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Abstract: The incidence of breast cancer is one of the highest female malignant tumors. While, the early diagnosis 
and treatment of breast cancer with microarray technology are requisite in breast cancer research. We aimed to 
identify new potential signaling pathways and key genes in breast cancer. The transcription profile of GSE54002 
was downloaded from Gene Expression Omnibus (GEO) database, including 417 breast cancer and 16 healthy sam-
ples. The differentially expressed genes (DEGs) between cancer and healthy group were screened with non-paired 
t-test and analyzed by Cluster 3.0 software. We used the DAVID online tools to enrich the Gene Ontology function 
and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of significantly up- and down-regulated genes. 
After construction of interaction network of proteins encoded by DEGs, the topological properties of networks and 
function modules were analyzed with Cytoscape. A total of 789 DEGs were identified in breast cancer samples 
compared to normal tissue samples, including 257 up-regulated and 532 down-regulated genes. In GO terms, the 
up-regulated genes are mainly related with cell cycle and interaction of extracellular matrix; While in KEGG path-
ways, up-regulated genes were enriched in cell cycle pathway and ECM-receptor interaction pathway. In addition, 
the transcription factor FOS and its multiple downstream regulatory factors were highly expressed in cancer tissue. 
The discovery of the DEGs with high expression in enrichment analysis might help understand the mechanism of 
breast cancer. Moreover, the key factors we predicted in development of breast cancer could provide references for 
the diagnosis and treatment of this disease.
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Introduction

The incidence of breast cancer is in the most 
vicious female malignant tumor, and estimates 
only for year 2008 revealed 1.38 million new 
cases and 0.46 million deaths per year, which 
made it the most common cause of female can-
cer death both in the developed and developing 
world [1]. Most death cases were caused by the 
absence of early diagnosis and systemic treat-
ment [2], especially in developing countries 
where  over two-thirds of women diagnosed 
with breast cancer die from the disease [3]. 
But, early detection of breast cancer relies on 
mammography, which is currently not possible 
in many developing countries, because of high 
expense, the relative low incidence of breast 
cancer. The absence or scarce distribution of 
radiotherapy and systemic therapy services 
which are optimal treatment for breast cancer 
are highlighted in the developing world [4]. 

Therefore, there is an urgent need to develop 
the early diagnosis and prognostic and treat-
ment markers of breast cancer for developing a 
cheaper and simpler diagnosis and therapy 
method.

Gene expression profiling has been providing a 
huge pool of candidate targets for cancer diag-
nosis and therapy [5]. Microarray technology is 
an effective tool to disclose the global molecu-
lar changes occurred at the onset and during 
the development of cancer [6]. Currently, large-
scale microarray studies have been widely used 
in mining genes which are related with the 
occurrence, development and prognosis of dis-
ease, especially in tumor study, such as in ovar-
ian cancer, colorectal cancer, and renal cell car-
cinoma, lung cancer [7, 8]. And scientists have 
succeeded in clarifying breast cancer into 5 
molecular subtypes based on gene expression 
profiles and developing genomic biomarkers for 
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predicting recurrence in early breast cancer by 
using microarray technology [9, 10]. But only a 
small number of these genomic biomarkers 
have been validated to respond to therapeutic 
agents or provide prognostic information, which 
are called traditional biomarkers including 
estrogen receptor, progesterone receptor, and 
human epidermal growth factor receptor 2 
(HER2) [9]. Estrogen receptor was widely used 
to guide therapy. HER2 was identified as a prog-
nostic marker [11]. However, these biomarkers 
are still deficient in methodologies. Thus, a bet-
ter understanding of the molecular mecha-
nisms causing breast cancer may provide new 
opportunities for development of diagnosis and 
therapy.

In this study, we intended to screen differen-
tially expressed genes (DEGs) between malig-
nant breast tissue and normal breast tissue 
samples by large-scale microarray technology. 
Here we highlight the up-regulated genes that 
are related with cell cycle and extracellular 
matrix interaction. These genes and the associ-
ated signaling pathways are considered as the 
novel targets for intervention of breast cancer 
progression.

Materials and methods

Affymetrix microarray data

The transcription profile of GSE54002 [12] was 
downloaded from GEO database of NCBI 
(http://www.ncbi.nlm.nih.gov/geo/) which was 
based on the Affymetrix Human Genome U133 
plus 2.0 Array. Profile of GSE54002 contains 
total 433 breast tissue chips including 417 
breast cancer patient samples and 16 samples 
of healthy people. Due to the cancer samples 
are far greater than the number of normal  
samples, 253 cancer samples were randomly 
selected for analysis.

Data preprocessing

We first converted the probe-level data into 
expression values by the robust multiarray 
average (RMA) algorithm with defaulted param-
eters in R affy package in Bionconductor [13]. 
Then we matched the probe name into gene 
name by GPL profiles in GEO. If part probes cor-
responded to plurality of gene, the expression 
values of those probes were integrated into the 
gene expression value. If there were multiple 
probes corresponded to the same gene,  

the expression values of those probes were 
averaged. Total 21049 genes were selected. 
Median normalization was taken before differ-
ence analysis on sample expression value.

Differentially expressed genes (DEGs) analysis

We used non-paired t-test to identify the differ-
entially expressed genes (DEGs) between can-
cer group and healthy group, and calculated 
the fold change. The p-value <0.01 and fold 
change value >1.2 times was used as the cut-
off criterion for screening the differentially 
expressed genes. Cluster 3.0 software was 
used to analyze the differentially expressed 
genes, using hierarchical clustering method, 
and gene expression correlation coefficient as 
the distance, average connection. Then the 
Treeview software was used to draw the DEGs 
cluster map.

Functional enrichment analysis of DEGs

We used the DAVID (The Database for Anno- 
tation, Visualization and Integrated Discovery) 
online tools to enrich the Gene Ontology (GO) 
function and The Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway of significantly 
up-regulated and down-regulated genes [14]. 
The FDR (false discovery rate) less than 0.05 
was used as the cut-off criterion to screen GO 
categories and significantly enriched KEGG 
pathway.

DEGs network construction and network mod-
ule mining

The STRING (Search Tool for the Retrieval of 
Interacting Genes) database provides both 
experimental and predicted interaction infor-
mation [15]. We mapped the DEGs to the 
STRING database, and selected these interac-
tions of reliability scoring more than 0.7 to get 
the interaction relationship of the DEGs. Then 
we drew the DEGs interactions network by 
using Cytoscape software, marked up-regulat-
ed and down-regulated genes [16]. Network 
Analyzer plug-in was used to analyze the topo-
logical properties of protein interaction net-
work, including the distribution of node degree, 
clustering coefficient, and the shortest path 
and connecting centrality etc. Lastly, MINE 
plug-in was used to decompose the network 
into modules, and select the modules with the 
minimum module enrichment P value for func-
tional analysis [17].
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Microarray data analysis

The original data were preprocessed by 
Affymetrix package. We obtained 54,676 probe 
expression values and integrated them to 
21,049 genes. The gene expression value of 

Pathway enrichment analysis of interaction 
network

We downloaded the gene transcription signal 
data and transcription regulation data from 
Path PPI database (http://proteomeview.hupo.

org.cn/PathPPI/PathPPI.html). 
The gene transcription regula-
tion and signal transduction 
data in Path PPI database 
came from 7 manual collection 
pathways databases including 
PID and Biocarta, which had 
higher credibility than tradition-
al protein-protein interaction 
(PPI). Then we mapped the 
DEGs into Path PPI interaction, 
constructed the signal trans-
duction and transcriptional re- 
gulatory network. Then the 
important modules in this net-
work were analyzed by Cyto- 
scape [16].

Results

Figure 1. Box-plot of 269 sample expression values before and after normalization. Each vertical bar in the graph 
corresponds to a sample, the upper line of blue region is the 1/4 quartile of all gene expression values, red line 
represents the median, the bottom of blue region represents 3/4 quartile. Red star at the top of the box represents 
the specific expression value. After normalization, each sample has the same median that is shown as a red line in 
the box plot.

Table 1. The top 10 significant up-regulation and down-regulation 
genes
Up-regulated  
gene P-value Fold-

change
Down- 

regulated gene P-value Fold- 
change

CTHRC1 9.44×10-38 2.11 PAK7 6.79×10-98 0.62
PTTG3P 5.37×10-32 1.42 TSHZ2 2.16×10-86 0.55
KIAA0101 3.04×10-27 1.30 LOC400128 6.96×10-84 0.63
FN1 3.09×10-26 1.41 NPY2R 4.73×10-82 0.70
DTL 9.52×10-26 1.52 LPPR1 5.40×10-78 0.66
UBE2C 2.66×10-25 1.45 NPCDR1 1.12×10-77 0.68
UHRF1 2.77×10-25 1.44 KCNJ16 2.66×10-77 0.61
SPC24 1.09×10-24 1.38 CNTNAP3B 1.11×10-73 0.67
TOP2A 2.62×10-24 1.58 SDPR 2.61×10-73 0.67
TPX2 2.88×10-24 1.65 TNS4 8.73×10-73 0.75
The significant is measured by the P-value of t-test, the smaller P-value, the more 
significant. Fold-change is the ratio of the cancer group sample mean value and 
normal group sample mean value.
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each sample had the same median after medi-
an normalization. The sample expression value 
scale errors were eliminated (Figure 1). Then 
we could compare the normal and cancer 
samples.

Differentially expressed genes (DEGs) analysis

Non paired t-test was used to identify the dif-
ferentially expressed genes (DEGs) between 
cancer group and healthy group. Finally, 789 
DEGs were obtained, including 257 up-regulat-
ed and 532 down-regulated genes in cancer 
samples compared to normal control. The top 
10 significant up-regulated and down-regulated 
genes were shown in Table 1. Through bilateral 
cluster analysis (Figure 2), the selected DEGs 
could well identify the cancer sample with the 
healthy tissue sample, supporting that those 
identified genes are reliable DEGs in breast 
cancer. In the cluster figure, we also found that 
the 16 normal tissue samples had more stable 
gene expression levels than cancer samples.

Gene ontology (GO) and KEGG pathway enrich-
ment of DEGs

A total of 257 up-regulated genes were mainly 
in cell cycle related GO function enrichment, 
including GO: 0007049 (cell cycle, P = 2.30× 
10-29, FDR = 3.78×10-26) and GO: 0000279 (M 
phase, P = 4.10×10-35, FDR = 6.74×10-3). 
Among 532 down-regulated genes, the majority 
of them were enriched in GO: 0007398 (ecto-
derm development, P = 7.04×10-7, FDR = 
1.2×10-2). With higher significances in GO type 
statistics according to the P-values, up-regulat-
ed genes might play more important roles in 
breast cancer development.

In the KEGG pathway analysis, down-regulated 
genes were not enriched in a particular path-
way. While up-regulated genes were enriched  
in cell cycle pathway (P = 1.48×10-7, FDR = 
1.44×10-4) and ECM-receptor interaction path-
way (P = 1.99×10-8, FDR = 1.93×10-5), which 
functions in cell-cell surface interaction. These 
two pathways covered CDK1, CDC6, PKMYT1, 

Figure 2. Bilateral cluster analysis of expression values of DEGs. The horizontal axis is the 789 differentially ex-
pressed genes, the vertical axis is 253 cancer samples and 16 normal tissue samples. Hierarchical cluster in 
Cluster 3.0 was used to obtain bilateral cluster. In hierarchical cluster, the gene expression correlation represents 
the distance between samples. Colors indicate the difference between grouped gene expression value and total 
gene expression mean value. The red indicates up-regulation, and the green indicates down-regulation. The cancer 
samples and normal samples form into two clusters. N is the normal tissue sample. C is the cancer tissue samples.
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these DEGs might be potential early diagnostic 
markers for breast cancer.

TTK, CDC20, ESPL1, CHEK1, CCNB1, CCNE2, 
PLK1, BUB1B and CCNA (Figure 3), indicating 

Figure 3. Two Pathways of Up-regulated Genes in KEGG pathway Enrichment. Cell cycle pathway and ECM-receptor 
interaction pathway in KEGG database. Red stars indicate the genes from the list of up-regulated genes.
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Figure 4. Topological Properties of DEGs Network. The node degree of network of DEGs obeys power-law distribution, average aggregation coefficient shows the 
characteristics that the bigger the degree of connection the higher clustering coefficient. The shortest pathway is concentrated in 3-4. The closeness centrality of 
node collection is proportional to node degree, but the proportion coefficient is very low.
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Topological properties of DEGs network

We mapped the DEGs to the STRING database 
and obtained an interaction network of DEGs 
composing of 313 DEGs and 3093 sides. The 
node degree of the network followed the power-
law distribution (Figure 4A). There were a larger 
proportion of high degree nodes, especially 
connectivity in the range of 70-80. This big vari-
ance might due to the formation of larger high 
connection density module. The aggregation 
coefficients of high connectivity protein were 
bigger than 0.7 (Figure 4B) which indicated 
high node aggregation. The peak of the short-
est pathway concentrated in 3-4 (Figure 4C) 
and the closeness centrality of node connec-
tion distributed in the 0.2-0.4 (Figure 4D) indi-
cated the good node connectivity and close 
function relation of DEGs.

Module mining and function analysis for DEGs

We used MINE plugin in Cytoscape software to 
select the interaction network of DEGs in which 
there were more than 5 gene sets and obtained 
10 modules (Table 2).

The first module contained 87 proteins, which 
formed the biggest sub-network (Figure S1) 
and were enriched in cell cycle related pathway 
(Figure 3). The second module containing 17 
DEGs (Figure S2) was related to chemokine  
signal pathway. The third module covered 14 
DEGs (Figure S3) was involved in extracellular 
mechanism (Table 3). The other modules were 
not mined pathway enrichment in the KEGG 
database.

Signal transduction and transcriptional regula-
tory network of DEGs

We mapped the DEGs into Path PPI interaction 
data to construct the signal transduction net-
work and transcriptional regulatory network. 
This transcriptional regulatory network con-
tained 35 DEGs and 37 interaction relation-
ships. The signal transduction network could 
be divided into two large sub-networks (Figure 
5A and 5B), and the transcriptional regulatory 
network included two sub-network (Figure 5C 
and 5D). Genes in Figure 5A were mainly relat-
ed to cytokines. Genes in Figure 5D were up-
regulated by transcriptional regulatory factor 
FOS. The FOS is the cancer gene, and the 
expression level of c-FOS is considered an inde-
pendent prognostic marker of breast cancer 
[18], so the up-regulated factor (KRT5, KRT17, 
GRIA2, PTGS2, FIGF and CXCL2) in downstream 
regulated by the FOS are worthy of emphatically 
researching.

Discussion

In this study, we identified 257 up-regulated 
genes and 532 down-regulated genes in 253 
breast cancer samples compared to 16 normal 
tissue samples. And the 257 up-regulated 
genes were mainly enriched in cell cycle related 
GO function, and in ECM-receptor interaction 
pathway and Cell cycle in KEGG database. The 
ECM-receptor interaction pathway indicated 
the abnormal expression of extracellular matrix 
receptor in cancer tissue which might be rela-
tive to cancer metastasis. Through analysis, we 
found that the expression of cell cycle related 
genes in cancer tissue changed most, which 
was consistent with the rapid propagation char-
acteristics of cancer.

The abnormal expression genes which were 
related with extracellular matrix interaction 
function indicated the universality of risk of 
cancer metastasis in breast cancer. The abnor-
mal expression of chemokine signaling path-
way might be associated with inflammatory 
response. Since inflammation had either pro-
motive or inhibitive effect on different stages of 
the cancer [19, 20], it was not strange that 
inflammation-related DEGs accounted for a 
high percentage [21]. Therefore, genes related 
with the inflammation process were worthy  
of further research, including CDK1, CDC6, 
PKMYT1, TTK, CDC20, ESPL1, CHEK1, CCNB1, 

Table 2. 10 modules with more than 5 nodes

Module Score Protein  
Number

Interactions  
Number

1 59.05 87 2,539
2 15.85 17 127
3 9.69 14 63
4 7.40 11 37
5 6.33 7 19
6 5.00 5 10
7 5.00 7 15
8 4.67 7 14
9 4.40 6 11
10 3.50 5 7
Score = density of module connection ×protein number 
in module.
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CCNE2, CDC45, PLK1, BUB1B and CCNA2. In 
studies on cyclin dependent kinase (CDK1), 
approximately 75 targets of CDK1 have been 
identified to control critical cell cycle events, 
such as DNA replication and segregation, tran-
scriptional programs and cell morphogenesis 
[22]. Cell division cycle 6 (CDC6), CDC20, 
CDC45 were recruited to take part in regulation 
of the cell cycle [23]. Overexpression of CDC6, 
leaded to re-replication, a form of replication 
stress, fuelling genomic instability, and promot-

ing malignant behavior [24-27]. CDC20 was a 
highly conserved activator of the anaphase-
promoting complex (APC), promoting cell cycle 
regulated ubiquitination and proteolysis [28]. 
CDC45 was an essential factor required for the 
establishment and progression of the DNA rep-
lication fork in cycling cells and was more abun-
dant in proliferating cells [29]. CHEK1 was com-
posed of the ATR-CHEK1 DNA damage response 
pathway which was the key for maintenance of 
genome stability [30]. CCNB1-dependent Cdc2 

Table 3. Pathway enrichment of the first 3 modules in KEGG database

Module KEGG pathway Gene  
number Gene P-value FDR

Module 1 hsa04110 Cell cycle 14 CDK1,CDC6, CDC14A, PKMYT1, TTK, CDC20, ESPL1, CHEK1, 
CCNB1, CCNE2, CDC45, PLK1, BUB1B, CCNA2

2.59×10-16 1.55×10-13

Module 2 hsa04062 Chemokine  
signaling pathway

8 CXCL13, CXCL3, CXCL2, CX3CR1, CXCL9, CXCL11, CCL28, CXCL10 5.52×10-8 3.44×10-5

Module 3 hsa04512 ECM-receptor 
interaction

8 COL6A3, COL3A1, COL1A2, COL1A1, COL5A2, THBS2, COL11A1, 
COL5A1

2.61×10-13 8.21×10-11

Figure 5. The main module of signal transduction and transcriptional regulation. A, B are from signal transduction 
network of DEGs. C, D are from transcriptional regulatory network of DEGs. Red represents up-regulation. Green 
shows down-regulation. The arrow indicates the direction of gene regulation. Transcription regulation and signal 
transduction are distinguished by two different arrows. Gene in the network of signal transduction show high ag-
gregation. Transcriptional regulation shows star shaped regulation; the transcription factors regulate downstream 
genes.
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kinase triggered the progression of cells in the 
G2 phase to M phase during a normal cell cycle 
[31]. And using nocodazole for treatment of 
MCF-7 human breast cancer cells could strong-
ly up-regulate cyclin B1 and Cdc2 levels [32]. 
Polo-like kinase 1 (PLK1) was a regulator of 
many cell cycle-related events, had a close cor-
relation with carcinogenesis and have been 
proposed as a novel diagnostic marker for can-
cer [33]. BUB1B was a critical mitotic check-
point kinase. It has been validated that BUB1B 
overexpression might be a new immunohisto-
chemical biomarker of malignancy in histologi-
cally normal breast tissues [34]. Interestingly, 
in this study the top ten up-regulated genes 
including CTHRC1, KIAA0101, FN1, DTL, 
UBE2C, UHRF1, SPC24, TOP2A and TPX2 were 
reported to play key roles in cancer develop-
ment. The first one of top ten up-regulation 
gene CTHRC1 has been reported in cancers of 
gastrointestinal tract, lung, breast, thyroid, 
ovarian, cervix, liver, and the pancreas which 
was associated with cancer tissue invasion and 
metastasis [35]. KIAA0101 was involved in the 
regulation of DNA repair and cell proliferation, 
cell cycle progression, and migration. Aberrant 
expression of KIAA0101 in breast cancer was 
able to protect cell from UV-induced cell death 
[36]. The KEGG pathway analysis discovered 
that FN1 were significantly enriched in focal 
adhesion, extracellular matrix (ECM)-receptor 
interaction, and pathways in cancer. It has been 
shown that down-regulation of FN1 was able to 
suppress the migration and invasion [37]. 
UBE2C was associated with the selected 
metastasis-related genes VEGF, CXCL-4, CCL5, 
NEDD9 and RHoC, so UBE2C might be involved 
in breast cancer metastasis and been consid-
ered a potential biomarker candidate or thera-
peutic target for early breast cancer [38]. For 
diagnosing and therapeutic application, these 
candidates required further study to confirm 
their function. 

Moreover, we mapped the DEGs into PathPPI 
interaction database to construct the signal 
transduction network and transcriptional regu-
latory network. Up-regulated genes in signal 
transduction network were mainly related to 
cytokines. Genes which were regulated by tran-
scriptional regulatory factor FOS showed up-
regulation in transcriptional regulatory network. 
The FOS was a known oncogene, and the 
expression level of c-FOS was considered as an 

independent prognostic marker of breast can-
cer. Similarly, we found the FOS transcriptional 
factor and its downstream up-regulated factors 
(KRT5, KRT17, GRIA2, PTGS2, FIGF, CXCL2 etc.) 
over-expressed in breast cancer tissues. 
Specifically, the KRT5 positive cell induced by 
progesterone which played a deleterious role in 
the onset of breast cancer possessed the char-
acteristics of stem cells in breast cancer [39], 
indicating the KRT5 could be the cell marker of 
antineoplastic drug. PTGS2 involved in the bio-
synthesis of prostaglandins in inflammation 
and hyperplasia process of breast cancer [40]. 
The expression pattern of PTGS2 was associ-
ated with the differential degree and prognosis 
of ovarian cancer and not related with the 
pathogenesis of the new model [41]. And aspi-
rin and ibuprofen, nonselective PEGS2 inhibi-
tors, used on a regular basis, significantly 
reduced the risk of human breast cancer [42]. 
FIGF (also called VEGF) was produced in blood 
vessel and grown actively in lymphatic endothe-
lial cell, so the FIGF had pretty much concern 
with the cancer metastasis [43]. And simulta-
neous inhibition of FIGF pathways via the dual 
targeting agent EVRi might benefit select sub-
sets of ovarian cancer tumors [44]. CXCL2 was 
produced by endothelial cells, macrophages, 
epithelial cells and tumor cells [45]. The inter-
action of CXCL2, with endothelial cell expressed 
CXCR2, caused angiogenesis increasing which 
link to tumor growth [46]. The high expression 
of CXCL2 in inflammatory tissue could inhibit 
the proliferation of hematopoietic cells and 
invasiveness of breast cancer cells [47, 48]. 
Therefore, we could focus on the downstream 
genes of FOS regulation which were associated 
with tumor, inflammation and angiogenesis etc. 
for follow-up research. 

Conclusions

In conclusion, in breast cancer tissue, the high 
expression of genes related with cell cycle and 
extracellular matrix interaction lead to abnor-
mal breast cancer cycle and accompanied by 
cancer metastasis. The transcription factor 
FOS and its multiple downstream regulatory 
factors which significantly higher express in 
cancer tissue were the key factor in develop-
ment of breast cancer.
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Figure S1. The biggest sub-network of the first module.

Figure S2. The DEGs in the second module.

Figure S3. The DEGs in the third module.


