Original Article Diagnostic accuracy of ultrasonographic features for benign and malignant thyroid nodules smaller than 10 mm

Yusufu Maimaiti^{1*}, Shiran Sun^{1*}, Zeming Liu¹, Wen Zeng², Chunping Liu¹, Shuntao Wang¹, Yiquan Xiong¹, Yawen Guo¹, Xiaoyu Li¹, Yu Wang³, Wenshan He¹, Tao Huang¹

¹Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; ²Department of Ophthalmology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China; ³Department of ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Provincial Key Laboratory of Molecular Imaging, Wuhan, China. *Equal contributors.

Received September 10, 2015; Accepted December 3, 2015; Epub March 15, 2016; Published March 30, 2016

Abstract: Objectives: To evaluate benign and malignant thyroid nodules ≤ 1 cm according to ultrasonographic (US) features before surgery. Methods: Thyroid nodules 1-10 mm were evaluated in 600 patients. The US features in benign and malignant nodules were compared, and the odds ratios of the suspicious US features were determined with univariate and multivariate analyses. Diagnostic specifications such as sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and the area under the receiver operating characteristic curve value were calculated to evaluate the value of these US features. Results: Echogenicity, composition, height and width, margin, shape, capsule, calcification, and number were significantly different between benign and malignant nodules, whereas vascularity was not significantly different. Multivariate logistic regression analysis showed that solidity, taller than wide, irregularity, microcalcification, and multifocality were independent features and solid composition was the most specific, although still at a low rate (only 69.1%). The sensitivity improved when two features were combined. Conclusions: Our study recommended that US features of solidity, taller than wide, irregular, microcalcification, and multifocality were useful sonographic criteria for differentiating malignant thyroid nodules ≤ 1 cm from benign ones. A combination of at least two of these characteristics can increase the diagnostic value for thyroid nodules.

Keywords: Ultrasonographic features, subcentimeter thyroid nodules, diagnostic accuracy

Introduction

Papillary thyroid carcinoma (PTC), the most common malignant thyroid neoplasm, accounts for 80% of all thyroid cancers [1, 2]. Papillary thyroid microcarcinoma (PTMC) is defined as a thyroid cancer measuring \leq 1.0 cm in its greatest dimension, according to the World Health Organization classification system. The proportion of PTMCs was reportedly approximately 30% of all papillary thyroid cancer [3-5]. PTMC cases are often treated differently, as many of their characteristics are different from those of large PTCs. The treatment aspects such as surgical approach, risk of recurrence, and prognosis differ among both types. With the increasing detection of thyroid nodules by using high-resolution ultrasound, the rate of detection of asymptomatic thyroid cancers, especially papillary thyroid cancer and PTMCs, has increased. Various recent studies have focused on ultrasonographic (US) features in the diagnosis of benign and malignant thyroid nodules. However, few studies exist regarding the US characteristics of thyroid nodules \leq 1 cm. As mentioned previously, there are many differences between PTMCs and PTC \geq 1 cm, so it is vital to independently evaluate the US features in the diagnosis of benign and malignant thyroid nodules \leq 1 cm.

Characteristics and	sound features for the thyroid nodules Characteristics and Malignant Benign							
Features	(n = 356)	0	Р					
Age (years)			0.351					
≥45	192	141						
< 45	164	103						
Sex			0.210					
Female	296	193						
Male	60	51						
Body mass index			0.740					
BMI < 18.5	19	17						
18.5 ≤ BMI < 25	249	172						
25 ≤ BMI < 30	81	52						
BMI≥30	7	3						
Echogenicity			< 0.001					
Hypoechoic	339	172						
Isoechoic	11	60						
Hyperechoic	6	12						
Composition			< 0.001					
Cystic > 50%	1	16						
Predominantly solid	54	102						
Solid	301	121						
Spongiform	0	5						
Taller and wide			< 0.001					
Oval to round	201	220						
Taller than wide	155	24						
Boundary			< 0.001					
Well defined	143	193						
Poorly defined	213	51						
Shape			< 0.001					
Regular	169	218						
Irregular	187	26						
Capsule			< 0.001					
Complete	302	237						
Incomplete	54	7						
Vascularity			0.371					
Negative	71	60						
Peripheral	52	36						
Central	190	114						
Both	43	34						
Calcication			< 0.001					
No calcification	123	112						
Macrocalcification	11	53						
Microcalcication	222	79						
Number			< 0.001					
Solitary	232	218						
Multifocality	124	26						

Table 1. The basic characteristics and ultra-	
sound features for the thyroid nodules	

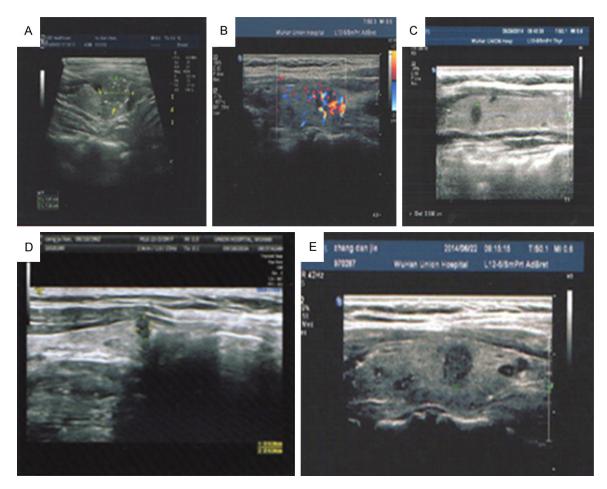
Additionally, fine-needle aspiration biopsy (FN-AB) is considered to be one of the best approaches to achieve diagnostic accuracy for thyroid nodules; however, its efficacy in diagnosing thyroid nodules ≤ 1 cm is still speculated [6-8]. Based on these two reasons, our study focused on the diagnostic accuracy of US features for thyroid nodules ≤ 1 cm to detect PTMCs effectively.

Methods and materials

Patients

Our study included thyroid nodules \leq 10 mm in maximum diameter in 600 patients who underwent conventional ultrasonography examinations of the thyroid gland before surgery in Union hospital from January 2012 to July 2015. Our study was approved by the Ethics Committee of our hospital and written informed consent was obtained from each patient before the US examination.

All patients evaluated in the study underwent thyroid surgery for nodules. Patients who had nodules \geq 10 mm were excluded. If a patient had multiple nodules, each nodule was evaluated.


Ultrasonography evaluation

All conventional US examinations were performed by two independent ultrasound physicians with an Acuson S2000 diagnostic ultrasound system (Siemens Medical Solutions). Patients were examined in the supine position with a fully exposed neck.

Statistical analysis

Initial clinical and pathological data were collected by using EpiData Software v3.1 (EpiData Association, Odense, Denmark). All statistical analyses were performed by SPSS software, version 13.0 (SPSS, Chicago, IL), and a twotailed *P*-value of less than 0.05 was considered as statistically significant.

Comparisons of frequency distributions were performed with a χ^2 test. Multivariate logistic regression analysis was performed to determine independent sonographic predictors malignant from the US characteristics that showed

Figure 1. Ultrasonographic features of thyroid nodules. A. Ultrasonography showed thyroid nodule with microcalcication inside. B. Ultrasonography showed thyroid nodule with central vascularity. C. Ultrasonography showed thyroid nodule with solid composition, hypoechoic echogenicity, Taller than wide, poorly defined boundary and irregular shape. D. Ultrasonography showed thyroid nodule with incomplete capsule. E. Ultrasonography showed thyroid nodule with multifocality.

gestive of malignant thyroid nodules						
Pathological category	Multivariate analysis					
	Р	HR	95% CI			
Hypoechoic	0.123	2.382	0.790-7.183			
Solid	< 0.001	3.059	1.861-5.029			
Taller than wide	0.021	1.958	1.106-3.465			
Poorly defined boundary	0.150	1.440	0.877-2.364			
Irregular	< 0.001	3.769	2.192-6.481			
Incomplete capsule	0.148	1.998	0.783-5.103			
Microcalcication	< 0.001	6.882	3.097-15.292			

0.005 2.299 1.290-4.096

 Table 2. Multivariate analysis of the features suggestive of malignant thyroid nodules

statistical significance. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy for each US characteristic suspicious for malignancy were cal-

culated. The diagnostic accuracy of predictions of malignancy was calculated with receiver operating characteristic (ROC) analysis.

Results

According to histopathologic examination after thyroid surgery or FNAB, out of the 600 patients, 244 were benign, and 356 were malignant.

The sonographic characteristics of these thyroid nodules are shown in **Table 1** and **Figure 1**. Echogenicity, composition, height and width, margins, shape, capsule, calcification, and number were significantly different between benign and malignant nodules. Vascularity was not significantly different between benign and malignant nodules. Compared with benign nodules, malignant nodules were more frequently

Multifocality

US features	Sensi- tivity %	Speci- ficity %	PPV %	NPV %	Accu- racy %	AUC	Youden index
Solid	71.3	69.1	84.6	50.4	70.7	0.542	0.404
Taller than wide	86.6	52.3	43.5	90.2	62.5	0.709	0.389
Irregular	87.8	52.3	52.5	89.3	67.5	0.650	0.401
Microcalcication	73.8	55.2	62.4	67.6	64.5	0.669	0.290
Multifocality	82.7	48.4	34.8	89.3	57.0	0.621	0.311

 Table 3. Predictive value of US features in thyroid lesions

hypoechoic (95.2% vs. 70.5%), solid (84.6% vs. 49.6%), had taller than wide (43.5% vs. 9.8%), were poorly defined boundaries (59.8% vs. 20.9%), irregular (52.5% vs. 10.7%), incomplete capsule (15.2% vs. 2.9%), and showed microcalcification (62.4% vs. 32.4%) and multifocality (34.8% vs. 10.7%; P < 0.001). In the color Doppler sonographic features, the frequency of central Vascularity had no significant difference between benign and malignant nodules (65.4% vs. 60.7%; P = 0.371).

The results of multivariate logistic regression analysis of the features suggestive of malignant thyroid nodules are shown in **Table 2**. Five criteria (solidity, taller than wide, irregularity, microcalcification, multifocality) showed a significant association with malignant nodules (P < 0.05).

And other three features (Hypoechoic, poorly defined boundary and incomplete capsule) were turn out to not be independent factors to detect malignant thyroid nodules (P = 0.123, 0.150, 0.148; respectively).

The sensitivity, specificity, PPV, NPV, and diagnostic accuracy of the useful sonographic features are shown in Table 3. We see that irregularity showed the highest sensitivity in all the independent features, and solid composition was the most specific, although still at a low rate (69.1%). Conversely, solid composition was the most accurate feature, with 70.7% accuracy. The sensitivity, specificity, PPV, NPV, and diagnostic accuracy of two useful US features are shown in Table 4. The sensitivity was mostly improved when two features were combined. For example, when taller than wide was combined with irregular shape, the sensitivity reached 91.2%. The receiver operating characteristic curve for the irregularity feature is seen in **Figure 2**, optimal cut-off value (sensitivity, 0.878; 1-specificity, 0.437).

Discussion

The detection of thyroid nodules has increased with the use of high-resolution ultrasound. FNAB, although an excellent diagnostic tool for thyroid nodules, has limited application in

nodules \leq 1 cm. Therefore, the use of US features to detect the properties of thyroid nodules is necessary to evaluate the risk of thyroid foci before surgery.

In our current study, we evaluated the US features such as echogenicity, composition, height and width, boundary, shape, capsule, vascularity, calcification, and number of foci. We found that hypoechoicity, solidity, taller than wide, poorly defined boundaries, irregularity, incomplete capsule, microcalcification, and multifocality enabled differential diagnosis between benign and malignant thyroid nodules with maximum diameters ≤ 1 cm, whereas vascularity did not enable differentiation. The above mentioned characteristics are therefore independent factors implying malignant lesions for subcentimeter thyroid nodules.

Low degree of differentiation in cancer cells, fewer interstitial components, and good sound transmission in the tumor may be correlated with the hypoechoic nature of nodules. However, echogenicity may change with nodule growth as blood vessels and fibrous tissue undergo hyperplasia [9]. In the current study, echogenicity was significantly different between benign and malignant nodules, which is similar to the results seen in most current studies [10].

Frantes et al. reported that predominantly solid composition of nodules was associated with an increased risk of thyroid carcinoma [11]. Zhang et al. demonstrated that solid composition did not cause significant differences in benign and malignant nodules; however, cystic or spongiform composition was always seen in benign thyroid nodules [12]. In our study, however, solid composition was an independent characteristic for diagnosing malignant lesions.

Taller than wide was suggested as a significant US characteristic to distinguish benign and

		,					
US features	Sensitivity %	Specificity %	PPV %	NPV %	Accuracy %	AUC	Youden index
Solid* Taller than wide	87.3	51.4	40.7	91.4	61.7	0.656	0.387
Solid* Irregular	89.1	54.8	48.3	91.4	65.8	0.698	0.439
Solid* Microcalcication	82.8	56.1	55.3	83.2	66.7	0.693	0.389
Solid* Multifocality	86.4	47.3	28.7	93.4	55.0	0.611	0.337
Taller than wide* Irregular	91.2	60.5	40.2	95.5	56.2	0.681	0.517
Taller than wide* Microcalcication	89.5	47.1	36.7	95.5	54.5	0.611	0.366
Taller than wide* Multifocality	88.3	44.9	19.1	96.3	50.5	0.577	0.332
Irregular* Microcalcication	88.5	49.5	34.5	93.4	58.5	0.640	0.380
Irregular* Multifocality	86.1	44.3	17.4	95.5	49.3	0.567	0.304
Microcalcication* Multifocality	88.4	49.5	34.6	93.4	58.5	0.640	0.379

Table 4. Predictive value of two US features in thyroid nodules

*: with.

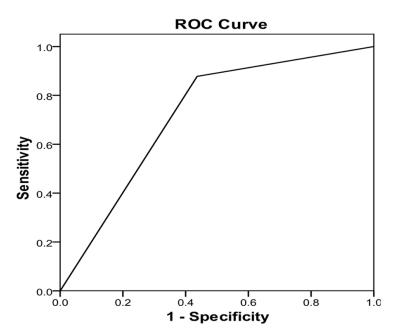


Figure 2. Receiver operating characteristic curve for the Irregular features.

malignant thyroid lesions by Popowicz et al. [13]. A height-to-width ratio ≥ 1 was a very sensitive factor for differential diagnosis in lesions < 1.5 cm than in nodules > 1.5 cm. Taller than wide represents a typical growth pattern of malignant thyroid lesions that often grow longitudinally. In our study, taller than wide was the second most sensitive feature (86.6%) for diagnosing malignant thyroid nodules. Therefore, taller than wide is a very useful US feature for clinicians to decide whether patients need radical management, such as thyroidectomy, when they are evaluated.

Irregular margins and incomplete capsule have been poor features for thyroid carcinoma in his-

topathology; they predict a poor prognosis [14, 15]; they are typical US characteristics seen in most studies [16-19]. In our study, irregular margin and incomplete capsule were both significantly different in benign and malignant thyroid nodules, although only irregular margin was an independent factor in multivariate analysis.

Microcalcifications reportedly result from growth of autocrine tumor cells [20]; in ultrasound images, they may reflect psammoma bodies [21]. Coarse calcification, known as dystrophic calcification, may occur due to rapid growth of cancer cells, degeneration, tissue hyperplasia, and calcium deposition [10, 11, 22]. In our study, microcalci-

fications were observed in 62.6% of the PTMCs and 32.4% of the benign thyroid nodules. No calcification only accounted for 34.6% in PT-MCs. On further analysis, microcalcifications combined with taller than wide was the most sensitive value for PTMCs.

Multiple nodules can occur in both benign nodules and thyroid microcarcinoma. When multiple foci are present in thyroid ultrasound, each focus should be evaluated independently. Especially, atypical nodules should not be ignored, since thyroid cancer foci may have polyclonal or monoclonal origin. Additionally, thyroid cancer foci may also merge with other benign thyroid lesions such as nodular goiter, Hashimoto's thyroiditis, and adenoma [15]. Interestingly, in our study, multifocality was not only a dependent US predicting factor for prognosis of malignant nodules, but also very sensitive when combined with microcalcifications.

We observed contradictory views regarding the value of vascularity for differentiating malignant and benign thyroid nodules [10]. Many current studies suggest that abundant vascularity, especially central vascularization, is more likely to indicate malignant lesions [10, 23]. However, in our study, central vascularization was seen to be a negative characteristic for diagnosis of subcentimeter thyroid carcinoma.

Our study has certain limitations. First, the sample size was not large enough, and only typical nodules, even among multiple nodules, were included. Second, nodules > 10 mm were not included for more analysis, as only subcentimeter lesions were analyzed. In addition, our current study only had qualitative analysis, whereas quantitative analysis should be used in future studies.

Conclusion

In conclusion, US features of solidity, taller than wide, irregularity, microcalcification, and multifocality were useful US criteria for differentiating malignant thyroid nodules ≤ 1 cm from benign ones. A combined analysis with two of these characteristics can increase their value for diagnosing thyroid nodules. Information about the probability of each US feature's association with malignancy would enable surgeons to reach a clinical decision of performing FNAB or surgery.

Disclosure of conflict of interest

None.

Address correspondence to: Tao Huang and Chunping Liu, Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. E-mail: huangtaowh@163.com (TH); lcp191@163. com (CPL)

References

 Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer 2013; 13: 184-199.

- [2] Liu Z, Yu P, Xiong Y, Zeng W, Li X, Maiaiti Y, Wang S, Song H, Shi L, Liu C, Cheng B, Zhang B, Ming J, Dong F, Ge H, Nie X and Huang T. Significance of CK19, TPO, and HBME-1 expression for diagnosis of papillary thyroid carcinoma. Int J Clin Exp Med 2015; 8: 4369-4374.
- [3] Leenhardt L, Grosclaude P and Cherie-Challine L. Increased incidence of thyroid carcinoma in france: a true epidemic or thyroid nodule management effects? Report from the French Thyroid Cancer Committee. Thyroid 2004; 14: 1056-1060.
- [4] Xiang J, Wu Y, Li DS, Shen Q, Wang ZY, Sun TQ, An Y and Guan Q. New clinical features of thyroid cancer in eastern China. J Visc Surg 2010; 147: e53-56.
- [5] Liu Z and Huang T. Papillary Thyroid Microcarcinoma: An Over-Treated Malignancy? World J Surg 2015; [Epub ahead of print].
- [6] Cooper DS, Doherty GM, Haugen BR, Kloos RT, Lee SL, Mandel SJ, Mazzaferri EL, McIver B, Pacini F, Schlumberger M, Sherman SI, Steward DL and Tuttle RM. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2009; 19: 1167-1214.
- [7] Berker D, Aydin Y, Ustun I, Gul K, Tutuncu Y, Isik S, Delibasi T and Guler S. The value of fineneedle aspiration biopsy in subcentimeter thyroid nodules. Thyroid 2008; 18: 603-608.
- [8] Sharma A, Gabriel H, Nemcek AA, Nayar R, Du H and Nikolaidis P. Subcentimeter thyroid nodules: utility of sonographic characterization and ultrasound-guided needle biopsy. AJR Am J Roentgenol 2011; 197: W1123-1128.
- [9] Wang Y, Li L, Wang YX, Feng XL, Zhao F, Zou SM, Hao YZ, Ying JM and Zhou CW. Ultrasound findings of papillary thyroid microcarcinoma: a review of 113 consecutive cases with histopathologic correlation. Ultrasound Med Biol 2012; 38: 1681-1688.
- [10] Zhang H, Shi Q, Gu J, Jiang L, Bai M, Liu L, Wu Y and Du L. Combined value of Virtual Touch tissue quantification and conventional sonographic features for differentiating benign and malignant thyroid nodules smaller than 10 mm. J Ultrasound Med 2014; 33: 257-264.
- [11] Frates MC, Benson CB, Charboneau JW, Cibas ES, Clark OH, Coleman BG, Cronan JJ, Doubilet PM, Evans DB, Goellner JR, Hay ID, Hertzberg BS, Intenzo CM, Jeffrey RB, Langer JE, Larsen PR, Mandel SJ, Middleton WD, Reading CC, Sherman SI and Tessler FN. Management of thyroid nodules detected at US: Society of Radiologists in Ultrasound consensus conference statement. Radiology 2005; 237: 794-800.
- [12] Zhang YF, Liu C, Xu HX, Xu JM, Zhang J, Guo LH, Zheng SG, Liu LN and Xu XH. Acoustic radia-

tion force impulse imaging: a new tool for the diagnosis of papillary thyroid microcarcinoma. Biomed Res Int 2014; 2014; 416969.

- [13] Popowicz B, Klencki M, Lewinski A and Slowinska-Klencka D. The usefulness of sonographic features in selection of thyroid nodules for biopsy in relation to the nodule's size. Eur J Endocrinol 2009; 161: 103-111.
- [14] Liu Z, Wang L, Yi P, Wang CY and Huang T. Risk factors for central lymph node metastasis of patients with papillary thyroid microcarcinoma: a meta-analysis. Int J Clin Exp Pathol 2014; 7: 932-937.
- [15] Zhao Q, Ming J, Liu C, Shi L, Xu X, Nie X and Huang T. Multifocality and total tumor diameter predict central neck lymph node metastases in papillary thyroid microcarcinoma. Ann Surg Oncol 2013; 20: 746-752.
- [16] Liu Z, Xun X, Wang Y, Mei L, He L, Zeng W, Wang CY and Tao H. MRI and ultrasonography detection of cervical lymph node metastases in differentiated thyroid carcinoma before reoperation. Am J Transl Res 2014; 6: 147-154.
- [17] Tutuncu Y, Berker D, Isik S, Akbaba G, Ozuguz U, Kucukler FK, Gocmen E, Yalcin Y, Aydin Y and Guler S. The frequency of malignancy and the relationship between malignancy and ultrasonographic features of thyroid nodules with indeterminate cytology. Endocrine 2014; 45: 37-45.
- [18] Kim HG, Moon HJ, Kwak JY and Kim EK. Diagnostic accuracy of the ultrasonographic features for subcentimeter thyroid nodules suggested by the revised American Thyroid Association guidelines. Thyroid 2013; 23: 1583-1589.

- [19] Chen ED, Cheng P, Cai YF, Xiang YY, Zheng HM, Xing HX and Li Q. Ultrasonographic features of Langerhans cell histiocytosis of the thyroid. Int J Clin Exp Pathol 2014; 7: 1229-1235.
- [20] Das DK, Sheikh ZA, George SS, Al-Baquer T and Francis IM. Papillary thyroid carcinoma: evidence for intracytoplasmic formation of precursor substance for calcification and its release from well-preserved neoplastic cells. Diagn Cytopathol 2008; 36: 809-812.
- [21] Trimboli P, Nasrollah N, Amendola S, Rossi F, Ramacciato G, Romanelli F, Aurello P, Crescenzi A, Laurenti O, Condorelli E, Ventura C and Valabrega S. Should we use ultrasound features associated with papillary thyroid cancer in diagnosing medullary thyroid cancer? Endocr J 2012; 59: 503-508.
- [22] Frates MC, Benson CB, Charboneau JW, Cibas ES, Clark OH, Coleman BG, Cronan JJ, Doubilet PM, Evans DB, Goellner JR, Hay ID, Hertzberg BS, Intenzo CM, Jeffrey RB, Langer JE, Larsen PR, Mandel SJ, Middleton WD, Reading CC, Sherman SI and Tessler FN. Management of thyroid nodules detected at US: Society of Radiologists in Ultrasound consensus conference statement. Ultrasound Q 2006; 22: 231-238; discussion 239-240.
- [23] Remonti LR, Kramer CK, Leitao CB, Pinto LC and Gross JL. Thyroid ultrasound features and risk of carcinoma: a systematic review and meta-analysis of observational studies. Thyroid 2015; 25: 538-550.