solid tumors.
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Introduction

Dysregulation of gene expression plays a criti-
cal role in carcinogenesis and metastasis. With 
the development of sequencing and microarray 
for whole genome and transcriptome, at least 
90% of the human genome has been actively 
transcribed into non-coding RNAs (ncRNAs); 
more than 80% of the transcribed RNAs did not 
code for proteins in mammalians, and the pro-
tein-coding genes account for only 2% of the 
gene sequences [1, 2]. Although ncRNAs have 
been described as “noise” in the transcription-
al process or “garbage” in the human body, 
substantial evidence has proven that ncRNAs 
also demonstrate important physiological func-
tions in cell metabolism and play significant 
regulatory roles in some diseases [3-5].

Increasing numbers of long ncRNAs (lncRNAs) 
with length of more than 200 nt but frequently 
up to 100 kb are found comprising 80% of 

ncRNAs, and have become the focus of recent 
studies. To date, lncRNAs are defined as “RNA 
molecules that may function as either primary 
or spliced transcripts and do not fit into known 
classes of small RNAs or into classes of struc-
tural RNAs” [4], suggesting that lncRNAs par-
ticipate in multiple gene-regulating processes, 
such as chromosome silencing, genomic 
imprinting, transcriptional activation, post-tran-
scriptional interference, and nuclear-cytoplas-
mic trafficking at various levels, which are 
involved in almost all physiological and patho-
logical processes [6, 7]. However, current stud-
ies on lncRNAs remain at initial stage, and only 
few lncRNAs have been well characterized. 
Thus, further studies are needed to expand this 
research field and elucidate the functions and 
mechanisms of lncRNAs.

Metastasis-associated lung adenocarcinoma 
transcript 1 (MALAT1) is one of the first lncRNAs 
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discovered; MALAT1 exhibits a length of 8000 
nt and is also known as nuclear-enriched abun-
dant transcript 2 [8]. MALAT1 cannot be trans-
lated into a protein because of its nuclear local-
ization and the lack of an open coding frame 
with sufficient length [9]. Furthermore, MALAT1 
gene is located in human chromosome 11q13.1 
with a highly conserved and homologous 
sequence in evolution of various species, which 
indicates that this gene may potentially influ-
ence several physiological functions. Since the 
discovery of MALAT1 in 2003, several data 
have clarified the influence of this transcript on 
the progression or metastasis of different 
malignancies, such as lung cancer [10, 11], 
gastric cancer (GC) [12], hepatocellular carci-
noma (HCC) [13], and gallbladder cancer [14]; 
data suggest that MALAT1 may serve as an 
independent factor for tumor prognosis. 
However, some studies reported that MALAT1 
overexpression contributes to a poor survival 
outcome for non-small-cell lung cancer (NSCLC) 
[11], colorectal cancer [15], and HCC [16]; by 
contrast, several studies indicated that the 
high expression of MALAT1 is not associated 
with cancer prognosis [17, 18] or even predict-
ing a better cancer prognosis [19]. Therefore, 
the real value of MALAT1 on predicting the 
prognosis of solid tumors remains contradicto-
ry, and a meta-analysis is necessary to evalu-
ate the relationship between MALAT1 expres-
sion and solid tumor prognosis.

Materials and methods

Literature search

This meta-analysis was conducted according to 
the guidelines of the Preferred Reporting Items 
for Systematic Reviews and Meta-analyses 
[20]. A systematic, computerized searching was 
performed through the PubMed, Embase, and 
Web of Science databases, as well as the China 
National Knowledge Infrastructure by using the 
following terms: “MALAT1 or Metastasis 
Associated Lung Adenocarcinoma Transcript 
1”, “Tumor or Cancer or Carcinoma”, and 
“Prognosis or Survival or Outcome”. No lan-
guage restrictions were imposed, and literature 
search was conducted until August 5, 2015. 
Lists of references of retrieved articles and 
reviews were also checked to identify addition-
al relevant studies.

Inclusion and exclusion criteria

Studies were eligible if they met the following 
criteria: 1) Studies reported the relationship 
between MALAT1 expression and tumor prog-
nosis outcomes [i.e., overall survival (OS), or 
disease-free survival (DFS)]. 2) Studies used a 
cohort design. 3) Hazard ratios (HRs) and 95% 
confidence intervals (CIs) can be directly 
obtained or indirectly calculated from the origi-
nal data. Studies were ineligible if they were 
reviews, conference abstracts, editorials or 
case reports, or non-human research, articles 
with insufficient data to estimate HRs and 95% 
CIs. If more than one publication with the same 
study population was identified, only the most 
recent data were included in the final analysis.

Data extraction

Information was carefully and independently 
extracted by two investigators (WJY and HLR) 
based on the inclusion and exclusion criteria 
stipulated above. Any disagreement was 
resolved through consensus. The following 
data were collected from each study: first 
author’s name, year of publication, recruitment 
time, country of the studied population, sample 
size, tumor type, follow-up period, testing meth-
od of MALAT1, cut-off value, numbers of high/
low MALAT1 expression, and HRs and 95% CIs 
for survival outcomes as applicable. Stratifi- 
cation into subgroups will be conducted if at 
least two studies reported the same outcome 
for the same tumor type; otherwise, they will be 
assigned into a subgroup named “Others.” HRs 
and 95% CIs were preferentially obtained from 
the outcomes of multivariable analysis followed 
by univariate analysis. If no direct data were 
available, the HRs and 95% CIs were calculated 
in each study from the numbers of patients at 
risk and events, as well as the P values of log-
rank statistics, or from the survival plots of 
Kaplan-Meier curves [21].

Quality assessment

The quality of each study included in this meta-
analysis was assessed using the Newcastle 
Ottawa Scale (NOS) recommended by the 
Cochrane Non-Randomized Studies Methods 
Working Group [22]. Based on the NOS, studies 
were judged by eight items divided into three 
broad perspectives: selection of study groups 
(four items, one star each), comparability of 
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study groups (one item, up to two stars), and 
outcome of interest (three items, one star 
each). Stars were then added up to a total score 
ranging from 0 to 9. We considered studies as 
of high quality if they met six scores or more.

Statistical analysis

All statistical analyses were performed using 
STATA software version 11.0 (STATA Corporation, 
College Station, TX, USA). All statistical tests 
were two-sided. For the pooled analysis of the 
correlation between MALAT1 overexpression 
and clinicopathological parameters (age, sex, 
tumor size, histological grade, tumor stage, 
depth of invasion, lymph node metastasis, and 
distant metastasis), odds ratios (ORs) with their 
corresponding 95% CIs were combined to esti-
mate the effects. Combined HRs and 95% CIs 
were used to assess the strength of the asso-
ciation between MALAT1 expression and differ-
ent prognostic outcomes. We classified the 
studies into two subgroups based on different 
survival results (OS and DFS) to separately 
evaluate the effects of MALAT1 overexpression 

and survival. HR > 1 indicated poor prognosis 
for patients with MALAT1 high expression when 
the 95% CI was also > 1. Statistical significance 
of the pooled HR was determined by Z-test, in 
which P < 0.05 was considered statistically 
significant.

Heterogeneity assumption was examined by 
chi-square test based on Q statistic and I2 met-
ric [23]. Heterogeneity was considered statisti-
cally significant when P < 0.10, which promoted 
the use of a random-effects model; otherwise, 
a fixed-effects model was used [24]. The degree 
of heterogeneity was quantified by the I2 metric 
(I2 < 25%, no heterogeneity; I2 = 25%-50%, 
moderate heterogeneity; I2 > 50%, extreme 
heterogeneity).

Sensitivity analysis was performed to validate 
the credibility of these meta-analysis out-
comes. If the results did not significantly change 
when one study was removed, the sensitivity is 
low and the results are robust. Potential publi-
cation bias was evaluated statistically using 
Begg’s and Egger’s asymmetry tests [25] and 
visually with funnel plots. Statistical signifi-
cance of Egger’s test results was defined as P < 
0.10.

Results

Characteristics of included studies

Out of the initial number of 141 studies, 14 
were found eligible for this meta-analysis. The 
processes of identifying and selecting studies 
are presented in Figure 1. Majority the 14 stud-
ies [8, 11, 15-19, 26-32], with a total sample of 
1468 patients, were almost published in 2011 
or later and mainly conducted in China, where-
as the others were conducted in Germany [8, 
32], Japan [18], or Taiwan [29]. Twelve studies 
were published in English, whereas the other 
two were in Chinese [19, 31]. Various cancer 
types were recorded in our meta-analysis, 
including GC, HCC, and NSCLC. Quantitative 
real-time polymerase chain reaction was used 
to detect MALAT1 in all the 14 studies, and the 
tested specimens were all extracted from 
human tissues. HR estimations in 11 studies 
were directly extracted from original data, and 
three were extrapolated from survival curves 
[8, 11, 29]. Eleven studies reported OS as the 
primary outcome, whereas four trials reported 
data DFS [11, 15, 16, 30]. The main character-
istics of these 14 studies are listed in Table 1.

Figure 1. Flow diagram of study selection process 
and specific reasons for exclusion in this meta-anal-
ysis.
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Table 1. Main characteristics of 11 eligible studies in the meta-analysis

Study (authors-year) Regions Recruit-
ment time

Sam-
ple size

Type of  
tumor

Follow up 
(months)

Analysis 
method

Speci-
mens

Cutoff value 
(high/low)

Analysis of 
variance HR estimation Prognos-

tic value
Lan-

guage
Quality 
score

Shen et al 2015 China NR 78 Lung cancer NR RT-qPCR Tissue NR (24/54) Univariate DFS: 1.73 (1.07-2.79)△ Poor English 6

Ma et al 2015 China NR 118 Glioma NR RT-qPCR Tissue 5.18* (59/59) Multivariate OS: 2.29 (1.37-3.81) Poor English 7

Zheng et al 2014 China 2007-2009 146 Colorectal  
Cancer

56.2  
(median)

RT-qPCR Tissue 6.15* (73/73) Multivariate OS: 3.97 (1.67-9.46) Poor English 6

DFS: 2.86 (1.66-4.94)

Fan et al 2014 China NR 95 Bladder Cancer NR RT-qPCR Tissue NR (45/50) Multivariate OS: 1.26 (0.68-2.13) NS English 7

Zhang et al 2014 China 2006-2008 106 CCRCC NR RT-qPCR Tissue 3.85* (46/60) Multivariate OS: 3.09 (1.81-7.03) Poor English 7

Pang et al 2014 China NR 126 PC 60 (total) RT-qPCR Tissue 6.23# (63/63) Multivariate OS: 1.76 (1.10-2.82) Poor English 7

Cho et al 2014 Taiwan 2007-2012 36 Multiple myeloma 48 (total) RT-qPCR Tissue 1.5* (20/16) Univariate OS: 1.40 (0.73-2.71)△ NS English 6

Okugawa et al 2014 Japan 2000-2009 150 GC NR RT-qPCR Tissue 0.985* (88/62) Univariate OS: 1.54 (0.92-2.58) NS English 6

Liu et al 2014 China 2010-2011 45 PC 47 (total) RT-qPCR Tissue 0.1035* (26/19) Multivariate DFS: 1.80 (1.18-7.75) Poor English 7

Mu et al 2013 China 2007-2008 76 NSCLC NR RT-qPCR Tissue NR (32/44) Multivariate OS: 0.55 (0.27-0.99) Protective Chinese 7

Yang et al 2012 China 2003-2010 160 HCC 24 (median) RT-qPCR Tissue 1.5* (88/72) Multivariate OS: 1.91 (1.12-3.05) Poor Chinese 7

Lai et al 2012 China 2003-2005 60 HCC 18.6 (median) RT-qPCR Tissue NR (33/27) Multivariate DFS: 3.28 (1.52-7.09) Poor English 6

Schmidt et al 2011 Germany 1998-2005 222 NSCLC 56 (total) RT-qPCR Tissue NR (83/139) Multivariate OS: 1.78 (1.08-2.92) Poor English 7

Ji et al 2003 Germany NR 50 NSCLC NR RT-qPCR Tissue NR (28/22) Univariate OS: 1.33 (1.01-1.75)△ Poor English 6
OS overall survival, DFS Disease-free Survival, NR data were not reported, NS not significant, PC pancreatic cancer, HCC hepatocellular cancer, NSCLC non-small cell lung cancer, GC gastric cancer, CCRCC clear cell renal cell carcinoma, RT-
qPCR quantitative real-time polymerase chain reaction, GAPDH glyceraldehyde 3-phosphate dehydrogenase, *normalized to GAPDH, #normalized to β-actin, △Extrapolated from survival curve.
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Table 2. Meta-analysis of Rsf-1 overexpression and clinicopathological features in solid tumors pa-
tients

Categories Studies (no. of patients) OR (95% CI) I2 Ph Z P
Age 9 (922) 1.01 (0.77-1.34) 0.0% 0.496 0.10 0.922
Gender 9 (922) 1.04 (0.68-1.58)R 49.7% 0.044 0.17 0.868
Tumor size 7 (681) 2.34 (1.14-4.79)R 76.6% < 0.001 2.33 0.020
Histological grade 6 (548) 0.87 (0.58-1.31) 29.5% 0.214 0.66 0.510
Tumor stage 7 (712) 1.48 (1.09-2.01)R 76.1% < 0.001 2.53 0.012
Depth of invasion 5 (542) 1.49 (1.05-2.11) 49.0% 0.098 2.23 0.026
Lymph node metastasis 7 (744) 2.06 (1.19-3.58)R 65.4% 0.008 2.57 0.010
Distant metastasis 7 (744) 1.23 (0.59-2.57)R 61.8% 0.015 0.56 0.575
All pooled HRs were calculated from fixed-effect model except for cells marked with (randomR). Ph denotes P value for heteroge-
neity based on Q test; P denotes P value for statistical significance based on Z test.

Table 3. Main results of the meta-analysis

Survival Categories No. of 
studies

No. of 
patients HR (95% CI) I2 Ph Z P

Egger’s test Begg’s test
t P Z P

OS All 11 1285 1.644 (1.289-2.098)R 57.4% 0.009 4.00 < 0.001 0.95 0.365 0.93 0.350

Cancer type

    NSCLC 3 348 1.150 (0.670-1.974)R 75.8% 0.016 0.51 0.613 0.57 0.673 0.00 1.000

    Others 8 937 1.875 (1.535-2.290) 20.5% 0.267 6.16 < 0.001 0.62 0.536 1.41 0.207

Ethnicity

    China 7 827 1.775 (1.175-2.681)R 71.1% 0.002 2.73 0.006 0.90 0.368 0.30 0.774

    Abroad 4 458 1.440 (1.171-1.770) 0.0% 0.779 3.45 0.001 -0.34 1.000 1.18 0.361

Analysis method

    Multivariate 8 1049 1.771 (1.249-2.512)R 66.3% 0.004 3.21 0.001 1.11 0.266 0.31 0.765

    Univariate 3 236 1.377 (1.097-1.729) 0.0% 0.885 2.76 0.006 0.00 1.000 1.09 0.473

Sample size

    ≥ 100 7 1028 2.014 (1.639-2.473) 0.0% 0.451 6.67 < 0.001 1.80 0.072 4.02 0.010

    < 100 4 257 1.116 (0.770-1.619)R 52.5% 0.097 0.58 0.562 0.34 0.734 0.86 0.480

DFS All 4 329 2.260 (1.661-3.075) 1.1% 0.386 5.19 < 0.001 0.34 0.734 0.38 0.740
All pooled HRs were calculated from fixed-effect model except for cells marked with (randomR). Ph denotes P value for heterogeneity based on Q test; P denotes P value 
for statistical significance based on Z test.

Correlation of MALAT1 expression with clinico-
pathological parameters

The correlations of MALAT1 expression with 
clinicopathological characteristics are present-
ed in Table 2. Relationships existed between 
MALAT1 overexpression and some phenotypes 
of tumor progression, such as tumor size 
(pooled OR = 2.34; 95% CI = 1.14-4.79; P =  
0.020; random effects), tumor stage (pooled 
OR = 1.48; 95% CI = 1.09-2.01; P = 0.012; ran-
dom effects), depth of invasion (pooled OR = 
1.49; 95% CI = 1.05-2.11; P = 0.026; fixed 
effects), and lymph node metastasis (pooled 
OR = 2.06; 95% CI = 1.19-3.58; P = 0.010; ran-
dom effects), which suggested that MALAT1 
may demonstrate a promoting effect on tumor 
progression. However, when age (pooled OR = 
1.01; 95% CI = 0.77-1.34; P = 0.922; fixed 

effects), gender (pooled OR = 1.04; 95% CI = 
0.68-1.58; P = 0.868; random effects), histo-
logical grade (pooled OR = 0.87; 95% CI = 0.58-
1.31; P = 0.510; fixed effects), and distant 
metastasis (pooled OR = 1.23; 95% CI = 0.59-
2.57; P = 0.575; random effects) were consid-
ered, no significant association existed.

Effect of MALAT1 expression on survival

The main results of the analysis on the relation-
ship between MALAT1 overexpression and sur-
vival are summarized in Table 3, and the forest 
plots for the overall association between 
MALAT1 overexpression and survivals are 
shown in Figure 2. Summary of the reported 
HRs for OS from the 11 individual studies with 
a total of 1285 patients suggested that high 
MALAT1 expression indicated a poor prognosis 
for OS (HR = 1.64; 95% CI, 1.29-2.10; P < 
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Figure 2. Forest plots of overall association between MALAT1 expression and survival in solid tumors. A. Forest plot 
for pooled OS estimation. B. Forest plot for pooled DFS estimation. 

Figure 3. Effects of individual studies on pooled hazard ratios (HRs) for MALAT1 expression and survival in solid 
tumors. A. Result of sensitivity analysis for pooled OS estimation. B. Result of sensitivity analysis for pooled DFS 
estimation.

0.001; random effects) with a moderate het-
erogeneity (I2 = 57.4%, Ph = 0.009). When the 
eligible studies were stratified into subgroup 
analyses, a significant correlation was observed 
in studies published in China (HR = 1.78; 95% 
CI, 1.18-2.68; P = 0.006; random effects) or 
those published abroad (HR = 1.44; 95% CI, 
1.17-1.77; P = 0.001; fixed effects), as well as in 
multivariate analysis (HR = 1.77; 95% CI, 1.25-
2.51; P = 0.001; random effects) and univariate 
analysis (HR = 1.38; 95% CI, 1.10-1.73; P = 
0.006; fixed effects). However, when the sub-
group analyses were conducted in terms of 
tumor types and sample sizes, the negative role 
of MALAT1 in predicting cancer prognosis was 

obvious in other cancer types (HR = 1.88; 95% 
CI, 1.54-2.29; P < 0.001; fixed effects), and 
studies with number of cases ≥ 100 (HR = 2.01; 
95% CI, 1.64-2.47; P < 0.001; fixed effect), but 
not in NSCLC (HR = 1.15; 95% CI, 0.67-1.97; P 
= 0.613; random effects), nor those with num-
ber of cases < 100 (HR = 1.12; 95% CI, 0.77-
1.62; P = 0.562; random effects).

Four studies comprising 329 patients reported 
DFS as the primary endpoint, upregulation of 
MALAT1 was associated with worse DFS (HR = 
2.26; 95% CI, 1.66-3.08; P < 0.001; fixed 
effects), and significant heterogeneity did not 
exist (I2 = 1.1%, Ph = 0.386).
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Sensitivity analysis and publication bias

Sensitivity analysis of pooled OS and pooled 
DFS is presented in Figure 3. Notably, the cor-
responding overall HR estimated by OS or DFS 
did not change significantly when each study 
was omitted individually. These results suggest 
that no individual study affected the meta-anal-
ysis results, and the outcomes of this meta-
analysis were robust.

Neither Egger’s test nor Begg’s test showed 
obvious publication bias for the pooled HR esti-
mations of OS (Egger’s test, t = 0.95, P = 0.365; 
Begg’s test, Z = 0.93, P = 0.350) or DFS (Egger’s 
test, t = 0.34, P = 0.734; Begg’s test, Z = 0.38, 
P = 0.740) (Table 3). The shapes of the funnel 
plots (Figure 4) also did not show apparent evi-
dence of asymmetry, indicating that our results 
were statistically credible.

Discussion

The invasion and metastasis of solid tumors 
comprise an extremely complex process involv-
ing an interplay among multiple cytokines, sig-
nal pathways, and other factors; invasion and 
metastasis of solid tumors mainly cause of 
death in patients. Thus, searching for sensitive 
and specific biomarkers for early tumor detec-
tion and accurate prognosis, as well as targets 
for more efficient treatment, is valuable. 
MALAT1 was upregulated in many solid tumors, 
including lung cancer [8], bladder cancer [17], 
HCC [33], and colorectal cancer [34]. MALAT1 
can promote tumor cell proliferation and migra-
tion, which implies its participation in human 
cancer development [9]. High level expression 
of MALAT1 in tissues with cancer metastasis 

suggested that this transcript may significantly 
affect tumor progression [35]. However, the 
prognostic role of MALAT1 on solid tumors 
remains uncertain. Considering meta-analysis 
can provide an overall and precise evaluation 
of several individual studies for a specified out-
come, we conducted this first meta-analysis to 
explore the prognostic values of lncRNA 
MALAT1 in solid tumors.

In this meta-analysis, we included 14 cohort 
studies and classified these into two subgroups 
based on the reported survival outcomes. In 
both OS and DFS subgroups, the overexpres-
sion of MALAT1 is highly related with shorter 
survival, which suggested that MALAT1 is a 
marker for poor prognosis in patients with solid 
tumors. When the trials in the OS subgroup 
were further stratified for various characteris-
tics, the high level of MALAT1 expression was 
significantly associated with worse prognosis, 
as shown in the results of either multivariate or 
univariate analysis, which indicated that 
MALAT1 may serve as an independent, nega-
tive biomarker for OS. Furthermore, when the 
studies in OS subgroup were analyzed by eth-
nicity, worse OS was presented in patients with 
high MALAT1 expression in China and abroad, 
which revealed that the effects of MALAT1 on 
cancer development showed no racial and envi-
ronmental influence. In addition, MALAT1 
showed obvious effects on poor OS in patients 
with cancer type other than NSCLC, although 
MALAT1 was originally found in patients with 
lung cancer. Of the three cohorts reporting the 
relationship of MALAT1 and NSCLC, we noted 
that two reported MALAT1 genes as tumor-pro-
moting factors [8, 32], whereas one was regard-

Figure 4. Begg’s funnel plots of overall relationship between MALAT1 expression and survival in solid tumors. A. 
Begg’s funnel plot of publication-bias analysis for pooled OS estimation. B. Begg’s funnel plot of publication-bias 
analysis for pooled DFS estimation.
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ed as a tumor suppressor [19]. Thus, the influ-
ence of MALAT1 on NSCLC remains con- 
troversial, and conclusion should be made with 
caution because only 348 patients were includ-
ed in these studies. 

Moreover, significant correlations were found 
between MALAT1 high expression and some 
clinicopathological features, such as tumor 
size, tumor stage, depth of invasion, and lymph 
node metastasis, which revealed that MALAT1 
may boost tumor progression and aggressive-
ness. MALAT1 was originally found as a metas-
tasis-related gene in NSCLC. Tano et al. [36] 
found that after MALAT1 was interfered by 
siRNA, four different genes (CTHRC1, CCT4, 
HMMR, and ROD1) related to cell mobility were 
found by comparing the pre- and post-interfer-
ence gene expression screening, and knock-
down of any of the above-mentioned genes can 
significantly suppress the migration of lung 
cancer cells; this indicated that MALAT1 can 
control the migration ability of lung cancer cells 
by regulating mobility-related genes. Moreover, 
epithelial-mesenchymal transition (EMT) is a 
key step of tumor metastasis, and loss of 
expression of E-cadherin is one of the land-
mark events [37]. In bladder cancer, MALAT1 
can suppress the expression of E-cadherin, 
promote EMT, and finally assist tumor metasta-
sis [17, 38]. Furthermore, MALAT1 advances 
the cell differentiation and the cell proliferation 
in gastric cancer by recruiting and regulating 
SF2/ASF which plays a vital role in inflammato-
ry diseases and human tumors by alternative 
splicing [12]. Above all, we can learn that 
MALAT1 can affect the occurrence and devel-
opment of different tumors by a variety of path-
ways; however, the mechanisms remain un- 
clear. Thus, more studies should be conducted 
to explore its biological functions.

Although this meta-analysis showed some 
advantages through an overall and consistent 
estimation, a few limitations should be acknowl-
edged. First, the heterogeneities of some 
pooled results were moderate or even extreme, 
and subgroup analyses cannot identify the 
source of heterogeneity. Second, the number 
of included studies and the total sample size 
were relatively small. Third, prognosis is a com-
prehensive final result reflected by multiple fac-
tors, for instance, tumor types, therapeutic 
regimen, tumor location, and histological types. 
Nevertheless, we failed to assess these poten-

tial confounders in individual studies. Fourth, 
the inconsistence in cut-off values and experi-
mental designs may in part a source of the 
inter-study heterogeneity. Finally, the HRs in 
some studies in our meta-analysis was calcu-
lated from the survival curves, which may lead 
to some minor differences from the actual HRs 
[22]. 

In conclusion, lncRNA MALAT1 overexpression 
is associated with a poor survival rate on OS as 
well as DFS in many cancer types, and MALAT1 
may be an independent biomarker for indicat-
ing aggressive tumor development and poor 
prognosis in solid tumors. However, one should 
take caution to interpreting these results due 
to the limitations in this current meta-analysis, 
and large scale, high-quality clinical investiga-
tions are still needed to further confirm these 
results.
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