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Abstract: Pre-clinical diabetic peripheral neuropathy models mimicking the human condition are essential to elu-
cidate the underlying mechanisms. Type 2 diabetic patients coping with peripheral neuropathy experience chronic 
pain. Spinal genes monitoring is thus required to clarify diabetic peripheral neuropathy mechanisms and refine 
treatments. Thus, in this study, we investigated the differentially expressed genes in the cervical spinal cord from di-
abetic neuropathic pain model (D group) and vehicle control (C Group) mice. Results from gene microarrays showed 
that 35 genes were significantly altered in cervical spinal cord of D group compared with C group. Among them, 25 
genes were significantly up-regulated while the other 9 down-regulated. These differentially expressed genes were 
involved in inflammatory signaling, ion transport, protein phosphorylation, sensory perception, cell survival synaptic 
transmission, and synergistic regulation. These findings suggest that aberrant expressed genes may become new 
targets to study the pathogenesis of diabetic peripheral neuropathy and deserve further investigation for therapeu-
tic interventions following pain modulation.
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Introduction

The majority of patients with type 2 diabetes 
mellitus experience chronic peripheral neurop-
athy, which affects their quality of life [1-3]. It 
has been demonstrated that diabetic peripher-
al neuropathy with a high percentage experi-
encing dysfunction and aberrant pain involves 
in anatomical and pathophysiological changes 
in the nervous system [4]. As the combination 
of neuropathic and inflammatory pain [5-10], 
diabetic neuropathy’s unique mechanical and 
neurochemical characteristics make it difficult 
for its therapeutics [11, 12]. The mechanisms 
that generate diabetic peripheral neuropathy 
are poorly understood, and currently available 
treatment for diabetic peripheral neuropathy is 
lacking despite its clinical importance.

Animal models mimicking the human condition 
with diabetic mellitus are required to respond 
to clinical realities in an attempt to elucidate 
the underlying mechanisms responsible for dia-
betic neuropathy. Rat models of painful diabet-

ic neuropathy were developed to characterize 
systemic glucose changes or neural plasticity of 
CNS [13]. Nakajima et al reported that high-fat 
and high-sucrose (HF/HS) diets induced glu-
cose intolerance and obesity [14]. It has been 
demonstrated that streptozotocin (STZ)-indu- 
ced diabetic painful neuropathy is involved in 
nerve damage, neuropathic allodynia and hy- 
peralgesia [13, 15]. It is known that the rat rep-
resents the most studied species in noxious 
stimuli paradigms [16, 17]. We therefore select-
ed the combination of HF/HS diets and STZ 
injection to establish diabetic peripheral neu-
ropathy rat model.

Identifying spinal gene expression patterns 
under normal and diabetic peripheral neuropa-
thy condition is essential to understand spinal 
genetic and molecular mechanisms during the 
development of diabetic peripheral neuropathy. 
Several studies suggest that spinal gene ex- 
pression profiling is involved in many pain 
states, e.g., spinal cord injury [18-20], paclitax-
el-induced neuropathy [21], experimental neu-
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rogenic bladder dysfunction [22]. Emerging evi-
dence indicates that changes in spinal gene 
expression profiling including specific genes 
and several transcription factors contribute to 
pathophysiological alterations of secondary in- 
jury cascade following the genesis of pain [18, 
23, 24]. However, there is no report whether 
the gene expression profiling in the spinal cord 
were affected during the development of dia-
betic peripheral neuropathy to date. Therefore, 
in the present study, we investigated the spinal 
gene expression profiling in rats with diabetic 
peripheral neuropathy using microarray analy- 
sis.

Materials and methods

Animals care and use

SPF grade adult male Sprague-Dawley rats 
(180-220 g, 6-8 weeks of age) were used. 
Animals were housed in separated cages and 
the room was kept at controlled temperature 
(23 ± 1°C) and 50-60% humidity, under a 12-h 
light/12-h dark cycle and with free access to 
food and water ad libitum. All protocols of this 
study were approved by the Local Animal Care 
Committee and all experimental procedures 
were carried out in accordance with the guide-
lines of the National Institutes of Health on ani-
mal care and the ethical guidelines for investi-
gation of experimental pain in conscious ani-
mal [25].

Diabetic neuropathic pain model and blood 
collection

Experimental design of this study was Figure 1. 
The rats were divided into two groups: vehicle 

single intraperitoneal injection of STZ (Sigma 
Aldrich, St. Louis, MO, USA), 40 mg/kg body 
weight [15, 27, 28], whereas the animals in the 
control group were given only saline. STZ was 
dissolved in 3 mM citrate buffer (pH 4.5) imme-
diately before injection. 1 week after STZ injec-
tion, blood samples from the tail vein were col-
lected. Rats with blood glucose levels above 
11.1 mmol/L were considered diabetic mellitus 
and used in this study. Standard diets were 
given to diabetic groups of animals for 8 weeks 
following STZ injection to allow for the develop-
ment of neuropathic changes in diabetic rat 
[27, 29].

Behavioral tests by the assessment of me-
chanical pain sensitivity 

The assessment of mechanical pain sensitivity 
was evaluated with a paw pressure analgesy 
meter (LE7306, Panlab Harvard) on the surface 
of the front paw as described previously [30, 
31]. The marker of mechanical pain sensitivity 
was indicated by lifting of the paw or vocalized. 
The paw withdrawal threshold was determined 
using the up-down testing paradigm. The me- 
chanical pain testing was duplicated at 10 min 
intervals in each paw and performed by an 
experimenter who was blinded to the injection.

RNA extraction and microarray procedures

After final behavioral test, rats were anesthe-
tized with a mixture of ketamine and xylazine 
and decapitated, and total RNA of rat cervical 
spinal cord (C5-C8) was rapidly dissected and 
isolated according to the manufacturer’s pro- 
tocol [20]. RNA quantity was determined by 
TRIzol® reagent (Invitrogen, Carlsbad CA) and 

Figure 1. Experimental design of this study. A. Representing the assessment 
of mechanical pain sensitivity; B. Representing the collection of blood sam-
ples from the tail vein. Behavioral tests were performed by an experimenter 
who was blinded to the contents of the diets and injection.

control group (C group, n = 6) 
and diabetic group (D group, n 
= 6). Standard diets ad libi-
tum were given to vehicle con-
trol groups, while high-fat and 
high-sucrose diets were given 
to diabetic groups of animals 
for a period of 4 weeks. Diets 
in diabetic groups were as de- 
scribed previously [26]. After 
4 weeks, all rats had free 
access to water not diet for 
12 h, and blood samples (120 
µl) from the tail vein of two 
groups were collected. Follo- 
wing blood collection, diabetic 
groups were induced using a 
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RNA integrity was verified by gel electrophore-
sis. RNA samples were performed by Ambion 
mirVana miRNA Isolation Kit for purity and con-
centration. Gene expression profiling was per-
formed using the Affymetrix Mouse Genome 
430 2.0 Array platform (CapitalBio, Beijing, 
China) as described previously [32].

Statistical analysis

All data are presented as mean ± standard 
error (SE). Statistical significance was deter-

a map file to show distinguishable gene expres-
sion profiling samples (Figure 2). Results from 
spinal gene microarrays showed that 35 genes 
were significantly altered in cervical spinal cord 
of D group (P < 0.05) compared with C group. 
Among them, 25 genes were significantly up-
regulated while the other 10 down-regulated. 

To functionally investigate a possible link be- 
tween the changes of spinal gene expression 
patterns and the development of diabetic pe- 
ripheral neuropathy, the relative gene expres-

Figure 2. Map showed significant expressional changes of 35 genes in pe-
ripheral neuropathy model rats with type 2 diabetes mellitus (D group, n = 6) 
as compared with vehicle control (C group, n = 6).

mined using the Student’s t 
test. Values of P < 0.05 were 
considered to be statistically 
significant.

Results

Changes in blood glucose 
level and mechanical pain 
sensitivity in rats 

After high-fat and high-sucro- 
se diets for 4 weeks, diabetic 
groups of animals showed  
the signs of obesity including 
weight gain. 1 week following 
STZ injection, rats in D group 
exhibited significantly incre- 
ased blood glucose level 
(25.60 ± 4.11 mmol/L) when 
compared to C group (4.30 ± 
0.47 mmol/L; P < 0.01). Wi- 
thin 8 weeks after STZ injec-
tion, rats showed weight loss 
and polydipsia in D group. 

Mechanical withdrawal thre- 
shold were found to be 79 ± 
28.69 g and 41 ± 20.82 g in 
vehicle control and diabetic 
rat, respectively, which were 
significantly different from 
each other (P < 0.05, n = 6), 
suggesting that mechanical 
withdrawal threshold devel-
oped in diabetic rat by me- 
chanical pain sensitivity test.

Spinal expression profiling in 
rat with diabetic peripheral 
neuropathy

The 35 differentially express- 
ed genes were converted into 
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Table 1. List of genes which were differentially expressed in C and D group
Representa-
tive Public ID Ratio Gene Symbol Gene Title Molecular Function

NM_054073 2.1822↑ Tsga13 Testis specific gene A13 Most types of human carcinoma tissues displayed reduced expression of TSGA13 [33]

BE987427 2.0097↑ Lpgat1 Lysophosphatidylglycerol acyltransferase 1 An endoplasmic reticulum-associated lysophosphatidylglycerol acyltransferase [34]

D50523 2.2174↑ Tug1 Taurine upregulated gene 1 A growth regulator [35]

BC025840 2.6287↑ Ttn Titin A critical determinant of myofibril elasticity and sarcomere structure [36]

AJ293626 5.3097↑ Myh1 Myosin, heavy polypeptide 1, skeletal muscle, adult DNA repair and DNA damage-induced checkpoint activation [37]

AJ002522 7.3411↑ Myh1 Myosin, heavy polypeptide 1, skeletal muscle, adult DNA repair and DNA damage-induced checkpoint activation [37]

AK013510 2.403↑ Dmd Dystrophin, muscular dystrophy The dystrophin gene [38, 39]

BF537798 2.617↑ Malat1 Metastasis associated lung adenocarcinoma transcript 1 (non-coding RNA) Cell grow, tumor metastasis [40, 41]

AA185889 2.0916↑ Bex3 Brain expressed gene 3 Neuronal development [42, 43]

AK006309 2.2967↑ 1700024N20Rik RIKEN cDNA 1700024N20Rik gene

AI118055 2.2053 1700018L02Rik RIKEN cDNA 1700018L02 gene

AK015427 2.3672↑ 4930449A18Rik RIKEN cDNA 4930449A18 gene

AK016633 2.2121↑ Lipe Lipase, hormone sensitive The regulation of gene expression and steroid hormone synthesis [44]

BE634869 3.9919↑ A130040M12Rik RIKEN cDNA A130040M12 gene

BB335888 2.0099↑ Scai Suppressor of cancer cell invasion Cell migration and invasion [45, 46]

BG067723 2.5656↑ --- ---

AV377066 2.7021↑ 9130221J18Rik RIKEN cDNA 9130221J18 gene

BG074662 2.033↑ --- ---

BM218981 2.6962↑ Phip Pleckstrin homology domain interacting protein Cell migration and invasion [47]

BF149102 2.1519↑ Utp18 UTP18, small subunit (SSU) processome component, homolog (yeast) Ribosome synthesis [48]

AK007420 2.1012↑ Pisd-ps3 Phosphatidylserine decarboxylase, pseudogene 3

BG070129 2.1236↑ Ttll11 Tubulin tyrosine ligase-like family, member 11 Posttranslational modification and chromosome ploidy [49]

BB164159 3.0798↑ 3110047M12Rik RIKEN cDNA 3110047M12 gene

AV266695 2.185↑ Ninl ninein-like Cell cycle and protein degradation [50]

BB477142 3.1207↑ --- ---

AB056091 0.4564↓ Aqp7 Aquaporin 7 Water channel expression and water/solute homeostasis [51]

NM_007462 0.4663↓ Apc Adenomatosis polyposis coli Genetic pathway [52]

X72693 0.492↓ Cftr Cystic fibrosis transmembrane conductance regulator Chloride-channel activity [53, 54]

AF426024 0.4927↓ Serpinb1a Serine (or cysteine) peptidase inhibitor, clade B, member 1a Cell survival and synergistic regulation [55, 56]

AK018540 0.3973↓ 9030607L02Rik RIKEN cDNA 9030607L02 gene

BG069302 0.4607↓ --- ---

BM203260 0.3933↓ Gm10664 Predicted gene 10664

BM124366 0.4669↓ Lepr Leptin receptor Nociceptive behavior and energy homeostasis and glucose metabolism [57-59]

BB653614 0.425↓ Gm20319 Predicted gene, 20319

BB275387 0.4584↓ Slc26a1 Solute carrier family 26 (sulfate transporter), member 1 Encoding the sulfate anion transporter 1 (SAT1) protein [60, 61]

Ratio: indicating the fold change revealed by microarray analysis; ↑ and ↓ indicating the up- and down-regulation of gene expression.
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sion of spinal cord between control and diabet-
ic rat was analyzed using microarrays. The 
microarray based experiments identified 25 up-
regulated and 10 down-regulated genes at 
least 2.0-fold in diabetic samples (shown in 
Table 1).

Compared to C group, expression in D group 
was increased on average by 2.0- to 7.3-fold, 
but decreased by 0.05-to 0.49-fold (shown in 
Table 1). The P values for these 35 genes were 
less than 0.05 in spinal tissue of D group com-
pared with control tissue of C group. Based on 
their biological function, these differentially 
expressed genes were involved in inflammatory 
signaling, ion transport, protein phosphoryla-
tion, sensory perception, cell survival synaptic 
transmission, and synergistic regulation (Table 
1).

Discussion

In the present study, we used the combination 
of HF/HS diets and STZ injection to duplicate 
the rat experimental model of diabetic periph-
eral neuropathy. The blood glucose concentra-
tions of diabetic rat significantly increased after 
HF/HS diets and STZ injection. Furthermore, 
compared with control rats, the paw withdrawal 
thresholds in diabetic rats were significantly 
reduced. These founding confirm that we suc-
cessfully establish diabetic peripheral neuropa-
thy rat model.

Emerging evidence for the involvement of lept- 
in receptor, energy homeostasis and glucose 
metabolism in pain perception has established 
[58, 62-69]. The result of our study revealed 
that leptin receptor was involved in the pain 
perception in diabetic peripheral neuropathy, 
and we found that three genes which were 
related to energy homeostasis and glucose 
metabolism were regulated in D group. Several 
lines of evidence show that leptin signaling may 
be involves in nociceptive behavior induced by 
nerve injury [58, 62]. Maeda et al showed that 
partial sciatic nerve ligation (PSL) increased 
leptin expression in adipocytes, and macro-
phages recruited to the perineurium of the 
injured sciatic nerve expressed the leptin re- 
ceptor [70], suggesting that leptin associated 
with primary afferent neurons may be linked to 
the development of neuropathic pain through 
adipokine secretion. Our results revealed leptin 
receptor downregulation in spinal cord of rats 

with diabetes mellitus, suggesting that there 
exists a critical role for spinal leptin receptor in 
the pathogenesis of diabetic peripheral neuro- 
pathy.

Our findings suggested that these differentially 
expressed genes were involved in inflammatory 
signaling, cell survival synaptic transmission, 
and synergistic regulation. Traurig et al report-
ed that LPGAT1 belongs to a large family of 
acyltransferases, which are involved in a vari-
ety of biological processes including pathways 
that regulate energy homeostasis and body 
weight [71]. Huang et al reported that taurine 
up-regulated gene 1 (TUG1), a 7.1-kb lncRNA, 
recruiting and binding to polycomb repressive 
complex 2 (PRC2), is found to be disregulated 
in non-small cell lung carcinoma (NSCLC) and 
esophageal squamous cell carcinoma (ESCC) 
[35]. Okugawa et al indicated that the long non-
coding RNAs (lncRNAs) metastasis-associated 
lung adenocarcinoma transcript 1 (Malat1) se- 
rved as an important role in tumor develop-
ment and progression [40, 72]. Cadar reported 
that Titin (Tin) is the largest known protein and 
a critical determinant of myofibril elasticity and 
sarcomere structure in striated muscle. Accu- 
mulating evidence that mRNA transcripts are 
post-transcriptionally regulated by specific mo- 
tifs located in the flanking untranslated regions 
(UTRs) led us to consider the role of titin 5’-UTR 
in regulating its translational efficiency [36]. A 
discovery of zheng et al broadened the muta-
tion spectrum of the Tin gene associated with 
limb-girdle muscular dystrophies (LGMD) 2J, a 
highly heterogeneous group of genetic myopa-
thies characterized by progressive proximal pel-
vic and/or shoulder girdle muscle weakness 
[73].

It’s known that MutY is the highly conserved 
DNA glycosylase which excises adenine paired 
with the oxidative lesion 8-oxo-7,8-dihydrogua-
nine [74, 75], implicating in DNA replication, 
repair of oxidative DNA damage, and check-
point signaling. As a MutY homologue (MutYH), 
Myh1 plays an important role in DNA repair and 
DNA damage-induced checkpoint activation 
[37, 75]. Recent studies have shown that that 
the Wnt/β-catenin signaling plays an important 
role in the development of neuropathic pain 
[76-79]. Chen et al reported that nerve injury 
caused expression of WNTs and activation of 
WNT/frizzled/β-catenin signaling, and spinal 
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blockade of WNT signaling pathways inhibited 
neuropathic pain [77]. A study from Chen et al 
indicated that SCAI downregualtion activated 
the Wnt/β-catenin signaling [46]. Our results 
provided the first demonstration of spinal SCAI 
upregulation underlying the pathogenesis of 
diabetic peripheral neuropathy, thereby, its up- 
regulation contributed to reduce the develop-
ment of diabetic peripheral neuropathy by 
inhibiting the Wnt/β-catenin pathway, suggest-
ing that targeting the SCAI signaling may be an 
effective approach for treating diabetic periph-
eral neuropathy. Aquaporins (Aqps) are the 
pore-forming protein family transporting water 
molecules and small solutes across biological 
membranes [51, 80]. Ricanek et al reported 
that Aqp 3 and 7 expression is significantly 
reduced in patients with inflammatory bowel 
disease, suggesting that there is a link between 
gut inflammation and Aqps signaling [51]. Al- 
though Aqps have been reported to involve in 
DRG axonal growth and modulate the sensing 
of certain types of pain [81, 82], their impact on 
peripheral neuropathy following diabetic melli-
tus is not clear. Our results demonstrated spi-
nal Aqp 7 downregulation in diabetic peripheral 
neuropathy, suggesting that Aqp 7 may play a 
significant role in the pathophysiology of inflam-
matory peripheral neuropathy.

Conclusion

Despite tremendous research effort in the spi-
nal field, our current understanding of the spi-
nal molecular mechanisms underlying diabetic 
peripheral neuropathy is still incomplete. Our 
data provided a global view of the spinal differ-
entially expressed genes in peripheral neuropa-
thy model rats with type 2 diabetes mellitus. 
The differential changes of these genes may 
involve in inflammatory signaling, ion transport, 
protein phosphorylation, sensory perception, 
cell survival synaptic transmission, and syner-
gistic regulation. These genetic differences 
contribute to elucidating the mechanism of dia-
betic peripheral neuropathy and may be new 
targets for developing therapeutic interven-
tions following pain modulation. 
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