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Abstract: Background: non-invasive method, apparent diffusion coefficient (ADC) and the liver fibrosis index (LFI), 
assessment of liver fibrosis has been one of major objectives in the society of hepatologists. Aim: To explore the vari-
able characteristics of ADC and the LFI in different stages of liver fibrosis in rats and to compare their performance 
in staging liver fibrosis. Methods: Liver fibrosis model rats (N = 50) were produced by carbon tetrachloride (CCl4). 
Surviving model rats (N = 45) and controls (N =15) were subjected to MRI and RTE, and the ADC and LFI values 
were analyzed. All animals were sacrificed for pathological examination. The liver fibrosis stage (F0-F4) was defined 
based on the METAVIR score. Nonparametric statistical methods and receiver operating characteristic (ROC) curve 
analyses were employed to determine diagnostic accuracy. Results: Correlation analysis showed that the liver fibro-
sis stage was negatively correlated with ADC (r = -0.732, P < 0.001) and positively correlated with LFI (r = 0.706, P < 
0.001). ROC curves showed that the areas under the curve (AUCs) for ADC and LFI in the prediction of the liver fibro-
sis stage were 0.781-0.924 and 0.824-0.939, respectively. Conclusions: Both the ADC values and LFI values were 
strongly correlated with the liver fibrosis stages in our rat model. Moreover, the ADC was sensitive in predicting early-
stage liver fibrosis, while the LFI was more accurate in predicting predict intermediate- and late-stage liver fibrosis. 

Keywords: Liver fibrosis, magnetic resonance imaging, apparent diffusion coefficient, ultrasound, real-time elas-
tography

Introduction

Liver fibrosis can be induced by chronic viral 
infections, excessive consumption of alcohol, 
abnormal metabolism, autoimmune response, 
and drugs [1, 2]. The consensus is that early-
stage liver cirrhosis is reversible [3]. Thus, the 
early diagnosis of liver fibrosis with a desirable 
sensitivity and specificity is required for manag-
ing these patients. 

The traditional imaging-based examinations of 
liver fibrosis have limited utility [4]. Real-time 
elastography (RTE) using ultrasound and di- 
ffusion-weighted magnetic resonance imaging 

(DWI) are noninvasive examinations. RTE and 
DWI have been studied extensively to deter-
mine their diagnostic value, often individually. 
However, few reports have compared both 
methods in the one and the same study.

DWI can detect the random Brownian motion  
of water molecules inside human tissues. 
Measurement of the extent of restriction and 
the direction of water molecule diffusion can 
thereby indirectly reflect changes in tissue 
microstructure. Therefore, DWI is useful in diag-
nosis of liver fibrosis [5-7]. The apparent diffu-
sion coefficient (ADC) is used to quantify the 
diffusion coefficient. As reported, the ADC in a 
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fibrotic liver is lower than the normal level 
[5-10].

The common B-mode ultrasound is not able to 
for early detection of liver fibrosis. However, the 
new technique of RTE has been employed to 
detect fibrosis in the liver. Differences in the 
elastic coefficient among tissues can be differ-
entiated by RTE. When the motion amplitude is 
transformed into real-time color images, the 
colors of the images reflect the hardness of the 
tissues. Red usually indicates a soft tissue, 
while blue indicates a hard one [11, 12]. The 
cardiovascular beating capacity of the patient 
is utilized to form a tissue compression image. 
The liver fibrosis index (LFI), a quantitative 
parameter, represents the relative severity of 
fibrosis [13]. The new RTE improves the sen- 
sitivity of elastographic signal collection and 
reduces interference of human factors induced 
upon measurement. 

The purpose of this study was to explore the 
variable characteristics of ADC and the LFI in 
different stages of liver fibrosis in rats, and  
to compare their performance in staging liver 
fibrosis.

Materials and methods

Experimental animals

Male Sprague-Dawley rats (n = 65, weighing 
200 ± 20 g) were provided by the Experimental 
Animals Center at Southern Medical University 
(Certificate No. 44002100001642). The rats 
were housed in cages in an SPF-level environ-
ment: 18-20°C, humidity 60-70%; 12-h light 
and dark cycles. Drinking and eating were not 
restricted for the rats during the experiment. All 
experimental animals drank distilled water and 
were fed with standard rat chow. Animals were 
regularly monitored, and their general wellbeing 
was recorded periodically. All experimental pro-
cedures were approved by the Institutional 
Animal Ethics Committee of University.

Modeling method

The 65 rats were randomly divided via a digital 
meter into the model group (n = 50) or the con-
trol group (n = 15). A classical procedure for 
chemical-induced liver fibrosis was utilized [14, 
15]. Briefly, all rats in control group were given 
magnetic resonance imaging (MRI) examina-

tion after 1 week acclimatization. After being 
acclimatized to the housing conditions for 1 
week, 50 rats in liver fibrosis model group were 
given 50% (v/v) carbon tetrachloride (CCl4) (0.3 
mL/100 g, dissolved in olive oil) by subcutane-
ous injection. Animals received CCl4 adminis-
tration twice weekly for 10 weeks, and the dos-
age of drug was determined by the animal body 
weight each time before injection. After the ini-
tial injection (Day 0), five rats in model group 
were randomly selected for MRI examination on 
Days 14, 21, 28, 35, 42, 49, 56, 63, 70. Animals 
in model group were sacrificed after MRI exami-
nation. A total of 5 rats in model group died dur-
ing the experiment period.

MRI

Rats were subjected to MRI scan using an 
Achieva 3.0T TX MRI machine (Philips Heal- 
thcare, Best, Netherlands). Rats were prepared 
for scanning under anesthetization with an 
intraperitoneal injection of 3% pentobarbital 
(w/v; 0.2 mL/100 g). Animals were placed in 
the prone position in a special small animal 
coil, with their heads positioned straight for-
ward and abdomens secured with a safety be- 
lt to reduce respiratory motion. MRI scanning 
was conducted with standard sequences as fol-
lows: (A) axial T2-weighted fast field echo (FFE) 
images were obtained with time to repetition 
(TR) of 203 ms, echo time (TE) of 9.2 ms, field 
of view (FOV) of 60 × 60 mm, imaging matrix of 
100 × 100, and slice thickness of 3 mm; (B) 
axial T1-weighted turbo-spin-echo (TSE) images 
were obtained with TR of 400 ms, TE of 10 ms, 
FOV of 60 × 60 mm, imaging matrix of 120 × 
93, and slice thickness of 3 mm. For each 
sequence, 13 slices were obtained.

DWI using the single-shot spin-echo echo-pla-
nar imaging sequence was performed. The 
parameters for DWI scanning were as follows: 
TR, 2,000 ms; TE, 55 ms; echo-planar imaging 
factor, 63; FOV, 50 × 50 mm; slice thickness, 3 
mm; imaging matrix, 64 × 63; receiver band-
width, 2,735.7 Hz/pixel; motion probing gradi-
ents (MPGs) in three orthogonal axes; b values, 
0 and 800 s/mm2; number of signals averaged, 
3; parallel imaging (SENSitivity Encoding) fac-
tor, 3; and fat suppression, spectral presatu- 
ration inversion recovery. A total of 9 repre- 
sentative axial slices through the liver were 
selected. 
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Image analysis

The value of ADC was calculated for different b 
values assuming a mono-exponential decay. 
Images were analyzed using a PRIDE DWI To- 
ol software (version 1.5, Philips Healthcare). 
Slices of liver parenchyma were screened for 
selection of the best one. For each sample, 5 

regions of interest (ROIs) of approximately 3-4 
mm2 were manually drawn by an experienced 
radiologist, avoiding the inclusion of bile ducts, 
vessels or the liver margin. Fits were performed 
for all ROIs on a pixel-by-pixel basis with the 
Levenberg-Marquardt algorithm. Subsequent 
analysis was carried out using Image J software 
(NIH, Bethesda, MD, USA). The mean values of 

Figure 1. MRI of a rat with stage F2 fibrosis. A. White circles demonstrate regions of interest manually placed on the 
liver parenchyma with the DWI. B. Axial T2-weighted image. C. Axial T1-weighted image.

Figure 2. RTE images of a rat with stage F2 fibro-
sis. A. B-model ultrasonic image of the anterior 
lobe of a rat. B. Elastography depends on the 
heart beating. C. The LFI was computed from the 
multiple logistic regression models of the nine pa-
rameters.
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selected ROIs (n = 5) were calculated (Figure 
1).

Ultrasonic examination

Ultrasonic imaging (Hitachi HI Vision Preirus 
ultrasound meter, Hitachi Medical, Tokyo, Ja- 
pan) was immediately performed after MRI 
scanning. A linear array probe at a frequency 
5-13 MHz (central frequency of 8 MHz) was 
used. The rats were fixed in the dorsal position 
and underwent liver examination. Double ampli-
tudes were simultaneously displayed as an 
elastic image on the left side and a 2D image 
on the right side. The elastography depends on 
the heart beating. Along with the heart contrac-
tion and diastole, the lower left part of the 
motion meter’s screen displays the liver com-
pression curves (stress strain curve), which 
represent the compression tensile modulus 
and the impact frequency produced by the liver 
tissues under heart beating. If the stress strain 
curve shows five or more continuous stable 

the blue area in the analyzed region (% AREA), 
standard deviation of the relative strain value 
(SD), complexity of the blue area (COMP), skew-
ness of the strain histogram (SKEW), kurtosis 
of the strain histogram (KURT), inverse differ-
ence moment (IDM), entropy (ENT), and angular 
second moment (ASM).

LFI was computed from the multiple logistic 
regression models of the above nine parame-
ters [13, 16] as follows: LFI = (-0.00897 × 
MEAN) - (0.00502 × SD) + (0.00232 × % AREA) 
+ (0.0253 × COMP) + (0.775 × SKEW) - (0.281 
× KURT) + (2.08 × ENT) + (3.04 × IDM) + (40.0 
× ASM) - 5.54 (Figure 2).

Histopathology

All rats were sacrificed by intraperitoneal injec-
tion of an overdose of 3% pentobarbital at vari-
ous time points after MRI scanning and ultra-
sonic detection (5-15 h). Livers were fixed in 
10% formalin. The sections were stained with 

Figure 3. Representative hematoxylin-eosin and Masson’s trichrome staining. A-E. Liver fibrosis stages 0-4 (hema-
toxylin-eosin stain; 10 × 20); F-J. Liver fibrosis stages 0-4 (Masson’s stain; 10 × 40).

Table 1. Liver fibrosis index (LFI) and apparent diffu-
sion coefficient (ADC) at different stages of liver fibrosis 
presented as mean values ± standard deviation (SD) 
and 95% confidence intervals (CIs); differences between 
stages were highly significant (P < 0.001)

n (60) LFI ADC (× 10-3 mm2/s)
Mean ± SD CI Mean ± SD CI

Fibrosis stage
    0 15 1.22 ± 0.43 0.97-1.45 1.29 ± 0.18 1.19-1.14
    1 11 1.53 ± 0.29 1.33-1.72 1.11 ± 0.16 1.00-1.22
    2 12 1.61 ± 0.28 1.44-1.79 0.93 ± 0.15 0.84-1.03
    3 10 1.95 ± 0.56 1.55-2.35 0.88 ± 0.12 0.79-0.97
    4 12 2.53 ± 0.61 2.26-2.78 0.87 ± 0.10 0.82-0.93
P value < 0.001 < 0.001

waveforms, the image is frozen. Next, 
the built-in data processing system 
was transferred to measure the LFI 
within a ROI. Each rat was examined 
10 times, and the mean value was 
computed. 

The ROI was set at the anterior lobe, 
but attention was paid to avoid blood 
vessels, bile ducts, and liver margins. 
The strain value in the ROI was repre-
sented by colors from 0 (red) to 255 
(blue), indicating a hardness range 
from absent to complete. In addition, 
histograms and nine parameters were 
generated, including the mean of the 
relative strain value (MEAN), ratio of 
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hematoxylin & eosin and Masson’s for histolo-
gy, and photographed with Leica DM2000.

Liver fibrosis stages were scored by author  
LYF (an experienced histopathologist with 9 
years of liver pathology experience) using the 
METAVIR classification system [17], with the 
following stage definitions: F0 = no fibrosis; F1 
= portal fibrosis without septa; F2 = portal 
fibrosis and a few septa; F3 = numerous septa 
without cirrhosis; and F4 = cirrhosis.  

Statistical analysis

Statistical analysis was performed by one-way 
analysis of variance (ANOVA) for multiple group 
comparisons of the parameters using SPSS 
20.0. Spearman’s rank correlation coefficients, 
r values, were calculated to assess the correla-
tion. Receiver operating characteristic (ROC) 
curves and the area under the ROC curve (AUC) 
were used to evaluate the usefulness of param-
eters for predicting the fibrosis stage. A P-value 
≤ 0.05 was considered statistically significant.

Results

Pathological results

Five rats in the model group died during the 
process of intervention, and the remaining 45 

rats were pathologically scored for liver fibrosis: 
F1 = 11, F2 = 12, F3 = 10, and F4 = 12. All rats 
in the control group completed the experimen-
tal analysis (F0 = 15) (Figuire 3). 

ADC and LBI scores in different stages of liver 
fibrosis 

Our results showed that the ADC declined while 
the LFI increased along with the progression of 
fibrosis (Table 1; Figures 4 and 5). Both the 
ADC and LFI in all groups were analyzed by 
ANOVA. Both indices were significantly different 
among the five groups (P < 0.001). 

Correlation analysis showed that the ADC was 
negatively correlated with the liver fibrosis 
stage (r = -0.732, P < 0.001, CI: -0.826--0.582), 
but the LFI was positively correlated with the 
progression of fibrosis (r = 0.706, P < 0.001, CI: 
0.525-0.831).

ROC curve analysis

ROC curve analysis showed that ADC and LFI 
predicted the liver fibrosis stage with high sen-
sitivity and specificity. At the early stages (F0 
vs. F1-F4, F0-F1 vs. F2-F4), the area under 
curve (AUC) of ADC was larger than that of LFI, 
but at intermediate and late stages (F0-F2 vs. 

Figure 4. ADC maps for rat livers 
with various fibrosis stages. The 
mean liver ADC value decreases 
with fibrosis stage progression. 
A. Stage F0, ADC = 1.29 × 10-3 
mm2/s. B. Stage F1, ADC = 1.11 
× 10-3 mm2/s. C. Stage F2, ADC 
= 0.93 × 10-3 mm2/s. D. Stage 
F3, ADC = 0.88 × 10-3 mm2/s. 
E. Stage F4, ADC = 0.87 × 10-3 
mm2/s.
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Figure 5. RTE maps for rat livers with different fibrosis stages. The mean LFI values increase with fibrosis stage progression: (A) Stage F0, LFI = 1.22; (B) Stage F1, 
LFI = 1.53; (C) Stage F2, LFI = 1.61; (D) Stage F3, LFI = 1.95; and (E) Stage F4, LFI = 2.53.
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F3-F4, F0-F3 vs. F4), the AUC of LFI was larger 
than that of ADC (Figure 6). The sensitivity and 
specificity under the optimal cutoff of each 
pathological stage that were predicted using 
Youden’s index are listed in Table 2.

Discussion

In conclusion, Current clinical diagnostic meth-
ods for detecting liver fibrosis include liver biop-
sy, serology, and imaging. Liver biopsy-based 
histology presents direct evidence of liver fibro-
sis. However, the procedure is invasive and 
sampling errors [18, 19]. Furthermore, biopsies 
are difficult to obtain for dynamic observation 
[20]. Serology also has serious limitations in 
terms of sensitivity and specificity [21, 22]. 
Meanwhile, traditional imaging methods have a 
low specificity. RTE by ultrasound and DWI are 
noninvasive methods that have advantages 
over traditional methods. However, RTE and 
DWI are different in imaging mechanisms with 
pathophysiology.

To investigate the diagnostic value of the ADC 
and LFI at differentiating liver fibrosis stages, in 
this study, we measured both the ADC by MRI 

and the LFI by ultrasound in rats with experi-
mentally induced fibrosis that was histologically 
graded. We found that both the ADC and LFI 
were strongly correlated with the progression of 
liver fibrosis. ROC curve analysis showed that 
both the ADC and LFI were highly sensitive and 
specific at predicting the liver fibrosis stage.

A declining ADC value during the formation of 
liver fibrosis and cirrhosis has been well recog-
nized [6, 23]. Most scholars agree that the 
decreased ADC values primarily arise from the 
changing properties of a fibrotic liver, which 
include diffused hyperplasia of abundant fib- 
rous tissues in the extracellular space, degen-
erative edema in hepatocytes, and inflamma-
tion in both the portal region and parenchyma. 
All of these changes increase resistance to the 
dispersion of water molecules [5-7]. In addition, 
the reduction of ADC may be attributed to  
the alteration of liver microcirculation [8-10]. 
Changes in intrahepatic fats and iron contents 
also can impact the ADC [24]. 

The fibrosis stage was inversely correlated with 
the ADC (r = -0.732, P < 0.001). This correlation 

Figure 6. ROC curves of ADC and LFI for differentiation of fibrosis stages. A. F0 vs. F1-F4, area under ROC curve 
(AUC): ADC = 0.917, LFI = 0.840. B. F0–F1 vs. F2–F4, AUC: ADC = 0.924, LFI = 0.824. C. F0-F2 vs. F3-F4, AUC: ADC 
= 0.842, LFI = 0.867. D. F0-F3 vs. F4, AUC: ADC = 0.781, LFI = 0.939.

Table 2. Performance of the selected apparent diffusion coefficient (ADC) and liver fibrosis index (LFI) 
cut-off values in predicting METAVIR fibrosis stages
Parameter, comparison Cut-off value Sensitivity 95% CI Specificity 95% CI +LR -LR
ADC F0 vs. F1-4 ≤ 1.10 80.00 65.4-90.4 86.67 59.5-98.3 6.00 0.23

F0-1 vs. F2-4 ≤ 1.04 88.24 72.5-96.7 88.46 69.8-97.6 7.65 0.13
F0-2 vs. F3-4 ≤ 1.01 95.45 77.2-99.9 73.68 56.9-86.6 3.63 0.06
F0-3 vs. F4 ≤ 0.98 83.33 51.6-97.9 62.50 47.4-76.0 2.22 0.27

LFI F0 vs. F1–4 > 1.37 82.22 67.9-92.0 73.33 44.9-92.2 3.08 0.24
F0-1 vs. F2-4 > 1.64 70.59 52.5-84.9 80.77 60.6-93.4 3.67 0.36
F0-2 vs. F3-4 > 1.82 77.27 54.6-92.2 86.84 71.9-95.6 5.87 0.26
F0-3 vs. F4 > 1.98 91.67 61.5-99.8 85.42 72.2-93.9 6.29 0.10
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is higher than those reported previously be- 
tween ADC values and fibrosis stage, which are 
r = -0.654, P = 0.001 [25]; r = -0.54, P < 0.0001 
[26], and r = -0.41 [27]. 

The value of ADC in assessment of liver fibrosis 
staging is still a subject of scientific debate. 
Some researchers found that the ADC does not 
accurately determine the stage [6, 24, 28]. 
Others have suggested that the ADC does 
accurately evaluate the degree of liver fibrosis 
[26, 29, 30]. In this study, the ADC revealed a 
good predictive value for diagnosing the stage 
of liver fibrosis (AUC: 0.781-0.924), which is 
consistent with results of Fujimoto et al. [30] 
(AUC: 0.842-0.926) and Bonekamp et al. [26] 
(AUC: 0.77-0.79).

We also noted that the AUC of ADC staging ear-
ly-stage was larger than that at late stage. Liver 
cell swelling and fat solubilization were allevi-
ated at stages F3-F4. On the other hand, the 
deposition of EMC was gradually intensified. 
Thus, the uncertain ADC values in fibrosis stage 
F2 to stage F4 [31].

RTE is a novel ultrasonic technique for dete- 
cting liver fibrosis. The diffuse hyperplasia of 
abundant fibrous tissues in the extracellular 
space increases the liver hardness during the 
fibrotic process. The changing composition of 
the hepatic parenchyma can be displayed by 
RTE. The basic principle of elastography is that 
changes in echo signal migration amplitudes 
before and after compression are transformed 
into real-time color images as follows: an echo 
in the tissues with a small elastic coefficient 
will move longer after compression and is dis-
played as red; an echo that travels a shorter 
distance in tissues with a large elastic coeffi-
cient is displayed as blue; and an echo that 
travels an intermediate distance in tissues with 
a medium elastic coefficient is displayed as 
green. Thus, the tissue hardness is reflected by 
different colors. The LFI, computed from multi-
ple logistic regression models, suggests the 
extent of fibrosis in a quantitative manner.

Despite the article points out that the LFI is 
evaluation of HCV usually [32], but studies 
showed that LFI useful in liver fibrosis caused 
by variety of reasons [33-35].

Many studies have used RTE to determine the 
liver fibrosis stage. High accuracies with AUC 

values of 0.66-0.93, 0.87-0.88, 0.87-0.91, and 
0.91-0.94 have been reported [36-39] in the 
staging of liver fibrosis through ROC curve 
analyses. 

In this study, the LFI showed a high accuracy 
(AUC: 0.824-0.939) in the prediction of liver 
fibrosis. The LFI was positively correlated with 
the degree of liver fibrosis (r = 0.706), which sig-
naled that liver tissue was gradually hardened 
along with the repair process, demonstrating a 
fundamental change in the fibrotic liver.

At early stages of fibrosis (F0 vs. F1-F4, F0-F1 
vs. F2-F4), the AUC of the ADC was larger; thus, 
because the sedimentation of collagen fibers 
was not the main pathological change at the 
early stages. So the hardness of liver parenchy-
ma is not obvious. However, once the fibrosis 
was at an intermediate or late stage, the AUC of 
LFI was larger than that of ADC. The deposition 
of collagen fibers accumulated, resulting in  
significantly increased liver hardness and an 
increased LFI value.

Limitations of our study: This study was based 
on a rat fibrosis model, and the findings may 
not be fully applicable to human liver fibrosis. 
However, the diagnostic utility of staging fibro-
sis by both the ADC and LFI seems promising 
and is worthy of further investigation in the 
clinic. 

In conclusion, In spite of different imaging 
mechanisms by RTE and DWI, both the ADC as 
determined by MRI and the LFI as determined 
by RTE were strongly correlated with liver fibro-
sis progression. Moreover, the ADC was more 
sensitive in predicting early-stage liver fibrosis, 
while the LFI was more accurate predicting 
intermediate- and late-stage liver fibrosis. Our 
results suggest that both RTE and DWI should 
be utilized in staging fibrosis and a combination 
of two measurements will increase the staging 
accuracy. 
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