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Abstract: Objective: To construct and identify recombinant expression of a therapeutic tumor vaccine with HBcAg 
as a vector. Methods: PCR primers were designed according to the gene sequences of restriction enzyme sites of 
recombinant pKK233.2-hepatitis B core antigen (HBcAg) and melanoma-associated antigen 3 (MAGE-A3: 112-
120aa). The target fragment of MAGE-A3 was synthesized and cloned to pKK233.2-HBcAg expression vector. The 
recombinant pKK233.2-HBcAg-MAGE-A3 expression vector was identified by PCR detection followed by enzyme 
restriction and sequencing. The expression and purification of HBcAg-MAGE-A3 fusion protein at large scale were ac-
complished by crack bacterial precipitation through repeated freeze-thaw and ultracentrifugation. The recombinant 
protein vaccine was identified by western-blotting and dot blot. Results: The pKK233.2-HBcAg-MAGE-A3 expression 
vector was established. PCR and restriction enzyme digestion assays verified the size of the target fragment as 
predicted. The recombinant expression vector contained the full sequences of HBcAg and MAGE-A3 genes. Western-
blotting and dot blotting analyses confirmed purity of recombinant HBcAg-MAGE-A3. Conclusion: Recombinant 
HBcAg-MAGE-A3 vectors and the methods for purifying therapeutic cancer vaccines were successfully established. 
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Introduction

Immune therapy particularly therapeutic can-
cer vaccine have been intensively studied for 
the past few years. Therapeutic cancer vac-
cines include DNA, peptide, cell vaccines [1-5]. 
Main idea is to develop the vaccines for viral 
infections and for cancers such as prostate 
cancer, non-small cell lung cancer, ovarian can-
cer and pancreatic cancer [5-8]. Molecular 
weight of epitope peptide is small and vulnera-
ble to protease degradation. Furthermore, sin-
gle epitope has weak immunogenicity [9, 10]. 
Therefore, vector or fusion protein are neces-
sary for effective immunization. It is important 
in chosing an ideal immunological carrier pro-
tein and immunization strategy [10, 11].

MAGE-A3 is a member of the melanoma anti-
gen MAGE-A family. It expressed in tumors,  
not normal tissues, except for testis and pla-

centa. This tumor-specific protein has been 
found in many tumors, including melanoma, 
non-small cell lung cancer, hematologic malig-
nancies, gastrointestinal cancer [12, 13]. 
Currently, cancer vaccines targeting MAGE-A3 
have been developed using peptides, DNA and 
minigenes-expressing adenoviruses expressing 
[14]. 

The HBc protein of Hepatitis B virus core anti-
gen (HBcAg) is capable to correctly self-assem-
bling into a natural shape of HBc core particles 
in the absence of any other viral components 
[15]. Because of its unique structure and immu-
nological characteristics, it can be used as 
ideal vaccine vector and adjuvant in the immune 
response [16-18]. Immune carriers hepatitis  
B core antigen (HBcAg) has three characteris-
tics. First, as a particulate antigen, it is easy to 
be up-taken, proceeded, handled and present-
ed by antigen-presenting cell for initiate effec-
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tive humoral and cellular immune responses. 
Second, it activate B cells directly and T cells 
indirectly. Therefore, it can serve as either TD or 
TI antigens. Third, HBcAg 78-83 amino acid 
residues locate in spike of the apex. As a few 
amino acid residue of the HBc immune advan-
tage have been deleted, leading to attenuated 
its own antigenicity of HBcAg and/or enhanced 
immunogenicity of insertion sequence. 

In this study, MAGE-A3 (112-120aa) was cho-
sen as the insertion sequences and HBcAg  
vector as the vehicle. Through the prokaryotic 
expression, purification, procuring getting large 
scale recombinant protein as a vaccine. This 
therapeutic cancer vaccine will generate effec-
tive cellular and humoral immune response 
against the tumor specific antigen. 

Materials and methods

Materials

E.coli HB101 strain and recombinant pKK- 
233.2-HBcAg plasmid was preserved at our 
laboratory. Restriction endonucleases (NheI), 
Taq DNA polymerase and T4 DNA ligase were 
purchased from TaKaRa Biotechnology (Dalian) 
Co., Ltd. DNA extraction and gel DNA purifica-
tion kits were from Tiangen Biotech (Beijing) 
Co., Ltd and used following the instructions. 
The anti-HBcAg antibodies were generously 
gifted by Dr. Jingli Li. Other antibodies were 
from Dingguo Biotech (Beijing) Co., Ltd.

Plasmid construction

Recombinant plasmid pKK233.2-HBcAg was 
extracted. Restriction enzyme digestion was 
performed using NheI for the recombinant plas-
mid pKK233.2-HBcAg and MAGE-A3 fragment 

(112-120aa: LysValAlaGluLeuValHisPheLeu). T4 
DNA ligase was used to clone MAGE-A3 (AA- 
GGTTGCCGAACTTGTTCACTTTCTT) to plasmid 
pKK233.2-HBcAg to construct recombinant 
pKK233.2-HBcAg-MAGE-A3 (Figure 1). The 
constructed plasmids were verified by enzyme 
digestion and PCR and confirmed by sequenc-
ing at Beijing Genomics Institute. We refered 
the construct as aspKK233.2-HBcAg-MAGE- 
A3.

Expression of HBcAg-MAGE-A3 fusion protein

For the expression of the recombinant protein, 
E.coli HB101 transformed with pKK233.2-
HBcAg-MAGE-A3 plasmid were inoculated in a 
tube containing 10 ml of LB medium supple-
mented with 100 µg/ml ampicillin, and cultured 
overnight at 37°C in a shaking incubator (200 
rpm) overnight. Next day, 1 ml of culture was 
transferred to a 100 ml flask containing 50 ml 
of LB medium supplemented (Amp, 100 μg/
ml). The flask was shaken at 37°C until the cul-
ture reached an OD of 1.0 read at a wavelength 
of 600 nm. The 50 ml culture was then trans-
ferred into 1 L LB medium containing ampicillin 
(100 μg/ml). Protein expression was induced 
by addition of 0.8 mM isopropyl-d-thiogalacto-
pyranoside (IPTG) when the OD≈0.8. After con-
tinuing to foster, the cells were harvested by 
centrifugation when OD = 4.

Purification of HBcAg-MAGE-A3 fusion protein

To purify the recombinant HBcAg-MAGE-A3  
protein, the bacterial precipitation were under-
gone three cycles of freeze-thaw and resus-
pendedin 25% sucrose containing lysozyme 
solution, and added lysis buffer (EDTA, DOC 
and Triton-X) and incubated at 37°C for 30 min. 
After centrifuge, the supernatant were ultra-
centrifuged through serial sucrose density gra-
dient at 28000 rpm for 4 h. Then the samples 
were collected. The methods were shown in 
Figure 2.

SDS-polyacrylamide gel electrophoresis and 
western blotting and dot blotting analysis

The bacteria pellets were suspended in sample 
loading buffer and boiled for 5 min prior to sodi-
um dodecyl sulfate-polyacrylamide gel electro-
phoresis (SDS-PAGE) analysis. For immunoblot-
ting, peptides of IPTG induced bacteria were 
separated by SDS-PAGE and then electrotrans-

Figure 1. Schematic diagram of the expression plas-
mids pKK233.2-HBcAg-MAGE-A3. The numbers in 
the figure refer to HBcAg amino acid positions. In 
pKK233.2-HBcAg-MAGE-A3, the DNA fragment en-
coding HBcAg (1-183aa, represented by open box) 
was placed after signal peptide, and the recognition 
sequence of restriction enzyme NheI was located at 
between 79-80aa. 
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ferred onto nitrocellulose filter membrane 0.2 
μm with transfer buffer containing 5 mM Tris, 
50 mM glycine, 20% (v/v) methanol, 0.1% SDS, 
pH 8.3. Electrotransfer was carried out at 80 
mA for 1.5 h. Then, the membrane was blocked 
with 3% bovine serum albumin in phosphate 
buffer saline (PBS) overnight. Protein was 
detected with anti-HBcAg antibodies (1:1000 
of dilution in PBS) at room temperature for 2 h. 
Then, the membrane was washed with PBS/
Tween 20 three times, each 15 min, followed by 
incubation with goat-anti-G. pig-HRP (1:5000) 
at room temperature for 2 h. Following three 
PBS/Tween 20 washing, membrane was incu-
bated with a solution containing 6 mg diamino-
benzidine 10 ml PBS containing 5 μl 30% H2O2. 
For dot blot, the purified proteins were trans-
ferred to nitrocellulose membrane. The other 
steps are the same with western blotting.

52 kDa MW as compared the control vector 
(Figure 4A). This is in agreement with the esti-
mated molecular mass for the recombinant 
protein, corresponding to the dimer of 183aa. 
Western blotting detection demosnstrated the 
expression of HBcAg-MAGE-A3 protein at 
expected molecular mass (Figure 4B). The puri-
fied protein containing the target protein 
HBcAg-MAGE-A3 protein as documented by Dot 
blot. These results suggest that HBcAg-
MAGE-A3 fusion protein is mainly present in the 
30-50% sucrose media (Figure 5).

Discussion

Therapeutic cancer vaccines, which trigger 
cytotoxicity immune response, could be a 
potential treatment strategy for cancer therapy. 
Cytotoxic CD8+ T cells (CTLs) recognize tumor-

Figure 2. The purification and extraction method of recombined HBcAg-
MAGE-A3 by serial sucrose density gradient centrifugation.

Figure 3. Identification of pKK233.2-HBcAg-MAGE-A3 vector. A: Enzyme prod-
ucts of vector pKK233.2-HBcAg. M1: pKK233.2-HBcAg digested with NheI; 
M2: Recombinant plasmid pKK233.2-HBcAg; M3: DNA Marker (DL15000). 
B: PCR amplification results of HBcAg gene. M: DNA Marker (DL2000); M2: 
PCR products of HBcAg-MAGE-A3 gene; M3: PCR products of HBcAg gene. C: 
The result of genetic sequencing of HBcAg-MAGE-A3 gene.

Results

Construction of eukaryotic 
expression vector pKK233.2-
HBcAg-MAGE-A3

Recombinant plasmid pKK- 
233.2-HBcAg was digested 
by restriction enzyme NheI. 
Then, it was examined by 1% 
agarose gel electrophoresis 
for the presence of HBcAg. 
The results showed one clear 
band of 5400 bp (Figure 3A). 
The pKK233.2-HBcAg-MAGE-
A3 positive colonies as identi-
fied by ampicillin-resistance 
LB medium were selected  
for PCR amplification. We 
observed a clear band of 
approximately about 916 bp, 
consistent with the predicted 
size of HBcAg-MAGE-A3 insert 
(Figure 3B). Direct sequenc-
ing confirmed two fragments: 
66 bp and 850 bp for 2 MAGE-
3 and HBcAg fragments, 
respectively) (Figure 3C). 

Extraction and purification 
of recombinant HBcAg-
MAGE-A3 protein 

ASDS-PAGE analysis reveale-
da protein at the molecular 
weight of slightly smaller than 
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associated antigens and attack tumor cells 
which express these antigenic peptides. How- 
ever, due to ineffective in presenting these epi-
topes to CTLs in tumor microenvironment, CTLs 
fail to be activated for combating tumour cells 
effectively. HBcAg (hepatitis B virus core anti-
gen), as a particulate antigen, has icosahedral 
structure formed by the core protein subunits, 
rendering antigen-presenting cells to uptake, 
process, handle and present antigen effective-
ly , and thus inducing strong CTL response. In 
the last few decades, the most successful 
approaches of this scaffold has been the influ-
enza vaccine ACAM-FLU-A, produced by Sanofi 
Pasteur, and the malaria (Plasmodium falci-
parum) vaccine MalariVax (ICC-1132), pro-
duced by Apovia [19]. Because the 78~83 aa 

at the amino terminus of HBcAg form a spike 
tip, the major immunodominant region (MIR), 
foreign epitopes could be inserted into MIR to 
generate a fusion peptide. This region was pre-
viously reported to be the major B cell epitope 
of HBcAg. Some studies observed that the 
short deletion in the MIR diminished the intrin-
sic immunogenicity of HBcand generated stron- 
ganthrax-specific immunity. Most importantly, 
this deletion completely protected mice from a 
lethal dose anthrax toxin challenge [20]. The 
VLV expressing HBV core protein (HBcAg) nei-
ther induced a CTL response nor protected 
against challenge [21]. Thus, HBcAg particle 
isan ideal vector for recombinant antigen.

However, there are some facts that may influ-
ence proper HBcAg capsid formation, such as 
the primary sequence and size of the inserts 
and the hydrophobicity of inserted peptide [22]. 
It has been reported that the longest sequence 
would be more than 200aa, such as GFP. 
However, principally short inserted peptide may 
ensure the spike formation and sufficient self-
assemble. The presence of cysteines will form 
disulphide bonds and affect capsid formation. 
The more hydrophobicity amino acidsare insert-
ed, the more effective self-assemble into icosa-
hedral particles will be archieved. In our experi-
ments, the inserted peptide included 2 CTL 
epitopes (9aa), ensuring to provide enough CTL 
epitopes to stimulate cellular immune response.
The sequence of inserted MAGE-A3 peptide is 

Figure 4. The identification of recombinant HBcAg-MAGE-A3 protein. A: Identification of HBcAg-MAGE-A3 protein 
expression by SDS-PAGE. M1: the cleaved supernatant of pKK233.2-HBcAg-MAGE-A3 plasmid product; M2: the 
cleaved supernatant of pKK233.2 plasmid product; M3: protein marker. B: Identification of HBcAg-MAGE-A3 protein 
expression by western-blotting. M1: the cleaved supernatant of pKK233.2-HBcAg-MAGE-A3 plasmid product; M2: 
the cleaved supernatant of pKK233.2 plasmid product; M3: protein marker.

Figure 5. The identification of purified recombinant 
HBcAg-MAGE-A3 protein by dot blot. HBcAg-MAGE-A3 
fusion protein distributed mainly in the 30-50% su-
crose media.
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LysValAlaGluLeuValHisPheLeu. Among them, 
Val, Ala, Leu, Phe are all hydrophobicity amino 
acids, thus influence on capsid self-assemble 
will not occur.

Though recombinant HBcAg-MAGE-A3 vectors 
and the methods for purifying therapeutic can-
cer vaccines were successfully established, the 
purification methods should be modified to 
large scale protenin production for future 
applications. 
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