Original Article Association between gene polymorphisms on chromosome 7 and the risk of ischemic stroke: a meta-analysis

Wentao Xu, Yiyang Li, Guangxia Ni

The No. 2 Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210046, Jiangsu, China

Received November 2, 2015; Accepted February 26, 2016; Epub June 15, 2016; Published June 30, 2016

Abstract: Background: Ischemic stroke (IS) caused by thrombotic or the decrease of cerebral blood flow is one of the most prevalent health problems over the world. The cause of IS has not been clarified yet, but many risk factors have been confirmed to be associated with the pathogenesis and prognosis of IS. In this study we conducted a meta-analysis on studies concerning *Interleukin 6 (IL-6), NOS3, PON* and *SERPINE1* polymorphisms and IS susceptibility. Methods: PubMed, Medline, and Embase databases were searched for relevant articles. The pooled odds ratios (ORs) with their corresponding 95% confidence intervals (95% CIs) under five genetic models were calculated to evaluated the relations between 4 candidate genes and the risk of IS. The heterogeneity among studies was assessed by chi-square test and the statistic of *I*². Subgroup analyses were performed based on ethnicity and all statistical tests were conducted by R 3.1.2 software. Result: A total of 149 published studies were selected, which consisted of 33,758 IS cases and 56,298 control subjects. For *NOS3* gene, rs1799983 and rs61722009 increased the susceptibility to IS while rs662 of *PON1* gene and rs12026 of *PON2* gene decreased the risk of IS. No significant association was detected between rs7493 of *PON2*, rs854560 of *PON1* and IS risk. Conclusion: This meta-analysis demonstrated that the *NOS3* gene rs1799983 and rs61722009 polymorphisms, the *PON1* gene rs662 polymorphism.

Keywords: Ischemic stroke, Interleukin 6 (IL-6), NOS3, PON, SERPINE1, meta analysis

Introduction

Stroke ranks first among reasons for disability and ranks second among causes for mortality globally [1]. A substantial increased incidence rate was detected from 1990 to 2013 for younger adults worldwide, although the mortality rate was declined [2]. Ischemic stroke (IS) accounts for up to 79% of the stroke cases in China [3]. In addition, there are almost no effective treatments for IS patients apart from thrombolysis with the utilization of recombinant tissue-type plasminogen activator (rtPA) [4]. Therefore, it is important and urgent to prevent the occurrence of IS through the alteration of risk factors.

Current researches show that IS is caused by thrombotic or the decrease in cerebral blood flow [5, 6]. However, the etiology of IS has not been fully illuminated. There are some factors are recognized, such as physical activity, smoking, diabetes, obesity, atrial fibrillation and high blood pressure [7, 8]. However, it does not explain all of the IS etiology. In recent years, a large number of gene polymorphisms were researched. Some stroke susceptibility gene (like *Interleukin-6*, *NOS3*, *PON*, *SERPINE1*) polymorphisms on chromosome 7 have attracted our attention.

The *IL*-6 gene is located on chromosome 7p21. Interleukin-6 (IL-6) is a proinflammatory and immunoregulatory protein, which plays an important role in the inflammatory response. And an increased level of IL-6 has been reported to be associated with a worse prognosis in IS patients [9, 10]. The NOS3 gene is located on chromosome 7q35-36. And nitric oxide generated from NO synthase (NOS) has a significant effect on vascular wall [11]. The PON1 and PON2 genes map to chromosome 7q21.3. It was known that the oxidized low-density lipoprotein (LDL) could increase atherosclerosis, and high-density lipoprotein (HDL) is regarded as one of the most important protective factors against arteriosclerosis due to its active participation in the reverse transportation of cholesterol and its ability to prevent lipid peroxidation. Paraoxonase (PON) is a unique family of calcium-dependent hydrolases, which preserves the function of HDL and protects LDL from oxidation [12, 13]. The SERPINE1 or PAI-1 gene is located in chromosome 7q22.1. Plasminogen activator inhibitors (PAIs) play a role in the regulation of plasminogen activators that convert plasminogen into plasmin.

At present, many studies were aimed to investigate the association between this polymorphism and IS, but showed contradictory results. Therefore, to evaluate the association between the gene polymorphisms on chromosome 7 (*Interleukin 6, NOS3, PON* and *SERPINE1*) and IS, we performed this meta-analysis, which had a more powerful statistical power and could draw a more responsible conclusion.

Materials and methods

Search strategy and study selection

A literature search for eligible articles was carried out in the following electronic databases: PubMed, Medline and Embase (updated to September 12, 2015). The searching strategy consisted of the following key words and their corresponding synonyms: ("IL-6" OR "Interleukin-6") AND ("endothelial nitric oxide synthase" OR "NOS3"OR "eNOS") AND ("paraoxonase" OR "PON") AND ("plasminogen activator inhibitor-1" OR "PAI-1" OR "SERPINE1") AND ("ischaemic stroke" OR "cerebral infarction" OR "IS") AND ("genetic polymorphism" OR "single nucleotide polymorphisms" OR "SNP"). Furthermore, the process of literature search was conducted without any language restriction and only studies on human subjects were considered to be eligible. Besides that, all eligible articles were extensively reviewed in order to ensure the completeness of the studies to be included in the meta-analysis. This metaanalysis was carried out according to guidelines set by the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) [14].

Inclusion and exclusion criteria

The following inclusion criteria was set to determine whether studies should be included in the meta-analysis: (1) Case-control studies investigating associations between the four genetic polymorphisms on chromosome 7 and IS susceptibility; (2) All patients in the study must be diagnosed with IS by consistent criteria; (3) Studies must contain full text for review; (4) There were adequate data for calculating odds ratios (ORs) and the corresponding 95% confidence intervals (95% CIs); (5) Human studies was selected. The followings studies were excluded: (1) duplicated publication of the same research; (2) non case-control studies or studies contained data that did not conform to the Weinberg Hardy equilibrium; (3) studies without sufficient data for assessment (4) meta-analyses, editorials or other articles that did not involve primary studies. If overlapping case-control data was contained in multiple studies, then the latest study with the largest sample size was selected in our meta-analysis.

Data extraction

Data were carefully extracted from all qualified studies by two independent reviewers and any disagreement between them was resolved by discussion. The following relevant information was extracted from all included studies: name of the first author, publication date, original country that the study involved, ethnicity (Caucasian, Asian, African), number of cases and controls, characteristics of subjects, genetic variants involved, methods for genotyping, distributions of genotypes, results of Hardy-Weinberg equilibrium (HWE) testing, IS subtype (if reported). In addition, genotype frequencies were calculated in the case that allelic frequencies were given by studies. When different ethnic groups were contained in the included studies, then data were separately extracted.

Quality assessment

The methodological quality of the eligible studies for the four genes (*Interleukin 6, NOS, PON, SERPINE1*) was independently evaluated according to the Newcastle-Ottawa Scale (NOS) [15]. Three main aspects of the study were assessed (selection, comparability, and exposure) by the NOS which consisted of 9 core

Figure 1. Literature selection flow chart.

assessment questions. Each satisfactory answer received one score and each study had a maximum score of 9. Studies with at least 6 scores were considered to be of high quality [16].

Statistical analysis

Our meta-analysis was complied with a standard which specifies that each polymorphism should contain at least 3 studies. The Chisquared test was used to assess whether genotype frequency distributions of the control group were complied with HWE [17]. The associations between four candidate gene (Interleukin 6, NOS3, PON, SERPINE1) polymorphisms and the susceptibility to IS were evaluated by the pooled odds ratios (ORs) along with their corresponding 95% confidence intervals (95% CIs) under five genetic models (allelic, dominant, recessive, homozygous, heterozygous). The random-effects model or the fixedeffect model was adopted to calculate the pooled ORs and their corresponding 95% Cl. Potential between-study heterogeneity among studies was evaluated by the chi-square test and the statistic of I^2 [18-21]. If P-value < 0.05 and $l^2 > 50\%$, then significant heterogeneity was suggested. As a result of this, a pooled OR

was estimated by the random-effects model due to the presence of significant heterogeneity [22], otherwise the fixed-effect model was adopted in the metaanalysis [23]. Subgroup analyses were performed by ethnicity (Caucasian, Asian, and African). Besides that, significant publication bias was detected by the funnel plot and a P-value < 0.05 indicated significant publication bias [24]. All statistical analyses were conducted by R software (version 3.1.2) and the significant level was set at two-sided P < 0.05.

Results

Included studies and quality assessment

The initial searching strategy identified 725 studies of which 295 duplicated publications were excluded. As a result of this, 430 research studies were subject to the review of titles and abstracts. We further removed 193 studies which included 137 reviews, letters and metaanalyses together with 56 irrelevant studies. As a result, a total of 101 articles which contained 149 studies were included by full-text review after the exclusion of 38 unrelated studies and 50 studies without sufficient data. The detailed information of the included studies was listed in <u>Table S1</u> and the entire article retrieval and selection process was presented in **Figure 1**.

As suggested by <u>Table S2</u>, our meta-analysis incorporated a total of 149 case-control studies with 33,758 IS cases and 56,298 non-cases. These studies covered four genes including ten gene polymorphisms and their detailed characteristics were presented in <u>Table S2</u>. The case group contained patients with IS confirmed by CT and/or MRI. Genotype distributions of the control group were all complied with HWE and the NOS quality assessment suggested that all 149 studies scored more than 6 and therefore they were considered to be of high quality.

Table 1. Meta analysis of ten polymorphisms and ischemic stroke susceptibility

Gene SNP	Genetic model ¹	OR [95% CI] ²	P _o ³	Tau ²	2 ²	р 4		Ethnicity			
Gene	311P	Genetic model-	OR [95% CI]-	P _{OR} -	iau-	Į-	PHET	Caucasian	Asian	African	bias
SERPINE1	rs1799889	5G vs. 4G	0.88 [0.77, 1.00]	0.074	0.118	84.43%	0.000	0.99 [0.89, 1.10]	0.70 [0.54, 0.91]*	1.37 [0.96, 1.94]	0.137
		5G5G vs. 4G4G	0.82 [0.65, 1.04]	0.117	0.294	76.37%	0.000	0.97 [0.79, 1.19]	0.56 [0.34, 0.92]*	1.97 [0.95, 4.07]	0.227
		5G5G+4G 5G vs. 4G4G	0.81 [0.67, 1.00]	0.067	0.267	83.90%	0.000	1.01 [0.84, 1.22]	0.54 [0.36, 0.80]*	1.87 [1.03, 3.42]*	0.119
		5G5G vs. 4G4G +4G5G	0.91 [0.79, 1.05]	0.168	0.013	15.85%	0.014	0.95 [0.84, 1.08]	0.80 [0.58, 1.12]	1.29 [0.73, 2.28]	0.580
		4G5G vs. 4G4G	0.82 [0.67, 1.00]	0.063	0.221	79.28%	0.000	0.95 [0.84, 1.08]	0.80 [0.58, 1.12]	1.29 [0.73, 2.28]	0.137
IL6	rs1800795	C vs. G	0.87 [0.70, 1.09]	0.263	0.212	87.83%	0.000	0.80 [0.61, 1.04]	1.22 [0.99, 1.49]	-	0.674
		CC vs. GG	0.70 [0.43, 1.14]	0.163	0.794	84.78%	0.000	0.65 [0.38, 1.12]	1.41 [0.95, 2.11]	-	0.675
		CC+GC vs. GG	0.86 [0.68, 1.10]	0.270	0.241	80.85%	0.000	0.77 [0.58, 1.03]	1.27 [1.00, 1.61]*	-	0.361
		CC vs. GG+GC	0.76 [0.51, 1.14]	0.191	0.506	80.87%	0.000	0.72 [0.46, 1.13]	1.32 [0.90, 1.94]	-	0.746
		GC vs.GG	0.92 [0.77, 1.11]	0.394	0.088	57.92%	0.002	0.72 [0.46, 1.13]	1.32 [0.90, 1.94]	-	0.295
NOS3	rs1799983	T vs. G	1.32 [1.10, 1.57]*	0.004	0.125	84.92%	0.000	1.00 [0.84, 1.19]	1.54 [1.18, 2.01]*	1.97 [1.59, 2.43]*	0.342
		TT vs. GG	1.64 [1.11, 2.43] [*]	0.019	0.467	76.66%	0.000	1.09 [0.79, 1.51]	$2.13 [1.00, 4.54]^{*}$	3.48 [2.19, 5.51]*	0.477
		TT+GT vs. GG	1.38 [1.09, 1.74]*	0.021	0.287	88.88%	0.000	0.94 [0.72, 1.23]	1.71 [1.20, 2.42]*	2.51 [1.86, 3.39]*	0.392
		TT vs. GG+GT	1.43 [1.05, 1.94]*	0.036	0.254	66.80%	0.001	1.12 [0.87, 1.43]	1.63 [0.84, 3.19]	2.24 [1.16, 3.42]*	0.489
		GT vs.GG	1.31 [1.04 , 1.66]*	0.060	0.298	88.39%	0.000	1.12 [0.87, 1.43]	1.63 [0.84, 3.19]	2.24 [1.46, 3.42]*	0.525
	rs2070744	T vs. C	0.96 [0.88, 1.05]	0.453	0.016	34.89%	0.089	1.18 [1.01, 1.38] *	0.91 [0.81, 1.03]	0.77 [0.62, 0.97]*	0.509
		TT vs. CC	0.75 [0.48, 1.16]	0.212	0.311	53.35%	0.020	1.38 [0.96, 1.99]	0.51 [0.28, 0.93]*	0.60 [0.36, 1.00]	0.425
		TT+CT vs. CC	0.72 [0.48, 1.10]	0.143	0.267	51.10%	0.026	1.28 [0.91, 1.79]	$0.49 \left[0.27, 0.91 ight]^{\star}$	0.65 [0.40, 1.07]	0.333
		TT vs. CC+CT	0.98 [0.89, 1.09]	0.853	0.026	37.82%	0.059	1.22 [0.99, 1.51]	0.95 [0.84, 1.09]	0.76 [0.57, 1.01]	0.892
		CT vs.CC	0.67 [0.43, 1.06]	0.102	0.351	55.50%	0.015	1.28 [0.92, 1.77]	0.95 [0.82, 1.10]	0.76 [0.57, 1.01]	0.356
	rs61722009	4a vs. 4b	1.11 [0.90, 1.38]	0.299	0.120	71.72%	0.000	0.93 [0.60, 1.43]	1.16 [0.89, 1.53]	1.23 [0.93, 1.63]	0.127
		4a4a vs. 4b4b	2.23 [1.61, 3.10]*	0.037	0.407	40.22%	0.104	0.59 [0.19, 1.79]	2.88 [1.87, 4.44]*	1.71 [0.72, 4.01]	0.200
		4a4a +4b 4a vs. 4b4b	1.09 [0.88, 1.36]	0.403	0.116	65.97%	0.000	0.94 [0.58, 1.52]	1.13 [0.85, 1.49]	1.21 [0.88, 1.68]	0.133
		4a4a vs. 4b4b+4b4a	2.07 [1.49, 2.88]*	0.036	0.306	33.96%	0.177	0.60 [0.20, 1.82]	2.54 [1.66, 3.89]*	1.64 [0.70, 3.85]	0.280
		4b 4a vs. 4b4b	1.06 [0.87, 1.28]	0.566	0.076	54.27%	0.004	0.60 [0.17, 2.11]	2.46 [1.35, 4.48]*	1.64 [0.70, 3.85]	0.144
	rs1800779	A vs. G	0.90 [0.52, 1.57]	0.705	0.194	82.82%	0.003	1.56 [1.06, 2.29]*	0.68 [0.51, 0.90]*	-	0.901
		AA vs. GG	0.72 [0.24, 2.14]	0.550	0.577	66.68%	0.042	1.85 [0.80, 4.28]	0.41 [0.18, 0.93]*	-	0.159
		AA+GA vs. GG	0.80 [0.46, 1.39]	0.438	0.301	51.82%	0.124	1.44 [0.64, 3.25]	0.44 [0.19, 0.99]*	-	0.063
		AA vs. GG+GA	0.95 [0.51, 1.77]	0.875	0.251	81.49%	0.005	1.82 [1.11, 2.97]*	0.69 [0.50, 0.95]*	-	0.616
		GA vs.GG	0.74 [0.41, 1.35]	0.345	0.000	0.00%	0.603	0.94 [0.86, 1.04]	1.03 [0.82, 1.30]	-	0.137
PON1	rs662	A vs. G	0.85 [0.79, 0.92]*	0.000	0.020	49.28%	0.002	1.01 [0.93, 1.09]	0.78 [0.71, 0.85]*	-	0.150
		AA vs. GG	0.73 [0.60, 0.88]*	0.002	0.153	58.86%	0.000	0.98 [0.80, 1.22]	0.62 [0.48, 0.79]*	-	0.135
		AA+GA vs. GG	0.85 [0.76, 0.96]*	0.006	0.032	37.47%	0.020	1.00 [0.70, 0.92]*	0.80 [0.70, 0.92]*	-	0.412
		AA vs. GG+GA	0.82 [0.72, 0.94]*	0.004	0.068	55.75%	0.000	1.01 [0.90, 1.15]	0.69 [0.57, 0.83]*	-	0.110
		GA vs.GG	0.90 [0.83, 0.98]*	0.036	0.008	12.04%	0.164	1.02 [0.91, 1.13]	0.71 [0.63, 0.81]*	-	0.572
	rs854560	T vs. A	1.04 [0.95, 1.14]	0.349	0.000	0.00%	0.341	1.06 [0.96, 1.17]	0.97 [0.77, 1.22]	-	0.882
		TT vs. AA	1.12 [0.91, 1.37]	0.293	0.016	8.68%	0.651	1.16 [0.94, 1.44]	0.68 [0.28, 1.69]	-	0.888

		TT+AT vs. AA	1.09 [0.93, 1.28]	0.280	0.000	0.00%	0.768	1.11 [0.94, 1.32]	0.67 [0.27, 1.63]	-	0.850
		TT vs. AA+AT	1.03 [0.90, 1.17]	0.609	0.000	0.01%	0.485	1.05 [0.90, 1.22]	0.99 [0.77, 1.28]	-	0.749
		AT vs. AA	1.08 [0.90, 1.28]	0.415	0.000	0.00%	0.859	1.05 [0.90, 1.22]	0.99 [0.77, 1.28]	-	0.696
PON2	rs7493	G vs. C	1.06 [0.93, 1.21]	0.344	0.012	39.77%	0.045	1.06 [0.95, 1.19]	1.08 [0.82, 1.42]	-	0.899
		GG vs. CC	1.06 [0.73, 1.52]	0.809	0.084	36.04%	0.050	0.98 [0.65, 1.48]	1.23 [0.59, 2.56]	-	0.252
		GG+GC vs. CC	1.09 [0.90, 1.32]	0.392	0.046	55.72%	0.038	1.13 [0.96, 1.35]	1.04 [0.71, 1.54]	-	0.953
		GG vs. CC+CG	1.03 [0.87, 1.22]	0.823	0.005	6.52%	0.109	0.98 [0.79, 1.20]	1.14 [0.85, 1.51]	-	0.939
		CG vs.CC	1.12 [1.00, 1.27]	0.332	0.032	44.75%	0.065	0.98 [0.79, 1.20]	1.14 [0.85, 1.51]	-	0.614
	rs12026	G vs. C	0.85 [0.75, 0.97]*	0.092	0.000	0.00%	0.745	0.85 [0.73, 0.98]*	0.89 [0.67, 1.19]	-	0.656
		GG vs. CC	0.69 [0.46, 1.02]	0.063	0.000	0.00%	0.658	0.66 [0.43, 1.03]	0.80 [0.33, 1.99]	-	0.841
		GG+GC vs. CC	0.85 [0.73, 0.99]*	0.193	0.000	0.00%	0.838	0.84 [0.71, 1.00]	0.87 [0.62, 1.23]	-	0.376
		GG vs. CC+CG	0.68 [0.46, 1.01]	0.081	0.000	0.00%	0.674	0.65 [0.42, 1.00]	0.84 [0.34, 2.06]	-	0.782
		CG vs.CC	0.93 [0.79, 1.09]	0.366	0.000	0.00%	0.899	0.65 [0.42, 1.00]	0.84 [0.34, 2.06]	-	0.179

1. Bold letters: mutation allele. 2. Pooled odds ratios and 95% confidence intervals. 3. OR: odds ratio. 4. HET: heterogeneity. 5. * Indicates statistically significant correlations.

Study Events Total Events Total Odds Ratio OR 95%-CI W(fixed)	W(random)
Ethnicity = African	
Saidi 2010 Tunisia 292 658 256 888	6.9%
Fixed effect model 658 888 • 1.97 [1.59; 2.43] 9.0%	
Random effects model 1 1.97 [1.59; 2.43]	6.9%
Heterogeneity: not applicable for a single study	
Ethnicity = Asian	
Cheng 2008 China 78 618 71 618 - 1.11 [0.79: 1.57] 3.4%	6.0%
Lin 2008 China 101 240 35 156 2.51 [1.59: 3.96] 1.9%	5.1%
Moe 2008 Singapore 32 236 52 414 1.09 [0.68; 1.75] 1.8%	5.0%
Zhao 2008 China 19 140 28 432 2.27 [1.22; 4.20] 1.1%	4.0%
Kim 2010 Korea 40 446 38 412 0.97 [0.61; 1.54] 1.9%	5.0%
Majumdar 2010 India 53 344 60 428 - 1.12 [0.75; 1.67] 2.5%	5.5%
Song 2010 Korea 82 530 40 460 1.92 [1.29; 2.87] 2.5%	5.5%
Yan 2011 China 133 1090 120 1114 15 [0.89; 1.50] 5.9%	6.6%
Xiong 2012 China 41 178 33 204 1.55 [0.93] 2.58] 1.5%	4.7%
Akhter 2014 India 108 200 108 400	5.9%
Fixed effect model 4022 4638 • 1.49 [1.31; 1.69] 25.7%	
Random effects model	53.2%
Heterogeneity: I ² =77.1%, tau ² =0.1411, P<0.0001	
Ethnicity = Caucasian	
Markus 1998 UK 281 722 176 472 - 1.07 [0.84; 1.36] 7.0%	6.8%
Akar 2000 Turkey 24 86 39 164 1.24 [0.69; 2.24] 1.1%	4.1%
Elbaz 2000 France 309 920 362 920 - 0.78 [0.64: 0.94] 11.1%	7.1%
Howard 2005 USA 38 128 103 396 1.20 [0.77; 1.87] 2.1%	5.2%
Berger 2007 Germany 1220 3802 1009 3492	7.5%
Djordjevic 2009 Serbia 19 52 39 100 - 0.90 [0.45; 1.80] 0.8%	3.5%
Guldiken 2009 Turkey 69 292 75 268	5.7%
Fixed effect model 6002 5812 • 1.06 [0.98; 1.14] 65.3%	
Random effects model + 1.00 [0.84; 1.19]	39.9%
Heterogeneity: I ² =63.2%, tau ² =0.0287, P=0.0123	
Fixed effect model 10682 11338 • 1.22 [1.15; 1.30] 100%	
Random effects model + 1.32 [1.10; 1.57]	100%
Heterogeneity: P=82.6%, tau²=0.1052, P<0.0001	
0.5 1 2	

Figure 2. Forest plot of rs1799983 in NOS3 gene under allelic model.

Summary results from meta-analysis

Table 1 suggested that four of the ten gene polymorphisms were significantly associated with an altered risk of IS under five models (dominant, recessive, homozygous, heterozygous, allelic). The T allele of rs1799983 was significant associated with an increased risk of IS under the five genetic models (dominant: OR = 1.38, 95% CI = 1.09-1.74; recessive: OR = 1.43, 95% CI = 1.05-1.94; homozygous: OR = 1.64, 95% CI = 1.11-2.43; heterogeneity: OR = 1.31, 95% CI = 1.04-1.66; allelic: OR = 1.32, 95% CI = 1.10-1.57) (Figure 2). Furthermore, the intron 4 VNTR polymorphism of NOS3 (rs61722009) was significantly associated with a 123% increase in the risk of IS under the homozygous model (Figure 3, OR = 2.23, 95% CI = 1.61-3.10, P = 0.037). Apart from that, the

G allele of rs662 was significantly associated with a decreased risk of IS under the allelic model (Figure 4, OR = 0.85, 95% CI = 0.79-0.92, P = 0.02). The rs12026 C polymorphism site was significantly associated with an increased risk of IS compared to G under the allelic model (Figure 5, OR = 2.23, 95% CI = 1.61-3.10, P = 0.0037). The overall analyses also indicated that rs1799889, rs1800795, rs2070744, rs1800779, rs854560 and rs7493 polymorphism did not have significant association with the risk of IS under the allelic model (Figures S1, S2, S3, S4, S5, S6, rs1799889: OR = 0.88, 95% CI = 0.77-1.00, rs1800795: OR = 0.87, 95% CI = 0.70-1.09, rs2070744: OR = 0.96, 95% CI = 0.88-1.05, rs1800779: OR = 0.96, 95% CI = 0.88-1.05, rs854560: OR = 1.04, 95% CI = 0.9-1.14, rs7493: OR = 1.06, 95% CI = 0.93-1.21).

	Case	Control					
Study	Events Total	Events Total	Odds Ratio	OR	95%-CI	W(fixed)	W(random)
Ethnicity = African			5				
Saidi 2010 Tunisia	12 247	10 344		1.71	[0.72: 4.01]	18.1%	14.6%
Fixed effect model	247	344		1.71	[0.72: 4.01]	18.1%	
Random effects model				1.71	[0.72: 4.01]		14.6%
Heterogeneity: not applicab	le for a single st	udy					
Ethnicity - Acien			3				
Ethnicity = Asian	1 01	0 07	ä	0.47	[0.00, F2.00]	4.00/	2.00/
Yanashi 1998 Japan	1 94	0 67		2.17	[0.09; 53.98]	1.3%	2.8%
Hou 2001 China	24 287	6 445	2- 8 -	6.68	[2.69; 16.55]	16.1%	14.0%
Yeh 2004 China	0 181	1 166 -	• •	0.30	[0.01; 7.51]	1.3%	2.8%
Lin 2008 China	4 94	0 61		6.12	[0.32; 115.65]	1.5%	3.3%
Shi 2008 China	0 90	0 81	0			0.0%	0.0%
Kim 2010 Korea	0 186	0 168				0.0%	0.0%
Majumdar 2010 India	8 114	9 140	- @ :	1.10	[0.41; 2.95]	13.6%	13.2%
Munshi 2010 India	39 211	13 194		3.16	[1.63; 6.12]	30.2%	16.7%
Song 2010 Korea	8 222	0 181	+ 	- 14.38	[0.82; 250.93]	1.6%	3.4%
Fang 2011 China	0 158	1 188	•	0.39	[0.02; 9.75]	1.3%	2.8%
Tong 2014 China	4 73	2 81	\	2.29	[0.41; 12.89]	4.4%	7.4%
Fixed effect model	1710	1772	····	2.88	[1.87; 4.44]	71.3%	
Random effects model				2.69	[1.42: 5.08]		66.5%
Heterogeneity: I ² =33.2%, tau	1 ² =0.2635, P=0.15	525	0 0				
Ethnicity = Caucasian			2				
Hassan 2004 LIK	1 111	17 450		0.22	10 02: 1 761	2 20/	5.0%
Hassall 2004 UK	2 42	17 450	- <u>b</u>	0.23	[0.03, 1.70]	3.2%	5.9%
Howard 2005 USA	2 43	2 90		2.15	[0.29, 15.76]	3.3%	0.0%
Jara-Plauo 2010 Mexico	0 37	0 79	_ 15	0.40	10 07. 0 571	0.0%	0.0%
	2 1/4	3 112	1	0.42	[0.07, 2.57]	4.1%	0.9%
Fixed effect model	365	731		0.59	[0.19; 1.79]	10.6%	
Random effects model				0.59	[0.17; 2.08]		18.9%
Heterogeneity: I ^z =21.8%, tau	1 ² =0.2738, P=0.27	82	ų,				
Fixed effect model	2322	2847	*	2.22	[1.54; 3.19]	100%	
Random effects model				1.86	[1.04; 3.33]		100%
Heterogeneity: I ² =44.9%, tau	1 ² =0.408, P=0.040	01					
		Г					
		0.0	1 0.1 1 10 100				

Figure 3. Forest plot of rs61722009 in NOS3 gene under homozygote model.

Subgroup analyses

As suggested by subgroup analyses based on ethnicity (Caucasian, Asian, African), for SERPINE1, 5G was a protective factor in Asian (OR, 95% CI: 0.70, 0.54-0.91), while it was associated with an increased risk of IS in African (OR, 95% CI: 1.87, 1.03-3.42). For IL6, the C allele was a risk factor in Asian (OR, 95% CI: 1.27, 1.00-1.61). For NOS3, the T allele of rs1799983 was significantly associated with an increased risk of IS in both Asian and African (OR, 95% CI: 1.54, 1.18-2.01; OR, 95% CI: 1.97, 1.59-2.43). Moreover, the Tallele of rs2070744 was associated with an increased risk of IS in Caucasian (OR, 95% CI: 1.18, 1.01-1.38), whereas it was significantly associated with a reduced risk of IS in both Asian and African (OR, 95% CI: 0.51, 0.28-0.93; OR, 95% CI: 0.77, 0.62-0.97). We also discovered that the 4a allele of rs6172009 was significantly associated with an increased risk of IS in Asian (OR, 95% CI: 2.88, 1.87-4.44). On top of that, the A allele of rs1800779 had significant association with an increased risk of IS in Caucasian (OR, 95% CI: 1.56, 1.06-2.29), whereas it was associated with a reduced risk of IS in Asian (OR, 95% CI: 0.68, 0.51-0.90). For *PON1*, the A allele of rs662 was significantly associated with a reduced risk of IS in Asian (OR, 95% CI: 0.68, 0.51-0.90). For *PON1*, the A allele of rs662 was significantly associated with a reduced risk of IS in Asian (OR, 95% CI: 0.62, 0.48-0.79) and the G allele of rs12026 for *PON2* was also associated with a 15% decrease in the risk of IS in Caucasian (OR, 95% CI: 0.85, 0.73-0.98).

Heterogeneity test and publication bias

Potential publication bias was assessed by the funnel plot. As suggested by **Table 1**; **Figures 6** and <u>S7</u>, there was no significant publication bias presented for all gene polymorphisms involved in our meta-analysis (all *P*-value > 0.05)

Case Cont								
Study	Events	Total	Events	Total	Odds Ratio C	DR 95%-CI	W(fixed)	W(random)
Ethnicity = Asian					j j			
Imai 2000 Japan	117	470	300	862		62 [0.48; 0.80]	4.0%	4.3%
Chen 2003 China	36	104	50	96 .	O.4	49 [0.28; 0.86]	0.8%	1.5%
Liu 2003 China	24	106	42	110 -	i 0.4	47 [0.26; 0.86]	0.7%	1.4%
Song 2005 China	35	96	47	110	0.1	77 [0.44; 1.35]	0.8%	1.5%
Yu 2005 China	743	2092	769	1922	0.8	83 [0.73; 0.94]	15.5%	6.5%
Wu 2005 China	97	262	260	678	——————————————————————————————————————	95 [0.70; 1.27]	2.9%	3.7%
Baum 2006 China	183	484	265	620	- 0.3	81 [0.64; 1.04]	4.3%	4.5%
Chen 2006 China	91	218	260	678	<mark>;∔∎</mark> 1.	15 [0.84; 1.57]	2.6%	3.5%
He 2006 China	143	432	226	574	B 3 0.1	76 [0.59; 0.99]	3.7%	4.2%
Huang 2006 China	121	306	112	306		13 [0.82; 1.57]	2.4%	3.3%
Qian 2006 China	175	254	193	256		72 [0.49; 1.07]	1.7%	2.7%
Wang 2006 China	30	100	42	100		59 [0.33; 1.06]	0.7%	1.4%
Lu 2008 China	50	148	57	130		65 [0.40; 1.06]	1.1%	1.9%
Liu 2010 China	86	262	117	270		64 [0.45; 0.91]	2.0%	3.0%
Man 2010 China	139	382	143	324		72 [0.54; 0.98]	2.8%	3.6%
Xiao 2010 China	248	750	260	678	- B	79 [0.64; 0.99]	5.4%	4.9%
Leu 2011 China	97	160	4191	6500		85 [0.62; 1.17]	2.5%	3.4%
Yang 2011 China	316	590	145	234		71 [0.52; 0.96]	2.6%	3.5%
Mahrooz 2012 Iran	123	162	111	136		71 [0.40; 1.25]	0.8%	1.5%
Fixed effect model	73	378	14	1584	◆ 0.	79 [0.74; 0.84]	57.3%	
Random effects model					◆ 0.	78 [0.71; 0.85]		60.4%
Heterogeneity: I ² =30.1%, tau	² =0.01, P	=0.1058			3			
Ethnicity = Caucasian					0			
Koch 2001 Germany	222	298	353	482		07 [0.77; 1.48]	2.3%	3.3%
Aydin 2006 Turkey	68	130	111	168		56 [0.35; 0.90]	1.1%	2.0%
Pasdar 2006 UK	565	794	580	810		98 [0.79; 1.21]	5.4%	4.9%
Schiavon 2007 Italy	172	252	124	184	1	04 [0.69; 1.56]	1.5%	2.5%
Slowik 2007 USA	801	1096	1021	1370		93 [0.77; 1.11]	7.8%	5.6%
Demirdöğen 2008 Turkey	138	216	102	156	——————————————————————————————————————	94 [0.61; 1.44]	1.4%	2.3%
Demirdöğen 2009 Turkey	228	344	142	210	——————————————————————————————————————	94 [0.65; 1.36]	1.9%	2.9%
Giusti 2010 Italy	314	1002	717	2422		09 [0.93; 1.27]	10.0%	6.0%
Lazaros 2010 Greece	271	356	267	362	<u>-</u> , ∎1.	13 [0.81; 1.59]	2.2%	3.2%
Luu 2011 USA	471	654	13572	19206)- B- 1.0	07 [0.90; 1.27]	8.4%	5.7%
Cozzi 2013 Italy	62	84	92	126		04 [0.56; 1.95]	0.6%	1.3%
Fixed effect model	52	226	25	5496		01 [0.93; 1.09]	42.7%	
Random effects model					ji 🌩 🛛 1.0	01 [0.93; 1.09]		39.6%
Heterogeneity: I ² =0%, tau ² =0), P=0.541	14			3			
Fixed effect model	12	604	40	080	• 0.3	88 [0.83; 0.92]	100%	
Random effects model					🔶 0.3	85 [0.79; 0.92]		100%
Heterogeneity: I ² =49%, tau ² =	0.0197, p	=0.0015						

Figure 4. Forest plot of rs662 in PON1 gene under allelic model.

Discussion

This study enabled us to discovered that IS was not associated with *PAI-1* or *SERPINE1* gene 4G/5G (rs1799889) polymorphism in the overall analysis, but associated with PAI-1 4G/5G polymorphism in Asian under the allelic and homozygous model. A meta-analysis conducted by Attia et al. [25] revealed that PAI-1 4G/5G polymorphism might be strongly associated with IS which was contrary to the results obtained from our study. This inconsistency may be attributed to the between-study heterogeneity existed in studies involving rs1799889 polymorphism and such heterogeneity might be explained by linkage disequilibrium (LD) in unknown causal allele. It is suspected that various LD patterns with the causative allele could trigger different protective and risk effects on IS development, particularly in different populations. Besides, different proportions of stroke subtypes occurred in included studies possibly accounted for some of the heterogeneity.

In this study, IS was significantly associated with NOS3 gene G894T (rs1799983) polymorphism and 4a/b (rs61722009) polymorphism, but it had no significant association with T-786C (rs2070744) and rs1800779 polymorphisms in the overall meta-analysis. Nevertheless, sub-

Figure 5. Forest plot of rs12026 in PON2 gene under allelic model.

Figure 6. Funnel plots of rs1799983, rs6172209, rs662, and rs12026 under random-effects model.

group analysis by ethnicity suggested inconsistent results which might indicate an ethnicityspecific role of gene polymorphism in IS risk. For T-786C polymorphism, an increased risk was found in Caucasian under the allelic model and a decreased risk was observed in Asian under the homozygous and dominant model. For rs1800779 polymorphism, an increased risk was revealed in Caucasian under the allelic and recessive model, while a decreased risk was found in Asian under four genetic models. Subgroup analyses were not powerful enough to detect significant difference between different ethnicities due to the comparatively small sample sizes. A meta-analysis conducted by Wang et al. [26] demonstrated that IS was associated with multiple gene polymorphisms in Asian, including G894T, 4a/b, and T-786C polymorphism. Another meta-analysis also suggested the role of G894T and 4a/b polymorphism in the susceptibility to IS in Asian, whereas T-786C polymorphism was not significantly associated with IS in both Asian and Caucasian [27]. Therefore, we recommend to design and carry out future studies with large sample size in all ethnicities to justify the above conflicting results.

In this meta-analysis, a statistically significant association was found between IS and PON1 gene Q192R (rs662) polymorphism in both the overall analysis and Asian under all models. The described relevance between Q192R polymorphism and IS was in line with the weak association between Q192R polymorphism and the risk of coronary artery disease (CAD) that shares some common risk factors with IS including lipid abnormality, hypertension and genetic polymorphisms [28-30]. We speculated that the associations between IS and the two atherosclerotic phenotypes are genuine which demands further investigation to clarify the potential mechanisms. It is also possible that another intermediate atherosclerotic phenotype is affected by Q192R polymorphism and the direct effect should be considerably larger than the moderate association between IS and CAD. Since PON1 gene L55M (rs854560) polymorphism was reported to be correlated with atherosclerosis that was involved in the pathogenic mechanism of IS [31], the L55M polymorphism was hypothesized to be associated with IS in this study. However, we did not detect any association between IS and L55M polymorphism under any of the models which was consistent with other meta-analyses [32, 33].

Furthermore, IS was identified to be associated with PON2 gene Ala148Gly (rs12026) polymorphism in the overall and Caucasian under the allelic model, but it had no significant association with PON2 gene Ser311Cys (rs7493) polymorphism. This study revealed a weak relationship between Ala148Gly polymorphism and IS. A decreased risk of IS was observed under the allelic and dominant model. However, the result must be interpreted with discretion due to limited statistical power. Previous meta-analysis [34] revealed that Ser311Cvs polymorphism was not associated with IS which was consistent with our result. In this study, IS was not significantly associated with IL-6 gene -174G/C (rs1800795) under the five models which was consistent with other meta-analysis [35].

This meta-analysis might encounter some limitations as follows. First, the overall evaluation was conducted without adjustment according to several potentially confounders. A more precise evaluation may require all raw data from individual studies. Second, a high degree of heterogeneity was seen in the present study. The potential sources of heterogeneity may be explained by some factors like clinical characteristics including drinking, smoking, diabetes, high blood pressure and lipid abnormality. Third, the number of cases and controls in our study were relatively small, especially for the rs1800779 and rs12026 polymorphisms. Fourth, since few studies were performed on African, the above conclusion may not be application to other ethnicity.

In summary, this meta-analysis demonstrated that the NOS3 gene rs1799983 and rs61722009 polymorphisms, the PON1 gene rs662 polymorphism and the PON2 gene rs12026 polymorphism might be associated with ischemic stroke. Apart from that, the SERPINE1 gene rs1799889 polymorphism and the NOS3 gene rs2070744 polymorphism might be considered as protective factors for IS in Asian. No significant associations were identified regarding to the PON1 gene rs854560 polymorphism and PON2 geners7493 polymorphism. More convincing evidence is demanded to draw solid conclusions with respect to the NOS3 gene rs1800779 and PON2 gene rs12026 polymorphism.

Disclosure of conflict of interest

None.

Address correspondence to: Guangxia Ni, The No. 2 Clinical Medical College, Nanjing University of Chinese Medicine, No 138 Xianlin Avenue, Nanjing 210046, Jiangsu, China. Tel: +86 025-83291211; Fax: +86 025-83291211; E-mail: niguanhxx@163. com

References

- [1] Donnan GA, Fisher M, Macleod M and Davis SM. Stroke. Lancet 2008; 371: 1612-1623.
- [2] Krishnamurthi RV, Moran AE, Feigin VL, Barker-Collo S, Norrving B, Mensah GA, Taylor S, Naghavi M, Forouzanfar MH, Nguyen G, Johnson CO, Vos T, Murray CJ, Roth GA; GBD 2013 Stroke Panel Experts Group. Stroke Prevalence, Mortality and Disability-Adjusted Life Years in Adults Aged 20-64 Years in 1990-2013: Data from the Global Burden of Disease 2013 Study. Neuroepidemiology 2015; 45: 190-202.
- [3] Liu L, Wang D, Wong KS and Wang Y. Stroke and stroke care in China: huge burden, significant workload, and a national priority. Stroke 2011; 42: 3651-3654.
- [4] Buchan AM, Karbalai HG and Sutherland BA. The future of stroke therapy must not be mired by past arguments. Lancet 2015; 386: 654.
- [5] Lansberg MG, O'Donnell MJ, Khatri P, Lang ES, Nguyen-Huynh MN, Schwartz NE, Sonnenberg FA, Schulman S, Vandvik PO, Spencer FA, Alonso-Coello P, Guyatt GH, Akl EA; American College of Chest Physicans. Antithrombotic and thrombolytic therapy for ischemic stroke: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012; 141: e601S-636S.
- [6] Ye F, Jin XQ, Chen GH, Den XL, Zheng YQ and Li CY. Polymorphisms of interleukin-1 and interleukin-6 genes on the risk of ischemic stroke in a meta-analysis. Gene 2012; 499: 61-69.
- [7] Bhat VM, Cole JW, Sorkin JD, Wozniak MA, Malarcher AM, Giles WH, Stern BJ and Kittner SJ. Dose-response relationship between cigarette smoking and risk of ischemic stroke in young women. Stroke 2008; 39: 2439-2443.
- [8] Autenrieth CS, Evenson KR, Yatsuya H, Shahar E, Baggett C and Rosamond WD. Association between physical activity and risk of stroke subtypes: the atherosclerosis risk in communities study. Neuroepidemiology 2013; 40: 109-116.
- [9] Beamer NB, Coull BM, Clark WM, Hazel JS and Silberger JR. Interleukin-6 and interleukin-1 re-

ceptor antagonist in acute stroke. Ann Neurol 1995; 37: 800-805.

- [10] Acalovschi D, Wiest T, Hartmann M, Farahmi M, Mansmann U, Auffarth GU, Grau AJ, Green FR, Grond-Ginsbach C and Schwaninger M. Multiple levels of regulation of the interleukin-6 system in stroke. Stroke 2003; 34: 1864-1869.
- [11] Cooke JP. Role of nitric oxide in progression and regression of atherosclerosis. West J Med 1996; 164: 419-424.
- [12] Mackness MI, Arrol S, Abbott C and Durrington PN. Protection of low-density lipoprotein against oxidative modification by high-density lipoprotein associated paraoxonase. Atherosclerosis 1993; 104: 129-135.
- [13] Aviram M, Rosenblat M, Bisgaier CL, Newton RS, Primo-Parmo SL and La Du BN. Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions. A possible peroxidative role for paraoxonase. J Clin Invest 1998; 101: 1581-1590.
- [14] Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol 2009; 62: 1006-1012.
- [15] Goebell PJ, Kamat AM, Sylvester RJ, Black P, Droller M, Godoy G, Hudson MA, Junker K, Kassouf W, Knowles MA, Schulz WA, Seiler R and Schmitz-Drager BJ. Assessing the quality of studies on the diagnostic accuracy of tumor markers. Urol Oncol 2014; 32: 1051-1060.
- [16] Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010; 25: 603-605.
- [17] Trikalinos TA, Salanti G, Khoury MJ and Ioannidis JP. Impact of violations and deviations in Hardy-Weinberg equilibrium on postulated gene-disease associations. Am J Epidemiol 2006; 163: 300-309.
- [18] Higgins JP, Thompson SG, Deeks JJ and Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557-560.
- [19] Ioannidis JP, Patsopoulos NA and Evangelou E. Uncertainty in heterogeneity estimates in meta-analyses. BMJ 2007; 335: 914-916.
- [20] Higgins JP and Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002; 21: 1539-1558.
- [21] Berkey CS, Hoaglin DC, Mosteller F and Colditz GA. A random-effects regression model for meta-analysis. Stat Med 1995; 14: 395-411.
- [22] DerSimonian R and Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177-188.
- [23] Mantel N and Haenszel W. Statistical aspects of the analysis of data from retrospective stud-

ies of disease. J Natl Cancer Inst 1959; 22: 719-748.

- [24] Egger M, Davey Smith G, Schneider M and Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997; 315: 629-634.
- [25] Attia J, Thakkinstian A, Wang Y, Lincz L, Parsons M, Sturm J, McGettigan P, Scott R, Meldrum C and Levi C. The PAI-1 4G/5G gene polymorphism and ischemic stroke: an association study and meta-analysis. J Stroke Cerebrovasc Dis 2007; 16: 173-179.
- [26] Wang M, Jiang X, Wu W and Zhang D. Endothelial NO synthase gene polymorphisms and risk of ischemic stroke in Asian population: a metaanalysis. PLoS One 2013; 8: e60472.
- [27] Yao YS, Chang WW, Jin YL and He LP. An updated meta-analysis of endothelial nitric oxide synthase gene: three well-characterized polymorphisms with ischemic stroke. Gene 2013; 528: 84-92.
- [28] Wheeler JG, Keavney BD, Watkins H, Collins R and Danesh J. Four paraoxonase gene polymorphisms in 11212 cases of coronary heart disease and 12786 controls: meta-analysis of 43 studies. Lancet 2004; 363: 689-695.
- [29] Lawlor DA, Day IN, Gaunt TR, Hinks LJ, Briggs PJ, Kiessling M, Timpson N, Smith GD and Ebrahim S. The association of the PON1 Q192R polymorphism with coronary heart disease: findings from the British Women's Heart and Health cohort study and a meta-analysis. BMC Genet 2004; 5: 17.

- [30] Casas JP, Bautista LE, Humphries SE and Hingorani AD. Endothelial nitric oxide synthase genotype and ischemic heart disease: metaanalysis of 26 studies involving 23028 subjects. Circulation 2004; 109: 1359-1365.
- [31] Seo D and Goldschmidt-Clermont P. The paraoxonase gene family and atherosclerosis. Curr Atheroscler Rep 2009; 11: 182-187.
- [32] Shao P, Qu DJ, Song RY, Chen ML and Wang LH. Association between PON1 L55M polymorphism and ischemic stroke: a systematic review and meta-analysis. Int J Clin Exp Med 2015; 8: 3429-3437.
- [33] Dahabreh IJ, Kitsios GD, Kent DM and Trikalinos TA. Paraoxonase 1 polymorphisms and ischemic stroke risk: A systematic review and meta-analysis. Genet Med 2010; 12: 606-615.
- [34] Ma XL, Liu L, Liu XX, Li Y, Deng L, Xiao ZL, Liu YT, Shi HS and Wei YQ. Prognostic role of microRNA-21 in non-small cell lung cancer: a meta-analysis. Asian Pac J Cancer Prev 2012; 13: 2329-2334.
- [35] Ma Y, Tang RK, Yang X, Peng GG, Liu Y, Wang XM, Wu BH and Yu JM. Lack of an association between interleukin-6 gene promoter polymorphisms (-174G/C, -572G/C) and ischemic heart disease and/or ischemic stroke: a meta-analysis. Hum Immunol 2011; 72: 641-651.

Table S1. Included Articles [1-101]

- Adamski MG, Turaj W, Slowik A, Wloch-Kopec D, Wolkow P, et al. (2009) A-G-4G haplotype of PAI-1 gene polymorphisms -844 G/A, HindIII G/C, and -675 4G/5G is associated with increased risk of ischemic stroke caused by small vessel disease. Acta Neurol Scand 120: 94-100.
- [2] Akagawa H, Kasuya H, Onda H, Yoneyama T, Sasahara A, et al. (2005) Influence of endothelial nitric oxide synthase T-786C single nucleotide polymorphism on aneurysm size. J Neurosurg 102: 68-71.
- [3] Akar N, Akar E, Deda G, Sipahi T (2000) No association between Glu/Asp polymorphism of NOS3 gene and ischemic stroke. Neurology 55: 460-461.
- [4] Akhter MS, Biswas A, Rashid H, Devi L, Behari M, et al. (2014) Screening of the NOS3 gene identifies the variants 894G/T, 1998C/G and 2479G/A to be associated with acute onset ischemic stroke in young Asian Indians. J Neurol Sci 344: 69-75.
- [5] Aydin M, Gencer M, Cetinkaya Y, Ozkok E, Ozbek Z, et al. (2006) PON1 55/192 polymorphism, oxidative stress, type, prognosis and severity of stroke. IUBMB Life 58: 165-172.
- [6] Balcerzyk A, Nowak M, Kopyta I, Emich-Widera E, Pilarska E, et al. (2012) Impact of the -174G/C interleukin-6 (IL-6) gene polymorphism on the risk of paediatric ischemic stroke, its symptoms and outcome. Folia Neuropathol 50: 147-151.
- [7] Balcerzyk A, Zak I, Emich-Widera E, Kopyta I, Iwanicki T, et al. (2011) The plasminogen activator inhibitor-1 gene polymorphism in determining the risk of pediatric ischemic stroke–case control and family-based study. Neuropediatrics 42: 67-70.
- [8] Balding J, Livingstone WJ, Pittock SJ, Mynett-Johnson L, Ahern T, et al. (2004) The IL-6 G-174C polymorphism may be associated with ischaemic stroke in patients without a history of hypertension. Ir J Med Sci 173: 200-203.
- [9] Banerjee I, Gupta V, Ahmed T, Faizaan M, Agarwal P, et al. (2008) Inflammatory system gene polymorphism and the risk of stroke: a case-control study in an Indian population. Brain Res Bull 75: 158-165.
- [10] Baum L, Ng HK, Woo KS, Tomlinson B, Rainer TH, et al. (2006) Paraoxonase 1 gene Q192R polymorphism affects stroke and myocardial infarction risk. Clin Biochem 39: 191-195.
- [11] Bazina A, Sertic J, Mismas A, Lovric T, Poljakovic Z, et al. (2015) PPARgamma and IL-6 174G > C gene variants in Croatian patients with ischemic stroke. Gene 560: 200-204.
- [12] Berger K, Stogbauer F, Stoll M, Wellmann J, Huge A, et al. (2007) The glu298asp polymorphism in the nitric oxide synthase 3 gene is associated with the risk of ischemic stroke in two large independent case-control studies. Hum Genet 121: 169-178.
- [13] Can Demirdogen B, Turkanoglu A, Bek S, Sanisoglu Y, Demirkaya S, et al. (2008) Paraoxonase/arylesterase ratio, PON1 192Q/R polymorphism and PON1 status are associated with increased risk of ischemic stroke. Clin Biochem 41: 1-9.
- [14] Catto AJ, Carter AM, Stickland M, Bamford JM, Davies JA, et al. (1997) Plasminogen activator inhibitor-1 (PAI-1) 4G/5G promoter polymorphism and levels in subjects with cerebrovascular disease. Thromb Haemost 77: 730-734.
- [15] Chakraborty B, Chowdhury D, Vishnoi G, Goswami B, Kishore J, et al. (2013) Interleukin-6 gene -174 G/C promoter polymorphism predicts severity and outcome in acute ischemic stroke patients from north India. J Stroke Cerebrovasc Dis 22: 683-689.
- [16] Chamorro A, Revilla M, Obach V, Vargas M, Planas AM (2005) The -174G/C polymorphism of the interleukin 6 gene is a hallmark of lacunar stroke and not other ischemic stroke phenotypes. Cerebrovasc Dis 19: 91-95.
- [17] Chen CH, Eng HL, Chang CJ, Tsai TT, Lai ML, et al. (2003) 4G/5G promoter polymorphism of plasminogen activator inhibitor-1, lipid profiles, and ischemic stroke. J Lab Clin Med 142: 100-105.
- [18] Chen JH ZQ, Wen F. (2003) Relationship between the paraoxonase gene 192 polymorphism and atherosclerotic cerebral infarction.
- [19] Chen WR XZ, Zhao SQ, et al (2006) The relationship between the gene polymorphism in paraoxonase and lacunar infarction.
- [20] Cheng J, Liu J, Li X, Yu L, Peng J, et al. (2008) Effect of polymorphisms of endothelial nitric oxide synthase on ischemic stroke: a casecontrol study in a Chinese population. Clin Chim Acta 392: 46-51.
- [21] Cheng J, Liu J, Zhang R, Yu L (2008) [Study on A-922G genetic polymorphism of endothelial nitric synthase associated ischemic stroke]. Wei Sheng Yan Jiu 37: 1-3, 7.
- [22] Cozzi L, Campolo J, Parolini M, De Maria R, Patrosso MC, et al. (2013) Paraoxonase 1 L55M, Q192R and paraoxonase 2 S311C alleles in atherothrombosis. Mol Cell Biochem 374: 233-238.
- [23] Crainich P, Jenny NS, Tang Z, Arnold AM, Kuller LH, et al. (2003) Lack of association of the plasminogen activator inhibitor-1 4G/5G promoter polymorphism with cardiovascular disease in the elderly. J Thromb Haemost 1: 1799-1804.
- [24] Demirdogen BC, Demirkaya S, Turkanoglu A, Bek S, Arinc E, et al. (2009) Analysis of paraoxonase 1 (PON1) genetic polymorphisms and activities as risk factors for ischemic stroke in Turkish population. Cell Biochem Funct 27: 558-567.
- [25] Djordjevic V, Stankovic M, Brankovic-Sreckovic V, Rakicevic L, Radojkovic D (2009) Genetic risk factors for arterial ischemic stroke in children: a possible MTHFR and eNOS gene-gene interplay? J Child Neurol 24: 823-827.
- [26] Elbaz A, Poirier O, Moulin T, Chedru F, Cambien F, et al. (2000) Association between the Glu298Asp polymorphism in the endothelial constitutive nitric oxide synthase gene and brain infarction. The GENIC Investigators. Stroke 31: 1634-1639.
- [27] Endler G, Lalouschek W, Exner M, Mitterbauer G, Haring D, et al. (2000) The 4G/4G genotype at nucleotide position -675 in the promotor region of the plasminogen activator inhibitor 1 (PAI-1) gene is less frequent in young patients with minor stroke than in controls. Br J Haematol 110: 469-471.
- [28] Flex A (2002) The ÿ174 G/C Polymorphism of the Interleukin-6 Gene Promoter is Associated with Peripheral Artery Occlusive Disease.
- [29] Giusti B, Saracini C, Bolli P, Magi A, Martinelli I, et al. (2010) Early-onset ischaemic stroke: analysis of 58 polymorphisms in 17 genes involved in methionine metabolism. Thromb Haemost 104: 231-242.
- [30] Greisenegger S, Endler G, Haering D, Schillinger M, Lang W, et al. (2003) The (-174) G/C polymorphism in the interleukin-6 gene is associated with the severity of acute cerebrovascular events. Thromb Res 110: 181-186.
- [31] Guan LX WJ, Wang JX, et al (2004) Effect of gene polymorphism of the PAI-1 gene promoter region on patients with essential hypertension complicated by cerebral infarction.
- [32] Guldiken B, Sipahi T, Guldiken S, Ustundag S, Budak M, et al. (2009) Glu298Asp polymorphism of the endothelial nitric oxide synthase gene in Turkish patients with ischemic stroke. Mol Biol Rep 36: 1539-1543.
- [33] Hassan A, Gormley K, O'Sullivan M, Knight J, Sham P, et al. (2004) Endothelial nitric oxide gene haplotypes and risk of cerebral small-vessel disease. Stroke 35: 654-659.

- [34] HE L (2006) [A study on the relationship between L55m, Q192r gene polymorphism and cerebrovascular disease in Chinese people with 1 (Pon1)]: Sichuan University.
- [35] Hindorff LA, Schwartz SM, Siscovick DS, Psaty BM, Longstreth WT, Jr., et al. (2002) The association of PAI-1 promoter 4G/5G insertion/ deletion polymorphism with myocardial infarction and stroke in young women. J Cardiovasc Risk 9: 131-137.
- [36] Hou L, Osei-Hyiaman D, Yu H, Ren Z, Zhang Z, et al. (2001) Association of a 27-bp repeat polymorphism in ecNOS gene with ischemic stroke in Chinese patients. Neurology 56: 490-496.
- [37] Howard TD, Giles WH, Xu J, Wozniak MA, Malarcher AM, et al. (2005) Promoter polymorphisms in the nitric oxide synthase 3 gene are associated with ischemic stroke susceptibility in young black women. Stroke 36: 1848-1851.
- [38] Huang Q, Liu YH, Yang QD, Xiao B, Ge L, et al. (2006) Human serum paraoxonase gene polymorphisms, Q192R and L55M, are not associated with the risk of cerebral infarction in Chinese Han population. Neurol Res 28: 549-554.
- [39] Imai Y, Morita H, Kurihara H, Sugiyama T, Kato N, et al. (2000) Evidence for association between paraoxonase gene polymorphisms and atherosclerotic diseases. Atherosclerosis 149: 435-442.
- [40] Jara-Prado A, Alonso ME, Martinez Ruano L, Guerrero Camacho J, Leyva A, et al. (2010) MTHFR C677T, FII G20210A, FV Leiden G1691A, NOS3 intron 4 VNTR, and APOE epsilon4 gene polymorphisms are not associated with spontaneous cervical artery dissection. Int J Stroke 5: 80-85.
- [41] Jood K, Ladenvall P, Tjarnlund-Wolf A, Ladenvall C, Andersson M, et al. (2005) Fibrinolytic gene polymorphism and ischemic stroke. Stroke 36: 2077-2081.
- [42] Karahan ZC, Deda G, Sipahi T, Elhan AH, Akar N (2005) TNF-alpha -308G/A and IL-6 -174 G/C polymorphisms in the Turkish pediatric stroke patients. Thromb Res 115: 393-398.
- [43] Kim OJ, Kim UK, Oh SH, Cho YW, Oh KI, et al. (2010) Association of endothelial nitric oxide synthase polymorphisms and haplotypes with ischemic stroke in Korean individuals with or without diabetes mellitus. Mol Med Rep 3: 509-513.
- [44] Koch M, Hering S, Barth C, Ehren M, Enderle MD, et al. (2001) Paraoxonase 1 192 Gln/Arg gene polymorphism and cerebrovascular disease: interaction with type 2 diabetes. Exp Clin Endocrinol Diabetes 109: 141-145.
- [45] Komitopoulou A, Platokouki H, Kapsimali Z, Pergantou H, Adamtziki E, et al. (2006) Mutations and polymorphisms in genes affecting hemostasis proteins and homocysteine metabolism in children with arterial ischemic stroke. Cerebrovasc Dis 22: 13-20.
- [46] Lalouschek W, Schillinger M, Hsieh K, Endler G, Greisenegger S, et al. (2006) Polymorphisms of the inflammatory system and risk of ischemic cerebrovascular events. Clin Chem Lab Med 44: 918-923.
- [47] Lazaros L, Markoula S, Kyritsis A, Georgiou I (2010) Paraoxonase gene polymorphisms and stroke severity. Eur J Neurol 17: 757-759.
- [48] Leu HB, Chung CM, Chuang SY, Bai CH, Chen JR, et al. (2011) Genetic variants of connexin37 are associated with carotid intima-medial thickness and future onset of ischemic stroke. Atherosclerosis 214: 101-106.
- [49] Lin NT, Lee MJ, Lee RP, Hong AI, Chen HI (2008) Analysis of endothelial nitric oxide synthase gene polymorphisms with cardiovascular diseases in eastern Taiwan. Chin J Physiol 51: 42-47.
- [50] Liu D, Chen N, Wang D, Zhang C, Zhang B (2010) [A study on the association of IL-6 gene -174g/c gene polymorphism with Cerebral infarction patients in Han population of Tangshan area.] Research on the Polymorphism of II-6-174g/C Gene of Patients with Cerebral Infarction among Han People in Tangshan Areas 37: 3419-3421,3427.
- [51] Liu JL, Li JP, Wang XL, Yang Y (2010) [Relationship between Q192R polymorphisms in paraoxonase 1 gene and young ischemic stroke]. Zhonghua Yi Xue Za Zhi 90: 912-916.
- [52] Liu Z, Zhao B (2008) [Study on the relationship between 4g/5g gene and -148c/T gene polymorphism and cerebral infarction in patients with plasminogen activator inhibitor -1-675]. Neurological diseases and mental health: 94-97.
- [53] Lu Y, Hou X, Fan X, Yang X (2008) [Study on the relationship between the polymorphism of gene and the association of the polymorphism of the -1q/R192 gene in the brain of the Han population in the Han population]. Journal of Ningxia Medical University: 280-282.
- [54] Luu HN, Kingah PL, North K, Boerwinkle E, Volcik KA (2011) Interaction of folate intake and the paraoxonase Q192R polymorphism with risk of incident coronary heart disease and ischemic stroke: the atherosclerosis risk in communities study. Ann Epidemiol 21: 815-823.
- [55] Mahrooz A, Gohari G, Hashemi MB, Zargari M, Musavi H, et al. (2012) R-carrying genotypes of serum paraoxonase (PON1) 192 polymorphism and higher activity ratio are related to susceptibility against ischemic stroke. Mol Biol Rep 39: 11177-11185.
- [56] Majumdar V, Nagaraja D, Karthik N, Christopher R (2010) Association of endothelial nitric oxide synthase gene polymorphisms with early-onset ischemic stroke in South Indians. J Atheroscler Thromb 17: 45-53.
- [57] Man BL, Baum L, Fu YP, Chan YY, Lam W, et al. (2010) Genetic polymorphisms of Chinese patients with ischemic stroke and concurrent stenoses of extracranial and intracranial vessels. J Clin Neurosci 17: 1244-1247.
- [58] Markus HS, Ruigrok Y, Ali N, Powell JF (1998) Endothelial nitric oxide synthase exon 7 polymorphism, ischemic cerebrovascular disease, and carotid atheroma. Stroke 29: 1908-1911.
- [59] Moe KT, Woon FP, De Silva DA, Wong P, Koh TH, et al. (2008) Association of acute ischemic stroke with the MTHFR C677T polymorphism but not with NOS3 gene polymorphisms in a Singapore population. Eur J Neurol 15: 1309-1314.
- [60] Munshi A, Rajeshwar K, Kaul S, Chandana E, Shafi G, et al. (2010) VNTR polymorphism in intron 4 of the eNOS gene and the risk of ischemic stroke in a South Indian population. Brain Res Bull 82: 247-250.
- [61] Nakai K, Oyanagi M, Hitomi J, Ogasawara K, Inoue T, et al. (2009) Screening the single nucleotide polymorphisms in patients with internal carotid artery stenosis by oligonucleotide-based custom DNA array. Bioinform Biol Insights 1: 63-69.
- [62] Nowak-Gottl U, Strater R, Kosch A, von Eckardstein A, Schobess R, et al. (2001) The plasminogen activator inhibitor (PAI)-1 promoter 4G/4G genotype is not associated with ischemic stroke in a population of German children. Childhood Stroke Study Group. Eur J Haematol 66: 57-62.
- [63] Pasdar A, Ross-Adams H, Cumming A, Cheung J, Whalley L, et al. (2006) Paraoxonase gene polymorphisms and haplotype analysis in a stroke population. BMC Med Genet 7: 28.
- [64] Pola R, Flex A, Gaetani E, Flore R, Serricchio M, et al. (2003) Synergistic effect of -174 G/C polymorphism of the interleukin-6 gene promoter and 469 E/K polymorphism of the intercellular adhesion molecule-1 gene in Italian patients with history of ischemic stroke. Stroke 34: 881-885.
- [65] Pola RPAFEGRFMSP (2002) Synergistic Effect of 174 G/C Polymorphism of the Interleukin-6 Gene Promoter and 469 E/K Polymorphism of the Intercellular Adhesion Molecule-1 Gene in Italian Patients With History of Ischemic Stroke.

- [66] Qian JQ ZZ, Zhang P, Li QL, Wu BH. (2006) The study on activity and polymorphisms of Paraoxonase-1 in patients with cerebral infarction.
- [67] Roest M, van der Schouw YT, Banga JD, Tempelman MJ, de Groot PG, et al. (2000) Plasminogen activator inhibitor 4G polymorphism is associated with decreased risk of cerebrovascular mortality in older women. Circulation 101: 67-70.
- [68] Saidi S, Mallat SG, Almawi WY, Mahjoub T (2010) Endothelial nitric oxide synthase Glu298Asp, 4b/a, and -786T > C gene polymorphisms and the risk of ischemic stroke. Acta Neurol Scand 121: 114-119.
- [69] Saidi S, Slamia LB, Mahjoub T, Ammou SB, Almawi WY (2007) Association of PAI-1 4G/5G and -844G/A gene polymorphism and changes in PAI-1/tPA levels in stroke: a case-control study. J Stroke Cerebrovasc Dis 16: 153-159.
- [70] Schiavon R, Turazzini M, De Fanti E, Battaglia P, Targa L, et al. (2007) PON1 activity and genotype in patients with arterial ischemic stroke and in healthy individuals. Acta Neurol Scand 116: 26-30.
- [71] Shi C, Kang X, Wang Y, Zhou Y (2008) The coagulation factor V Leiden, MTHFRC677T variant and eNOS 4ab polymorphism in young Chinese population with ischemic stroke. Clin Chim Acta 396: 7-9.
- [72] Shin BS, Oh SY, Kim YS, Kim KW (2008) The paraoxonase gene polymorphism in stroke patients and lipid profile. Acta Neurol Scand 117: 237-243.
- [73] Slowik A, Wloch D, Szermer P, Wolkow P, Malecki M, et al. (2007) Paraoxonase 2 gene C311S polymorphism is associated with a risk of large vessel disease stroke in a Polish population. Cerebrovasc Dis 23: 395-400.
- [74] Song J, Kim OJ, Kim HS, Bae SJ, Hong SP, et al. (2010) Endothelial nitric oxide synthase gene polymorphisms and the risk of silent brain infarction. Int J Mol Med 25: 819-823.
- [75] Song MK, Kim MK, Kim TS, Joo SP, Park MS, et al. (2006) Endothelial nitric oxide gene T-786C polymorphism and subarachnoid hemorrhage in Korean population. J Korean Med Sci 21: 922-926.
- [76] Song Y TG, Wang TY, Chen X (2005) The relationship between paraoxonase-1 and atherothrombotic cerebral infarction.
- [77] Tang X, Liu S, Geng D, Zhou J (2008) [Relationship between -1 gene promoter region 4 g/5 g polymorphism and cerebral vascular disease in plasma plasminogen activator inhibitor]. Neurological diseases and mental health: 33-37.
- [78] Titov BV, Barsova RM, Martynov M, Nikonova AA, Favorov AV, et al. (2012) [Polymorphic variants of genes encoding interleukin-6 and fibrinogen, the risk of ischemic stroke and fibrinogen levels]. Mol Biol (Mosk) 46: 93-102.
- [79] Tong Y, Wang Z, Geng Y, Liu J, Zhang R, et al. (2010) The association of functional polymorphisms of IL-6 gene promoter with ischemic stroke: analysis in two Chinese populations. Biochem Biophys Res Commun 391: 481-485.
- [80] Turkanoglu Ozcelik A, Can Demirdogen B, Demirkaya S, Adali O (2014) Importance of NOS3 genetic polymorphisms in the risk of development of ischemic stroke in the Turkish population. Genet Test Mol Biomarkers 18: 797-803.
- [81] Ueno T, Shimazaki E, Matsumoto T, Watanabe H, Tsunemi A, et al. (2003) Paraoxonase1 polymorphism Leu-Met55 is associated with cerebral infarction in Japanese population. Med Sci Monit 9: CR208-212.
- [82] Voetsch B, Benke KS, Damasceno BP, Siqueira LH, Loscalzo J (2002) Paraoxonase 192 Gln-->Arg polymorphism: an independent risk factor for nonfatal arterial ischemic stroke among young adults. Stroke 33: 1459-1464.
- [83] Wang H ZB (2006) Research on relationship between Paraoxonase gene A/B 192 polymorphism and young thrombotic cerebral infarction.
- [84] Wiklund PG, Nilsson L, Ardnor SN, Eriksson P, Johansson L, et al. (2005) Plasminogen activator inhibitor-1 4G/5G polymorphism and risk of stroke: replicated findings in two nested case-control studies based on independent cohorts. Stroke 36: 1661-1665.
- [85] Wu J, Zhao S, Tan L, Hu Z, Xiao Z, et al. (2005) [Study on the relationship between polymorphism of 1 gene and cerebral infarction]. Brain and neurological disorders: 253-255+261.
- [86] Xianbi Tang, Chen D, Geng D, Yang Q (2005) [Relationship between -1 gene promoter region 4g/5g polymorphism and recurrent cerebral infarction in plasma plasminogen activator inhibitor]. Neurological diseases and mental health: 118-120.
- [87] Xiao ZJ, Chen J, Sun Y, Zheng ZJ (2009) Lack of association between the paraoxonase 1 Q/R192 single nucleotide polymorphism and stroke in a Chinese cohort. Acta Neurol Belg 109: 205-209.
- [88] Xu HW, Yuan N, Zhao Z, Zhang L, Xia J, et al. (2008) Study of the relationship between gene polymorphisms of paraoxonase 2 and stroke in a Chinese population. Cerebrovasc Dis 25: 87-94.
- [89] Xu HW, Zhao Z, Yuan N, Xiao B, Yang XS, et al. (2007) [Relationship between single nucleotide polymorphisms of paraoxonase 2 and stroke]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 24: 328-330.
- [90] Yahashi Y, Kario K, Shimada K, Matsuo M (1998) The 27-bp repeat polymorphism in intron 4 of the endothelial cell nitric oxide synthase gene and ischemic stroke in a Japanese population. Blood Coagul Fibrinolysis 9: 405-409.
- [91] Yamada Y, Kato K, Oguri M, Yoshida T, Yokoi K, et al. (2008) Association of genetic variants with atherothrombotic cerebral infarction in Japanese individuals with metabolic syndrome. Int J Mol Med 21: 801-808.
- [92] Yan JT, Zhang L, Xu YJ, Wang XJ, Wang CY, et al. (2011) Polymorphisms of genes in nitric oxide-forming pathway associated with ischemic stroke in Chinese Han population. Acta Pharmacol Sin 32: 1357-1363.
- [93] Yang X, Feng L, Li C, Li Y (2014) Association of IL-6-174G > C and -572C > G polymorphisms with risk of young ischemic stroke patients. Gene 539: 258-262.
- [94] Yeh PS, Lin HJ, Li YH, Lin KC, Cheng TJ, et al. (2004) Prognosis of young ischemic stroke in Taiwan: impact of prothrombotic genetic polymorphisms. Thromb Haemost 92: 583-589.
- [95] Yi G (2004) A study of the plasma plasminogen activator inhibitor-1 activity and its promoter region gene polymorphism in acute cerebral infarction.
- [96] Yu LT YD, Li L, et al (2005) The relationship between paraoxonase gene 192Gln/Arg polymorphism and ischemic cerebrovascular disease.
- [97] Zhang AJ SB, Wang JX, et al: (2003) The association of PAI-1 4G/5G polymorphism with cerebral infarction. Shan Dong Yi Yao.
- [98] Zhang YD SQ, Liu Y, et al (2001) The association of PAI-1 gene polymorphism with cerebral infarction and recurrent cerebral infarction.
- [99] Zhao S, Hu R, Niu G, Zhang C, Wang Z, et al. (2008) [Relationship between G894T polymorphism of endothelial nitric oxide synthase gene and stroke in patients with essential hypertension in Mongolia]. Chinese Journal of cerebrovascular diseases: 167-171.
- [100] Zhao WJ YH, Shen YF et al. (2005) The research on relationship of paraoxonase 2 C311S polymorphism and cerebral infarction.
- [101] Zhenhua Yang, Wang W, Ying Y, Du Y, Ni P (2011) [Relationship between cerebral infarction and polymorphism of 192g/A locus in 1 gene of the oxygen and phosphorus]. Diagnosis theory and Practice: 50-54.

Gene SNP Au			ear Country (Ethnicity (y Case	ase Control	Case genotype		type	e Control genotype			NOS	
Gene	SNP	Author	rear	Country	Ethnicity	Case	Control	WW	WM	MM	WW	WM	MM	Score
SERPINE1	rs1799889	Catto	1997	UK	Caucasian	558	172	150	274	134	56	80	36	6
		Liu	1998	China	Asian	107	95	44	43	20	25	48	22	7
		Endler	2000	Austria	Caucasian	137	115	43	63	31	48	48	19	6
		Roest	2000	Netherlands	Caucasian	498	512	146	259	93	159	263	90	6
		Nowak	2001	Germany	Caucasian	198	951	65	91	42	275	473	203	7
		Zhang	2001	China	Asian	95	60	50	31	14	15	30	15	7
		Hindorff	2002	USA	Caucasian	41	385	7	24	10	115	187	83	8
		Chen	2003	China	Asian	100	150	40	46	14	58	68	24	7
		Crainich	2003	USA	Caucasian	265	753	81	143	41	200	387	166	6
		Zhang	2003	China	Asian	113	121	48	47	18	23	70	28	7
		Guan	2004	China	Asian	222	215	75	105	42	46	121	48	6
		Yeh	2004	China	Asian	213	200	79	103	31	71	102	27	7
		Yi	2004	China	Asian	52	57	20	22	10	28	27	2	6
		bool	2005	USA	Caucasian	600	600	162	307	131	186	280	134	8
		Tang	2005	China	Asian	122	50	66	35	21	13	26	11	6
		Wiklund	2005	Sweden	Caucasian	311	760	136	118	57	241	370	149	6
		Komitopoulou	2006	Greece	Caucasian	87	101	23	50	14	23	55	23	7
		Saidi	2006	Tunisia	African	134	118	23	74	37	33	58	27	6
		Xu	2006	China	Asian	72	77	15	29	28	5	35	.37	6
		Liu	2008	China	Asian	220	140	48	114	58	43	70	27	7
		Tang	2008	China	Asian	90	30	40	34	16	6	19	5	7
		Adamski	2000	Poland	Caucasian	380	291	120	188	81	89	136	66	7
		Nakai	2000	lanan	Acian	A7	17	15	22	10	2	15	30	6
		Balcerzyk	2000	Poland	Caucasian	70	133	23	35	12	47	60	26	7
11-6	rc1800795	Elev	2011	Italy	Caucasian	8/	183	11	30	10	53	80	50	6
12-0	131000133	Pola	2002	Italy	Caucasian	110	133	56	18	15	28	58	17	6
		Povilla	2002	Spain	Caucasian	83	133	27	40	15	20	30	6	7
		Croisoporror	2002	Austria	Caucasian	02	02	21	40	27	76	100	20	7
		Bolo	2003	Austria	Caucasian	214	122	01 56	90	15	20	100	47	6
		Polding	2003	Iroland	Caucasian	105	200	22	40 60	10	20 102	100	41 69	7
		Eloy	2004	Itelanu	Caucasian	2027	209	100	115	12	125	190	60	6
		Flex	2004	Raiy	Caucasian	237	223	100	115	22	50	99	68	6
		Chamorro	2005	Spain	Caucasian	2/3	102	104	134	30	40	50	9	6
		Karanan	2005	Turkey	Caucasian	80 404	83	54 142	24	8	22	100	6	6
		Laiouschek	2006	Austria	Caucasian	404	415	143	187	74	156	192	67	6
		Banerjee	2008	india	Asian	112	212	11	35	0	156	52	4	7
		Liu	2010	China	Asian	157	163	138	19	0	153	10	0	8
		long	2010	China	Asian	/48	748	(4)	1	0	743	5	0	7
		Balcerzyk	2012	Poland	Caucasian	80	138	21	43	16	40	76	22	-
		litov	2012	Russia	Caucasian	200	140	73	113	14	44	/1	25	(
		Chakraborty	2013	India	Asian	100	120	57	35	8	73	39	8	6
		Xuan	2014	China	Asian	430	461	205	170	55	246	1/1	44	1
		Bazina	2015	Croatia	Caucasian	114	187	39	53	22	63	98	26	7
NOS3	rs1799983	Markus	1998	UK	Caucasian	361	236	127	187	47	96	104	36	6
		Akar	2000	Turkey	Caucasian	43	82	24	14	5	46	33	3	6
		Elbaz	2000	France	Caucasian	460	460	212	187	61	163	232	65	7
		Howard	2005	USA	Caucasian	64	198	33	24	7	109	75	14	6
		Berger	2007	Germany	Caucasian	1901	1746	869	844	188	875	733	138	6
		Cheng	2008	China	Asian	309	309	235	70	4	243	61	5	6
		Lin	2008	China	Asian	120	78	25	89	6	49	23	6	6
		Moe	2008	Singapore	Asian	118	207	89	26	3	160	42	5	7
		Zhao	2008	China	Asian	70	216	53	15	2	190	24	2	6
		Djordjevic	2009	Serbia	Caucasian	26	50	13	7	6	18	25	7	6
		Guldiken	2009	Turkey	Caucasian	146	134	82	59	5	66	61	7	7
		Kim	2010	Korea	Asian	223	206	184	38	1	168	38	0	7

Table S2.	Main	characteristic	of	included	studies

		Majumdar	2010	India	Acian	172	21/	124	13	5	150	50	5	7
		Soidi	2010	Tunicio	African	200	214	00	170	61	100	174	11	6
		Salui	2010	Koroo	Anican	329	220	105	70	2	100	10	41	6
		Von	2010	China	Asian	205	230	417	102	2	146	40	0	7
		Viend	2011	China	Asian	90	102	41/ 50	10	11	70	27	3	, E
		Alubtar	2012	Unitid	Asian	100	102	59	19	11	12	21	3	5
	*******	Akriter	2014	India	Asian	100	200	20	140	28 115	106	80	14	((
	152070744	Hassan	2004	UN	Caucasian	298	599	40	143	115	96	283	220	0
		Аадаwак	2005	Japan	Asian	220	214	3	41	1/6	1	34	1/9	1
		Aagawak	2005	Korea	Asian	191	191	1	46	144	1	41	149	6
		Howard	2005	USA	Caucasian	100	192	10	31	59	24	86	82	5
		Song	2006	Korea	Asian	132	113	0	26	106	0	13	100	(
		Cheng	2008	China	Asian	309	309	11	58	240	3	56	250	7
		Moe	2008	Singapore	Asian	120	207	7	27	86	3	52	152	6
		Yamada	2008	Japan	Asian	311	971	9	46	256	10	213	748	6
		Kim	2010	Korea	Asian	223	206	0	37	186	0	35	171	6
		Majumdar	2010	India	Asian	129	129	9	50	70	5	55	69	6
		Saidi	2010	Tunisia	African	329	444	36	131	162	33	162	249	7
		Song	2010	Korea	Asian	265	232	4	43	218	0	39	193	7
		Yan	2011	China	Asian	558	557	2	122	434	10	96	451	7
		Turkanoglu	2014	Turkey	Caucasian	245	145	6	93	146	6	57	82	6
		Akhter	2014	India	Asian	100	200	7	27	66	8	72	120	5
	rs61722009	Yahashi	1998	Japan	Asian	127	91	93	33	1	67	24	0	7
		Hou	2001	China	Asian	364	516	263	77	24	439	71	6	7
		Hassan	2004	UK	Caucasian	132	595	110	21	1	433	145	17	7
		Yeh	2004	China	Asian	213	200	181	32	0	165	34	1	6
		Howard	2005	USA	Caucasian	55	120	41	12	2	88	30	2	6
		Lin	2008	China	Asian	120	78	90	26	4	61	17	0	6
		Shi	2008	China	Asian	97	99	90	7	0	81	18	0	7
		Jara-Prado	2010	Mexico	Caucasian	48	96	37	11	0	79	17	0	7
		Kim	2010	Korea	Asian	223	206	186	37	0	168	38	0	6
		Majumdar	2010	India	Asian	175	214	106	61	8	131	74	9	6
		Munshi	2010	India	Asian	357	283	172	146	39	181	89	13	5
		Saidi	2010	Tunisia	African	329	444	235	82	12	334	100	10	7
		Song	2010	Korea	Asian	265	222	214	43	8	181	41	0	7
		Fang	2011	China	Asian	191	236	158	33	0	187	48	1	7
		Tong	2014	China	Asian	100	100	69	27	4	79	19	2	6
		Turkanoglu	2014	Turkev	Caucasian	245	145	172	71	2	109	33	3	6
	rs1800779	Howard	2005	USA	Caucasian	101	186	9	32	60	23	80	83	6
		Cheng	2008	China	Asian	309	309	10	55	244	4	42	263	7
		Akhter	2014	India	Asian	100	200	6	33	61	6	58	136	. 7
PON1	rs662	Imai	2000	lanan	Asian	235	431	129	95	11	190	182	59	7
	10002	Koch	2001	Germany	Caucasian	149	241	6	64	79	15	99	127	6
		Chen	2001	China	Asian	52	48	21	26	5	10	26	12	6
		Liu	2003	China	Asian	52	55	32	18	3	21	20	8	6
		Sond	2005	China	Asian	18	55	17	27	1	17	20	9	7
		Vu	2005	China	Acion	1046	061	120	Z1 171	126	246	461	15/	7
		10	2005	China	Asian	121	320	439	4/1 52	130	124	150	55	7
		Avdin	2005	Turkov	Coursesion	131	01	11	40	11	11	25	20	7
		Ayum	2006	Ohine	Caucasian	00	84 210	11	40	14	110	35 125	38	7
		Baum	2006	China	Asian	242	320	91	E-2 TTA	32 17	124	150	00	(
		Unen	2006	China	Asian	T08	339	35	5/	1/ 27	134	100	55	ŏ
		He	2006	China	Asian	216	287	100	89	27	111	126	50	6
		Huang	2006	China	Asian	153	153	53	79	21	56	82	15	7
		Pasdar	2006	UK	Caucasian	397	405	30	169	198	36	158	211	6
		Qian	2006	China	Asian	127	128	15	49	63	5	53	70	5
		Wang	2006	China	Asian	50	50	23	24	3	16	26	8	7
		Schiavon	2007	Italy	Caucasian	126	92	12	56	58	12	36	44	7
		Slowik	2007	USA	Caucasian	548	685	48	199	301	41	267	377	7

		Demirdöğen	2008	Turkey	Caucasian	108	78	18	42	48	7	40	31	7
		Lu	2008	China	Asian	74	65	31	36	7	22	29	14	6
		Demirdöğen	2009	Turkey	Caucasian	172	105	21	74	77	9	50	46	6
		Giusti	2010	Italy	Caucasian	501	1211	241	206	54	604	497	110	6
		Lazaros	2010	Greece	Caucasian	178	181	7	71	100	8	79	94	7
		Liu	2010	China	Asian	131	135	61	54	16	45	63	27	7
		Man	2010	China	Asian	191	162	74	95	22	53	75	34	6
		Xiao	2010	China	Asian	375	339	169	164	42	134	150	55	6
		Leu	2011	China	Asian	80	3250	8	47	25	406	1497	1347	6
		Luu	2011	USA	Caucasian	327	9603	24	135	168	818	3998	4787	5
		Yang	2011	China	Asian	295	117	83	150	62	43	59	15	5
		Mahrooz	2012	Iran	Asian	81	68	4	31	46	2	21	45	7
		Cozzi	2013	Italy	Caucasian	42	63	4	14	24	4	26	33	7
	rs854560	Imai	2000	Japan	Asian	235	431	1	31	203	5	55	371	6
		Voetsch	2002	Brazil	Caucasian	118	118	10	55	53	14	48	56	7
		Ueno	2003	Japan	Asian	112	106	3	16	93	0	8	98	6
		Не	2006	China	Asian	216	287	0	12	204	0	13	274	6
		Huang	2006	China	Asian	153	153	0	5	148	0	10	143	7
		Qian	2006	China	Asian	127	128	10	39	78	6	44	78	6
		Schiavon	2007	Italy	Caucasian	126	92	10	61	55	10	39	43	6
		Slowik	2007	USA	Caucasian	548	682	70	260	218	78	327	277	7
		Demirdöğen	2008	Turkey	Caucasian	108	78	13	41	54	14	30	34	7
		Shin	2008	Korea	Asian	350	242	0	33	317	0	27	215	6
		Demirdöğen	2009	Turkey	Caucasian	172	105	21	68	83	19	42	44	6
		Lazaros	2010	Greece	Caucasian	178	181	73	90	15	79	83	19	8
		Luu	2011	USA	Caucasian	267	3323	109	119	39	1444	1499	380	7
PON2	rs7493	Imai	2000	Japan	Asian	235	431	152	78	5	279	132	20	7
		Zhao	2005	China	Asian	108	123	44	54	10	75	46	2	7
		Pasdar	2006	UK	Caucasian	397	405	14	157	226	25	164	216	7
		Slowik	2007	USA	Caucasian	548	684	298	219	31	397	236	51	6
		Xu	2007	China	Asian	177	108	117	47	13	64	38	6	6
		Shin	2008	Korea	Asian	350	242	13	108	229	9	81	152	6
		Xu	2008	China	Asian	177	108	117	47	13	64	38	6	7
		Giusti	2010	Italy	Caucasian	501	1212	296	187	18	757	411	44	6
		Lazaros	2010	Greece	Caucasian	178	181	88	73	17	82	74	25	6
	rs12026	Pasdar	2006	UK	Caucasian	397	405	222	159	16	211	166	28	7
		Shin	2008	Korea	Asian	350	242	228	111	11	150	83	9	6
		Giusti	2010	Italy	Caucasian	501	1211	318	168	15	753	413	45	6

NOS: Newcastle-Ottawa Quality Assessment; W: wild allele, M: mutation allele; SNP: single nucleotide polymorphism.

Study Events Total Events Total Odds Ratio OR 95%-CI W(fixed) W(ra	
3	indom)
Ethnicity = African	
Saidi 2006 Tunisia 148 268 112 236 1.37 [0.96] 1.94] 2.7%	.2%
Fixed effect model 268 236 1.37 [0.96: 1.94] 2.7%	
Random effects model 1.37 [0.96: 1.94] 4	.2%
Heterogeneity: not applicable for a single study	
Ethnicity = Asian	
Liu 1998 China 83 214 92 190	3.8%
Zhang 2001 China 59 190 60 120	3.3%
Chen 2003 China 74 200 116 300 - 0.93 [0.64: 1.35] 2.5%	.0%
Zhang 2003 China 83 226 126 242	1.0%
Guan 2004 China 189 444 217 430 0.73 [0.56; 0.95] 4.7%	.8%
Yeh 2004 China 165 426 156 400 0.99 [0.75] 1.31] 4.3%	.7%
Yi 2004 China 42 104 31 114 1.81 [1.03; 3.20] 1.0%	2.8%
Tang 2005 China 77 244 48 100	3.3%
Xu 2006 China 85 144 109 154 - 0.59 [0.37; 0.96] 1.5%	3.3%
Liu 2008 China 230 440 124 280 1.38 [1.02; 1.86] 3.7%	.6%
Tang 2008 China 66 180 29 60	2.6%
Nakai 2009 Japan 42 94 75 94 — 0.20 [0.11; 0.39] 0.8%	2.4%
Fixed effect model 2906 2484 ◆1 0.77 [0.69, 0.86] 27.2%	
Random effects model 0.70 [0.54; 0.91] 4	3.7%
Heterogeneity: I ² =80.8%, tau ² =0.1686, P<0.0001	
Ethnicity = Caucasian	
Catto 1997 UK 542 1116 152 344 19 [0 94 1 52] 5 7%	0%
Endler 2000 Austria 125 274 86 230 140 [0.98; 2.01] 2.6%	1%
Roest 2000 Netherlands 445 996 443 1024	5.5%
Nowak 2001 Germany 175 396 879 1902 - 0.92 [0.74: 1.15] 7.1%	5.2%
Hindorff 2002 USA 44 82 353 770 1.37 [0.87; 2.16] 1.6%	3.4%
Crainich 2003 USA 225 530 719 1506 = 0.81 [0.66: 0.99] 8.5%	5.3%
Jood 2005 USA 569 1200 548 1200 🖬 1.07 [0.91; 1.26] 13.1%	5.6%
Wiklund 2005 Sweden 232 622 668 1520 0.76 [0.63; 0.92] 9.2%	5.4%
Komitopoulou 2006 Greece 78 174 101 202	3.8%
Adamski 2009 Poland 350 778 268 582 - 0.96 [0.77; 1.19] 7.3%	5.2%
Balcerzyk 2011 Poland 59 140 112 266 - 1.00 [0.66; 1.52] 2.0%	3.7%
Fixed effect model 6308 9546 0.98 [0.91; 1.05] 70.1%	
Random effects model 🔶 0.99 [0.89; 1.10] 5	2.1%
Heterogeneity: I ² =54.7%, tau ² =0.0172, P=0.0148	
Fixed effect model 9482 12266 9 0.92 [0.87; 0.98] 100%	
Random effects model • 0.88 [0.77; 1.00] 1	00%
Heterogeneity: P=76.2%, tau ² =0.0696, P<0.0001	

Figure S1. Forest plot of rs1799889 in SERPINE1 gene under allelic model.

	Ca	ase	Con	trol					
Study	Event	s Total	Events	s Total	Odds Ratio	OR	95%-CI	W(fixed)	W(random)
Ethnicity = Asian					1				
Baneriee 2008 India	35	224	60	424	in_	1 12	[0 71· 1 77]	3.0%	5 4%
Liu 2010 China	19	314	10	326	<u>'</u>	2.04	[0 93 4 45]	1.0%	3.8%
Tong 2010 China	1	1496	5	1496 -		0.20	[0.00, 1.10]	0.1%	0.9%
Chakraborty 2013 India	51	200	55	240	in_	1 15	[0.74 1 78]	3.2%	5.5%
Xuan 2014 China	280	860	259	922) _	1 24	[1 01 1, 151]	14.8%	6.6%
Fixed effect model	30	94	34	08		1.22	[1.04: 1.44]	22.1%	
Random effects model					i	1.22	[0.99: 1.49]		22.3%
Heterogeneity: I ² =12.8%, tau ² =	0.0082.	P=0.3326			1		[0.000,0]		
	,				1				
Ethnicity = Caucasian					i				
Flex 2002 Italy	50	168	180	366	-œ- !	0.44	[0.30: 0.65]	4.0%	5.8%
Pola 2002 Italy	78	238	152	266	- e - ¦	0.37	[0.25: 0.53]	4.6%	5.9%
Revilla 2002 Spain	70	164	51	164	i 	1.65	[1.05; 2.60]	3.0%	5.4%
Greisenegger 2003 Austria	170	428	168	428	+	1.02	[0.78; 1.34]	8.1%	6.3%
Pola 2003 Italy	78	238	152	266	- B - 1	0.37	[0.25; 0.53]	4.6%	5.9%
Balding 2004 Ireland	84	210	334	778	-	0.89	[0.65; 1.21]	6.3%	6.2%
Flex 2004 Italy	159	474	235	446	₩ !	0.45	[0.35; 0.59]	8.6%	6.4%
Chamorro 2005 Spain	204	546	68	210	i 🕮 -	1.25	[0.89; 1.74]	5.3%	6.0%
Karahan 2005 Turkey	40	172	34	166		1.18	[0.70; 1.97]	2.3%	5.1%
Lalouschek 2006 Austria	335	808	326	830	E C	1.09	[0.90; 1.33]	15.6%	6.6%
Balcerzyk 2012 Poland	75	160	120	276	- ; =	1.15	[0.78; 1.70]	4.0%	5.8%
Titov 2012 Russia	141	400	121	280		0.72	[0.52; 0.98]	6.2%	6.2%
Bazina 2015 Croatia	97	228	150	374	- .	1.11	[0.79; 1.54]	5.4%	6.1%
Fixed effect model	42	34	48	50	4	0.81	[0.74; 0.88]	77.9%	
Random effects model						0.80	[0.61; 1.04]		77.7%
Heterogeneity: I ² =88.2%, tau ² =	0.2014,	P<0.0001) }				
Fixed effect model	73	28	82	58	•	0.89	[0.82; 0.96]	100%	
Random effects model					4	0.87	[0.70; 1.09]		100%
Heterogeneity: I ² =86.3%, tau ² =	0.1855,	p<0.0001			1				

Figure S2. Forest plot of rs1800795 in *IL6* gene under allelic model.

	Case	Control				
Study	Events Total	Events Total	Odds Ratio	OR 95%-CI	W(fixed)	W(random)
Ethnicity = African			j			
Saidi 2010 Tunisia	455 658	660 888		0.77 [0.62; 0.97]	15.1%	11.4%
Fixed effect model	658	888	\checkmark	0.77 [0.62; 0.97]	15.1%	
Random effects mode	l i i i i i i i i i i i i i i i i i i i			0.77 [0.62; 0.97]		11.4%
Heterogeneity: not applica	ble for a single st	udy	i i			
Ethnicity = Asian			i i			
Aagawak 2005 Japan	393 440	392 428	∎ ¦	0.77 [0.49; 1.21]	3.6%	4.7%
Aagawak 2005 Korea	334 382	339 382	i	0.88 [0.57; 1.37]	3.9%	5.0%
Song 2006 Korea	238 264	213 226 —		0.56 [0.28; 1.11]	1.6%	2.4%
Cheng 2008 China	538 618	556 618		0.75 [0.53; 1.07]	6.1%	6.9%
Moe 2008 Singapore	199 240	356 414		0.79 [0.51; 1.22]	4.0%	5.1%
Yamada 2008 Japan	558 622	1709 1942	 🖬 –	1.19 [0.89; 1.59]	8.8%	8.6%
Kim 2010 Korea	409 446	377 412	ia	1.03 [0.63; 1.66]	3.2%	4.3%
Majumdar 2010 India	190 258	193 258	e	0.94 [0.63; 1.40]	4.8%	5.9%
Song 2010 Korea	479 530	425 464	— B ¦	0.86 [0.56; 1.33]	4.0%	5.1%
Yan 2011 China	990 1116	998 1114	E	0.91 [0.70; 1.19]	10.6%	9.6%
Akhter 2014 India	159 200	312 400	<u>+</u>	1.09 [0.72; 1.66]	4.3%	5.4%
Fixed effect model	5116	6658	4	0.91 [0.81; 1.03]	55.0%	
Random effects mode	l i i i i i i i i i i i i i i i i i i i		<	0.91 [0.81; 1.03]		63.0%
Heterogeneity: I ² =0%, tau ² =	=0, P=0.6003))			
Ethnicity = Caucasian			i i			
Hassan 2004 UK	373 596	723 1198		1.10 [0.90; 1.35]	18.4%	12.4%
Howard 2005 USA	149 200	250 384	i — 🚥 —	1.57 [1.07; 2.29]	5.2%	6.2%
Turkanoglu 2014 Turkey	385 490	221 290	- <u>+</u>	1.14 [0.81; 1.62]	6.3%	7.0%
Fixed effect model	1286	1872	~	1.18 [1.01; 1.38]	30.0%	
Random effects mode	I		i 🗢	1.20 [0.99; 1.45]		25.6%
Heterogeneity: I ² =23.8%, ta	u ² =0.0075, P=0.20	592))			
Fixed effect model	7060	9418	4	0.96 [0.88; 1.05]	100%	
Random effects mode	I		4	0.96 [0.85; 1.07]		100%
Heterogeneity: I ² =35%, tau	² =0.0164, P=0.088	6				
			0.5 1 2			

Figure S3. Forest plot of rs2070744 in NOS3 gene under allelic model.

	Case		Control						
Study	Events	Total	Events	Total	Odds Ratio C	DR	95%-CI	W(fixed)	W(random)
)				
Ethnicity = Asian					— il				
Cheng 2008 China	543	618	568	618 ·		64	[0.44; 0.93]	36.2%	33.8%
Akhter 2014 India	155	200	330	400		73	[0.48; 1.11]	29.1%	32.6%
Fixed effect model	81	8	10 [.]	18		68	[0.51; 0.90]	65.3%	
Random effects model						68	[0.51; 0.90]		66.4%
Heterogeneity: I ² =0%, tau ² =	0, P=0.63	51			i l				
)				
Ethnicity = Caucasian					1				
Howard 2005 USA	152	202	246	372	i — 1.	56	[1.06; 2.29]	34.7%	33.6%
Fixed effect model	20	02	37	2	1.	56	[1.06; 2.29]	34.7%	
Random effects model					i 1 .	56	[1.06; 2.29]		33.6%
Heterogeneity: not applicat	ole for a si	ingle st	tudy		1				
Fixed effect model	102	20	139	90	0.	90	[0.72; 1.13]	100%	
Random effects model					0.	90	[0.52; 1.57]		100%
Heterogeneity: I ² =83.3%, tai	u ² =0.2007,	P=0.0	025						
					0.5 1 2				

Figure S4. Forest plot of rs1800779 in NOS3 gene under allelic model.

	Case		Control							
Study	Events	Total	Events	Total	Odds Ratio C	R	95%-CI	W(fixed)	W(random)	
Ethnicity = Asian										
Imai 2000 Japan	437	470	797	862	— — — 1.	80	[0.70; 1.67]	4.4%	5.2%	
Ueno 2003 Japan	202	224	204	212 ·	i 0.	36	[0.16; 0.83]	1.2%	1.5%	
He 2006 China	420	432	561	574	0.	81	[0.37; 1.80]	1.3%	1.6%	
Huang 2006 China	301	306	296	306	2.	03	[0.69; 6.02]	0.7%	0.9%	
Qian 2006 China	195	254	200	256	— — 0.	93	[0.61; 1.40]	4.8%	5.6%	
Shin 2008 Korea	667	700	457	484	 1.	19	[0.71; 2.01]	3.0%	3.6%	
Fixed effect model	238	B 6	26	94	۰.	97	[0.77; 1.22]	15.4%		
Random effects model					• 0.	95	[0.69; 1.31]		18.4%	
Heterogeneity: P=39.9%, tau	r²=0.0604,	P=0.13	94							
-					į.					
Ethnicity = Caucasian	101	000	100	000	L ,	00	10 00. 4 501	E E0/	0.40/	
Voetsch 2002 Brazil	161	236	160	236	1.	02	[0.69; 1.50]	5.5%	6.4%	
Schlavon 2007 Italy	1/1	252	125	184	<u>1</u> .	00	[0.66; 1.50]	5.0%	5.8%	
Slowik 2007 USA	696	1096	881	1364	U .	95	[0.81; 1.13]	30.1%	25.3%	
Demirdőgen 2008 Turkey	149	216	98	156	1.	32	[0.85; 2.03]	4.4%	5.2%	
Demirdőgen 2009 Turkey	234	344	130	210	1. 1.	31	[0.91; 1.87]	6.4%	7.3%	
Lazaros 2010 Greece	120	356	121	362	- e 1.	01	[0.74; 1.38]	8.6%	9.5%	
Luu 2011 USA	197	534	2259	6646	1.	14	[0.95; 1.36]	24.7%	22.1%	
Fixed effect model	3034		9158		P 1.	06	[0.96; 1.17]	84.6%		
Random effects model					P 1.	06	[0.96; 1.17]		81.6%	
Heterogeneity: I ² =0%, tau ² =0), P=0.597	76								
Fixed effect model	542	20	118	352	♦ 1.	04	[0.95: 1.14]	100%		
Random effects model	el				♦ 1.	05	[0.95; 1.16]		100%	
Heterogeneity: P=10.4%, tau ² =0.0036, P=0.3414										
					02 05 1 2 5					

Figure S5. Forest plot of rs854560 in PON1 gene under allelic model.

	Case	Control				
Study	Events Tota	l Events Total	Odds Ratio	OR 95%-CI	W(fixed)	W(random)
Ethnicity = Asian			i i			
Imai 2000 Japan	88 470	172 862		0.92 [0.69; 1.23]	9.2%	11.1%
Zhao 2005 China	74 216	50 246	li — 🚥 —	- 2.04 [1.34; 3.11]	4.3%	6.9%
Xu 2007 China	73 354	50 216		0.86 [0.57; 1.30]	4.5%	7.1%
Shin 2008 Korea	566 700	385 484	 a	1.09 [0.81; 1.45]	8.9%	10.9%
Xu 2008 China	73 354	50 216	 ;	0.86 [0.57; 1.30]	4.5%	7.1%
Fixed effect model	2094	2024	+	1.06 [0.91; 1.23]	31.5%	
Random effects model	l .			1.08 [0.82: 1.42]		43.2%
Heterogeneity: I ² =67.5%, ta	u²=0.0667, P=0.	0152))			
Ethnicity = Caucasian			j j			
Pasdar 2006 UK	609 794	596 810	- 	1.18 [0.94; 1.48]	14.6%	13.9%
Slowik 2007 USA	281 1096	338 1368		1.05 [0.87; 1.26]	22.5%	16.3%
Giusti 2010 Italy	223 1002	499 2424	- H	1.10 [0.92; 1.32]	23.7%	16.6%
Lazaros 2010 Greece	107 356	124 362	— B +	0.82 [0.60; 1.13]	7.7%	10.0%
Fixed effect model	3248	4964		1.07 [0.96; 1.18]	68.5%	
Random effects model	l .		÷	1.06 [0.95; 1.19]		56.8%
Heterogeneity: I²=15.2%, ta	u²=0.0022, P=0.	3158	ì			
Fixed effect model	5342	69 88	i 🔶	1.06 [0.98; 1.16]	100%	
Random effects model	1		+	1.06 [0.93; 1.21]		100%
Heterogeneity: I ² =49.5%, ta	u²=0.0183, P=0.	0446	Ľ			

Figure S6. Forest plot of rs7493 in PON2 gene under allelic model.

Figure S7. Funnel plots of rs1799889, rs1800795, rs2070744, rs1800779, rs854560 and rs7493 under randomeffects model or fixed-effects model.