Original Article Polymorphisms of PICALM gene in Alzheimer's disease risk: a meta-analysis

Qin Liu, Yan Fang

Department of Neurology, The First People's Hospital of Shangqiu City, No 292, South Kaixuan Rd., Shangqiu 476100, Henan, People's Republic of China

Received February 1, 2016; Accepted April 27, 2016; Epub June 15, 2016; Published June 30, 2016

Abstract: Alzheimer's disease (AD) is the most common type of dementia. Recent genome-wide association studies have identified that PICALM is one of the numerous reproducible AD-associated risk genes, and variants in PICALMare shown to be involved in this disease. However, the results remain conflicting. In this meta-analysis, we searched the online electronic database to retrieve related articles concerning the role of PICALM polymorphisms in AD risk and to systematic reevaluate the exact association. Overall, we screened out ten case-control studies, including 6866 AD patients and 13205 controls. Our results found that A allele of rs3851179 (A vs. G: OR=0.84, 95% CI=0.75-0.94, P=0.002) and C allele of rs541458 (C vs. T: OR=0.85, 95% CI=0.74-0.97, P=0.02) were associated with AD incidence. This significant relationship was also found in GA+AA and AA genotypes of rs3851179, and CC+TC genotype of rs541458 variants (P<0.05). Subgroup analysis by ethnicity showed that rs3851179 variant was genetic factor for AD in Caucasians, while only A allele was associated in Asians; C allele and CC+TC genotype of rs541458 in Caucasians, while no association was found in Asians. For Chinese population, neither these variants was associated with AD risk. In conclusion, our results found that rs3851179 and rs541458 were associated with AD risk. However, more data about other ethnicities with large crowds were needed in the future studies.

Keywords: Alzheimer's disease, PICALM, polymorphism, meta-analysis

Introduction

Alzheimer's disease (AD) is a fatal brain disorder characterized by memory loss, abstract thinking, damage calculations, steady deterioration of cognition, and dementia [1, 2]. In United States, it is the leading cause of dementia in the elderly [3], and by 2050, an estimated 1.6 million deaths will occur among individuals aged 65 years or older with AD, comprising 43% of all older adult deaths [4]. The annual cost for this disease is increasing, and no effective therapeutic strategy is available in sight [5, 6]. Although the precise physiological changes that trigger the development of AD largely remain unknown, the main risk factors are thought to be the interaction between environmental aspect and known genetic mutations [7]. Thus, identification of new susceptibility genes may be helpful in exploring the underlying disease mechanisms and developing the targeting drugtherapy [8].

Genome-wide association studies have identified numerous genes which involve in the

pathogenicity of AD risk. PICALM, located on human chromosome 11q14, contains 112 kb, and is expressed in multiple tissues and cells. It results in 23 alternative transcripts, and primary encodes phosphatidylinositol-binding clathrin assembly (PICALM) protein, which plays a key role in endocytosis [9], iron homeostasis and cell proliferation [10]. PICALM also binds to a nuclear exportinCRM-1 which used by the herpes simplex virus during its life cycle [11]. Recently, PICALM has been considered to be associated with AD risk. It influences AD risk primarily by modulating production, transportation, clearance of β-amyloid (Aβ) peptide, and other Aß-independent pathways [12]. ADassociated single nucleotide polymorphisms (SNPs) in PICALM gene were discovered as well [13, 14]. Rs3851179, located upstream of PICALM, was the initially studied. This variant was associated with total PICALM expression [15]. The A allele of this variant was shown to be reduced the AD risk among Caucasians [16]. However, in Asians, this association was weak or not significant [17, 18]. Rs541458 in PICALM

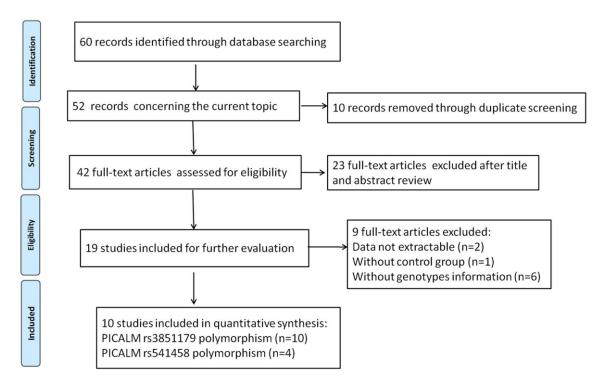


Figure 1. The process of relevant studies searching.

gene was shown to be associated with descending level of A β 42 in cerebrospinal fluid [19]. While subsequent study suggested that PICALM variants did not affect AD risk via a mechanism resulting in a strong additive effect on cerebrospinal fluid levels of A β 42 [20].

Although several studies evaluated PICALM polymorphisms in AD susceptibility, the functional effects of these SNPs remain to be determined. Gharesouran et al. identified rs3851179 polymorphism was significantly related with late-onset AD (LOAD) in Iranians [21]. While Liu et al. indicated that this polymorphism might not be an AD susceptibility locus in the Chinese population [22]. This may be due to the genetic heterogeneity in AD in different populations or the limited samples obtained. Therefore, we conducted this meta-analysis to summarize all the related published studies, and reevaluate this role of PICALM polymorphism in AD risk in population of total and subgroup by ethnicity.

Materials and methods

Publication search

Relevant studies were searched in online databases of CNKI (China National Knowledge Internet), Medline and PubMed. The following key terms: "Alzheimer's Disease or AD", "PICALM", "polymorphism or variant or mutation" and their combinations were used. References of related articles were searched manually to obtain more resources. Only published articles written in English or in Chinese were searched.

Inclusion criteria

Studies included should meet the following criteria: 1) case-control studies evaluating the role of PICALM variants in AD risk; 2) the patients should be met the DSM-IV diagnostic criteria (American Psychiatric Association 1994) [23]; 3) the controls should be ethnically and sex-matched controls without AD or other mental disorders; 4) the results were presented in odds ratio (OR) and 95% confidence interval (CI); and 5) the genotype information in cases and controls was available to extract.

Data extraction

Two of our authors assessed the quality of relevant articles independently. Any item was reached a final consensus. The following items were extracted from each article: the name of first author, country, ethnicity, sample size, genotype methods and distribution.

PICALM gene and Alzheimer's disease

Table 1. Main characteristics of included studies in this meta-analysis

First author	Year	Country	Ethnicity	Mean Age		Sample size		Genotype methods	SNP	
				Cases	Controls	Cases	Controls			
Harold D	2009	UK/Ireland	Caucasian	-	-	2227	4836	-	rs541458, rs3851179	
		Germany	Caucasian	-	-	555	824	-	rs541458, rs3851179	
		USA	Caucasian	-	-	1159	2188	-	rs541458, rs3851179	
Li HL	2011	China	Asian	68.6±9.6	69.4±9.9	474	591	PCR-RFLP	rs3851179	
Piaceri I	2011	Italy	Caucasian	71.0±6.1	74.5±6.2	349	359	PCR-RFLP	rs3851179	
Yu JT	2011	China	Asian	77.0±6.6	76.7±5.9	266	343	MALDI-TOF MS assay	rs3851179	
Chen LH	2012	China	Asian	-	-	462	350	Sequenom	rs541458, rs3851179	
Ding D	2012	China	Asian	81.2±5.3	80.4±4.9	54	216	Taqman	rs541458, rs3851179	
Ohara T	2012	Japan	Asian	83.2±6.5	60.2±11.5	825	2934	multiplex PCR-based Invader assay	rs3851179	
Klimkowicz-mrowiec A	2013	Poland	Caucasian	73.9±5.2	73.8±6.9	253	240	PCR-RFLP	rs3851179	
Belcavello L	2014	Brazil	Mixed	81.2±7.5	79.4±7.9	82	161	PCR-RFLP	rs 3851179	
Gharesouran J	2014	Iran	Asian	76.1± 7.8	75.3±6.8	160	163	PCR-Sequencing	rs541458, rs3851179	

Mixed, European origin and African origin; -, not available; PCR-RFLP, polymerase chain reaction-restriction fragment length polymorphism; SNP, single nucleotide polymorphism.

PICALM gene and Alzheimer's disease

Table 2. Distribution of alleles and genotypes for each polymorphism of included studies

First author			Cases					Controls	6	
rs3851179	GG	GA	AA	G	Α	GG	GA	AA	G	Α
Harold D-1	979	1004	244	2962	1492	1876	2240	720	5992	3680
Harold D-2	252	227	76	731	379	332	384	108	1048	600
Harold D-3	525	499	135	1549	769	880	1032	276	2792	1584
Li HL	161	258	55	580	368	196	321	74	713	469
Piaceri I	140	154	55	434	264	145	153	61	443	275
Yu JT	114	126	26	354	178	135	164	44	434	252
Chen LH	170	210	77	550	364	122	163	56	407	275
Ding D	23	19	9	65	37	84	100	28	268	156
Ohara T	310	394	121	1014	636	982	1434	518	3398	2470
Klimkowicz-mrowiec A	100	128	24	328	176	99	110	34	308	178
Belcavello L	7	42	33	56	108	3	81	77	87	235
Gharesouran J	24	65	71	113	207	2	29	132	33	293
rs541458	TT	TC	CC	Т	С	TT	TC	CC	Т	С
Harold D-1	1162	892	173	3216	1238	2260	2075	501	6595	3077
Harold D-2	263	231	61	757	353	366	375	83	1107	541
Harold D-3	592	475	92	1659	659	1040	940	208	3020	1356
Chen LH	122	215	112	459	439	94	154	92	342	338
Ding D	16	20	16	52	52	47	111	56	205	223
Gharesouran J	11	40	109	62	258	1	22	140	24	302

Table 3. Meta-analysis of PICALM polymorphisms in AD risk

SNP	Comparisons	Results of the	Z-test	Between-study heterogeneity			
		OR (95% CI)	Р	Ph	I ²	Model	
rs3851179							
Total	A vs. G	0.84 (0.75, 0.94)	0.002	<0.0001	79%	R	
	AA+GA vs. GG	0.83 (0.78, 0.89)	<0.0001	0.04	47%	F	
	AA vs. GA+GG	0.77 (0.64, 0.94)	0.01	<0.00001	75%	R	
Asian	A vs. G	0.76 (0.58, 0.99)	0.04	<0.00001	89%	R	
	AA+GA vs. GG	0.84 (0.68, 1.05)	0.12	0.03	61%	R	
	AA vs. GA+GG	0.72 (0.46, 1.12)	0.14	<0.00001	86%	R	
Caucasian	A vs. G	0.86 (0.81, 0.90)	<0.0001	0.43	0%	F	
	AA+GA vs. GG	0.83 (0.77, 0.89)	<0.0001	0.46	0%	F	
	AA vs. GA+GG	0.80 (0.72, 0.89)	<0.0001	0.09	50%	F	
rs541458							
Total	C vs. T	0.85 (0.74, 0.97)	0.02	0.003	73%	R	
	CC+TC vs. TT	0.83 (0.77, 0.90)	<0.0001	0.15	39%	F	
	CC vs. TC+TT	0.81 (0.64, 1.02)	0.07	0.01	67%	R	
Asian	C vs. T	0.60 (0.38, 1.34)	0.21	0.0004	87%	R	
		0.69 (0.38, 1.24)			_		
	CC+TC vs. TT	0.63 (0.28, 1.41)	0.26	0.03	71%	R	
	CC vs. TC+TT	0.73 (0.37, 1.43)	0.36	0.005	81%	R	
Caucasian	C vs. T	0.86 (0.81, 0.91)	<0.00001	0.24	31%	F	
	CC+TC vs. TT	0.83 (0.77, 0.90)	<0.00001	0.57	0%	F	
	CC vs. TC+TT	0.84 (0.67, 1.04)	0.10	0.12	53%	R	

OR, odds ratio; 95% CI, 95% confidence intervals; Ph, I², between-study heterogeneity; R, the random-effect model; F, the fixed-effect model.

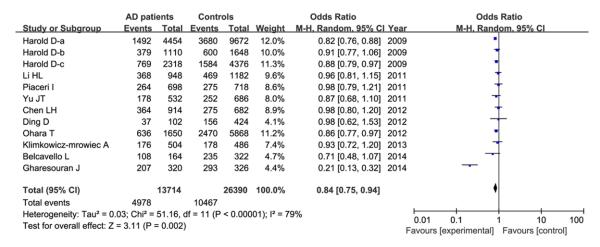


Figure 2. Forest plot of the association between PICALM rs3851179 polymorphism and AD risk in allelic model in total population in a random-effect model.

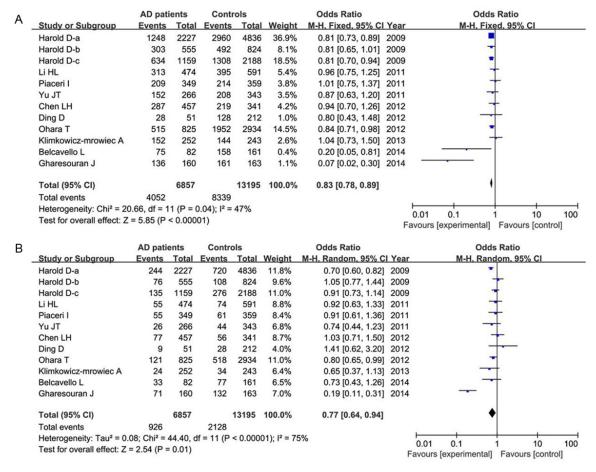


Figure 3. Meta-analysis of PICALM rs3851179 polymorphism in AD risk in dominant model (A) and recessive model (B).

Statistic analysis

The strength of association between PICALM gene polymorphisms and AD risk was mea-

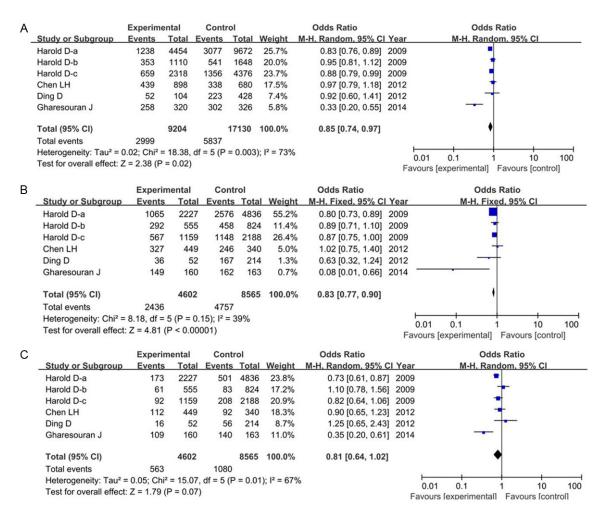
sured by pooled ORs with its 95% CI. The statistical significance was determined by Z-test with a *P*-value less than 0.05 considered significant. For each variant, the allele model, dominant



Figure 4. Meta-analysis of the association between rs3851179 polymorphism and AD risk in Chinese population in a fixed-effect model.

model and recessive model were calculated. Between-study heterogeneity was assessed by both the Q-test and the I^2 test. The fixed-effect model was employed when the effect were homologous (P-value \geq 0.01 for the Q-test and $I^2 \leq$ 50% for the I^2 test), while the random-effect model was used in its opposite. All analyses were calculated using the RevMan5.2 program.

Results


Characteristics of included studies

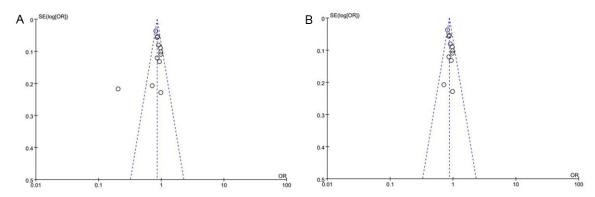
After applying the inclusion criteria, total ten case-control studies (one in Chinese and nine in English) were screened out, including 6866 AD patients and 13205 controls. **Figure 1** presented the searching process. Of the ten studies, one contained three study population [16]. Six were Asian origin [17, 21, 24-27], three European origin [16, 28, 29], and one mixed

origin (European origin and African origin) [30]. Two variants (rs541458 and rs3851179) in PICALM gene were involved. The sample size ranged from 270 to 7063. **Table 1** listed the main characteristics of included studies in this meta-analysis. **Table 2** exhibited the distribution information of alleles and genotypes for each polymorphism.

Association between PICALM rs3851179 variant and AD risk

All the ten studies concerned the rs3851179 polymorphism. **Table 3** showed the results of each genetic comparison model. Between-study heterogeneity was calculated, and the fixed-effect model or the random-effect model was used. Our results demonstrated that the A allele was significant associated and increased the risk of AD compared with the G allele (A vs. G: OR=0.84, 95% CI=0.75-0.94, P=0.002) in a random-effect model as shown

Figure 5. Forest plot of the association between PICALM rs541458 polymorphism and AD risk in the three genetic models (A. The allelic model; B. The dominant model; C. The recessive model).


in **Figure 2**. This relationship was also found in other two comparisons (AA+GA vs. GG: OR=0.83, 95% CI=0.78-0.89, P<0.00001; AA vs. GA+GG: OR=0.77, 95% CI=0.64-0.94, P=0.01) as shown in **Figure 3**.

Subgroup analysis by ethnicity showed that there was a positive association between rs3851179 polymorphism and AD risk in Caucasians (A vs. G: OR=0.86, 95% CI=0.81-0.90, P<0.00001; AA+GA vs. GG: OR=0.83, 95% CI=0.77-0.89, P<0.00001; AA vs. GA+GG: OR=0.80, 95% CI=0.72-0.89, P<0.0001). In Asians, only A allele was found to be associated with AD risk (A vs. G: OR=0.76, 95% CI=0.58-0.99, P=0.04). However, the significant association was not found in other genetic models (AA+GA vs. GG: OR=0.84, 95% CI=0.68-1.05, P=0.12; AA vs. GA+GG: OR=0.72, 95% CI=0.46-1.12, P=0.14).

We further evaluated the role of this variant in Chinese population. Four studies were included, containing 1248 cases and 1487 controls. Our results indicated that rs3851179 polymorphism was not associated with AD risk in Chinese population (A vs. G: OR=0.95, 95% CI=0.85-1.06, P=0.34; AA+GA vs. GG: OR=0.92, 95% CI=0.78-1.08, P=0.31; AA vs. GA+GG: OR=0.94, 95% CI=0.75-1.18, P=0.62) in a fixed-effect model as shown in **Figure 4**.

Association between PICALM rs541458 variant and AD risk

Four articles included 4602 patients and 8562 controls, involving six comparisons. Overall, our results suggested that the C allele and CC+TC genotype were associated with AD susceptibility (C vs. T: OR=0.85, 95% CI=0.74-0.97, P=0.02; CC+TC vs. TT: OR=0.83, 95% CI=0.77-0.90.

Figure 6. Funnel plot for publication bias analysis of rs3851179 polymorphism in the allelic model before (A) and after (B) deleting the study conducted by Gharesouran et al.

P<0.00001). While no association was found in CC genotype (CC vs. TC+TT: OR=0.81, 95% CI=0.64-1.02, P=0.07). **Figure 5** showed the results of PICALM rs541458 variant in AD risk. Subgroup analysis also found that only C allele and CC+TC genotype were associated with AD susceptibility (P<0.00001) in Caucasians. No association was found in Asians (P>0.05). Two studies concerned the Chinese population, and no significant role was found (P>0.05).

Sensitive analysis and publication bias

Each study was deleted at a time to determine whether individual study influenced the results. Our results showed that when the study of Gharesouran J et al. was omitted, the betweenstudy heterogeneity disappeared, but the pooled OR was not significant changed. We carefully studied this article, but not found obvious difference with other included studies. The funnel plot also testified this result as shown in Figure 6.

Discussion

In this meta-analysis, we identified ten relevant articles. Our result showed that rs3851179 variant of PICALM gene was associated with AD risk in total population. This significance was also found in Caucasians by subgroup analysis. While only A allele was related with increased the occurrence of AD in Asians. Our result was not in accord with previous meta-analysis conducted by Liu et al. which screened out five articles (four in Asians and one in Caucasians), indicating that rs3851179 variant was associated with AD risk under three comparison models in Asians [31]. Forrs541458 variant, only C

allele and CC+TC genotype were associated with incidence of AD in total population or Caucasians. No relationship was found in Asians. This is the first meta-analysis considering the role of rs541458 polymorphism in AD.

Recent studies investigated the mechanisms of PICALM in AD pathogenesis. PICALM was found associated with age at onset of AD in Down syndrome (P=0.011) [32]. Baig et al. firstly proved the presence of PICALM in endothelial cells of human brain tissue, suggesting an increase in PICALM expression in AD [33]. PICALM was found involving in the neurotransmitter release processes, thereby affecting memory functions [34]. It was implicated in intracellular amyloid precursor protein processing and plaque pathogenesis, and the overexpression of PICALM in vivo was detected to increases plague deposition in AD transgenic mice [35]. PICALM might also regulate AB generation [36], andwork in autophagy-mediated AB clearance [37], which may influence accumulation of AB in brains with AD. Therefore, targeting PICALM might provide promising and novel avenues for AD therapy.

The increase of PICALM expression in the microvasculature may reduce AD risk. Genetic variants may affect PICALN expression. PICALM polymorphisms was estimated to account 5.3% of AD risk [38]. Several studies have evaluated the association between PICALM variants and AD risk. Carrasquillo et al. provided the first evidence that PICALM rs3851179 variant was associated with the risk of LOAD [39]. Subsequently, the G allele of this variant was shown to have an unexpected protective effect on incident mild cognitive impairment or LOAD [40]. Lambert et al. found that PICALM rs541458

polymorphism was genetic determinants of AD in European populations [41].Corneveaux et al. also demonstrated that rs541458 polymorphism was related with AD risk [42]. Other polymorphisms in PICALM gene may also affect AD incidence. Rs17817201 variant was shown to be associated withage at onset of AD susceptibility in Korean population [43]. PICALM rs-17159904 variant was associated with AD risk in the Caribbean Hispanic cohort [44].

PICALM polymorphisms may interact with other genes. APOE is the well-known risk loci for AD, accounting for less than 20% of LOAD risk [45]. Previous meta-analysis showed that genotypes at PICALM confer risk predominantly in APOE ε4-positive subject. Thus, APOE and PICALM synergistically interact [46]. Morgen et al. suggested that a neural mechanism for APOE-PICALM interactions in patients with manifest AD and indicated that the PICALM genotype modulates both brain atrophy and cognitive performance in APOE ε4 carriers [47]. In our analysis, three articles considered the impact of rs3851179 genotype on the risk of LOAD stratified by the APOE-E4 status. Our results found that there was no significant interaction between PICALM rs3851179 variant and APOE- ϵ 4 carrier status (P=0.72).

Several limitations were presented. Firstly, the sample size was rather small compared with large-scale GWAS in Caucasian ancestry. Secondly, other genes which may interact with PICALM should be considered. For example, the PICALM-CLU interactions should be considered when investigating the impact of these two genetic variants on the brain [48]. Thirdly, other factors such as age, stage of disease also should be studied. Lastly, one included study conducted by Gharesouran et al. affected the between-study heterogeneity to a large extent even though the pooded ORs of each comparison models were not significantly changed when removing this article.

In conclusion, our result found that polymorphisms of rs3851179 and rs541458 in PICALM gene were associated with AD risk in total population or Caucasiansinvolving in the included studies. In Asians, this association was weak or disappeared. Therefore, subgroup analysis by ethnicity with large-scale should be included in the future researches.

Disclosure of conflict of interest

None.

Address correspondence to: Qin Liu, Department of Neurology, The First People's Hospital of Shangqiu City, No 292, South Kaixuan Rd., Shangqiu 476100, Henan, People's Republic of China. Tel: +86 370 325 5211; Fax: +86 370 325 5977; E-mail: liuqin0008@163.com

References

- [1] Dubois B, Feldman HH, Jacova C, Cummings JL, Dekosky ST, Barberger-Gateau P, Delacourte A, Frisoni G, Fox NC, Galasko D, Gauthier S, Hampel H, Jicha GA, Meguro K, O'Brien J, Pasquier F, Robert P, Rossor M, Salloway S, Sarazin M, de Souza LC, Stern Y, Visser PJ, Scheltens P. Revising the definition of Alzheimer's disease: a new lexicon. Lancet Neurol 2010; 9: 1118-27.
- [2] Malenka RC and Malinow R. Alzheimer's disease: recollection of lost memories. Nature 2011; 469: 44-45.
- [3] Thies W and Bleiler L. 2013 Alzheimer's disease facts and figures. Alzheimers Dement 2013; 9: 208-245.
- [4] Weuve J, Hebert LE, Scherr PA, Evans DA. Deaths in the United States among persons with Alzheimer's disease (2010-2050). Alzheimers Dement 2014; 10: e40-e46.
- [5] Holtzman DM, Morris JC and Goate AM. Alzheimer's disease: the challenge of the second century. Sci Transl Med 2011; 3: 77sr1-77sr1.
- [6] Grossman I, Lutz MW, Crenshaw DG, Saunders AM, Burns DK, Roses AD. Alzheimer's disease: diagnostics, prognostics and the road to prevention. EPMA J 2010; 1: 293-303.
- [7] Raj T, Shulman JM, Keenan BT, Chibnik LB, Evans DA, Bennett DA, Stranger BE, De Jager PL. Alzheimer disease susceptibility loci: evidence for a protein network under natural selection. American J Hum Genet 2012; 90: 720-726.
- [8] Bettens K, SleegersK, and Van Broeckhoven C. Genetic insights in Alzheimer's disease. Lancet Neurol 2013; 12: 92-104.
- [9] Ford MG, Pearse BM, Higgins MK, Vallis Y, Owen DJ, Gibson A, Hopkins CR, Evans PR, McMahon HT. Simultaneous binding of PtdIns (4, 5) P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 2001; 291: 1051-1055.
- [10] Scotland PB, Heath JL, Conway AE, Porter NB, Armstrong MB, Walker JA, Klebig ML, Lavau CP, Wechsler DS. The PICALM protein plays a key role in iron homeostasis and cell proliferation. PLoS One 2012; 7: e44252.

- [11] Carter C. APP, APOE, complement receptor 1, clusterin and PICALM and their involvement in the herpes simplex life cycle. Neurosci Lett 2010; 483: 96-100.
- [12] Xu W, Tan L and Yu JT. The Role of PICALM in Alzheimer's Disease. Mol Neurobiol 2014; 1-15.
- [13] Pedraza O, Allen M, Jennette K, Carrasquillo M, Crook J, Serie D, Pankratz VS, Palusak R, Nguyen T, Malphrus K, Ma L, Bisceglio G, Roberts RO, Lucas JA, Ivnik RJ, Smith GE, Graff-Radford NR, Petersen RC, Younkin SG, Ertekin-Taner N. Evaluation of memory endophenotypes for association with CLU, CR1, and PICALM variants in black and white subjects. Alzheimers Dement 2014: 10: 205-213.
- [14] Seshadri S, Fitzpatrick AL, Ikram MA, DeStefano AL, Gudnason V, Boada M, Bis JC, Smith AV, Carassquillo MM, Lambert JC, Harold D, Schrijvers EM, Ramirez-Lorca R, Debette S, Longstreth WT Jr. Janssens AC, Pankratz VS, Dartigues JF, Hollingworth P, Aspelund T, Hernandez I, Beiser A, Kuller LH, Koudstaal PJ, Dickson DW, Tzourio C, Abraham R, Antunez C, Du Y, Rotter JI, Aulchenko YS, Harris TB, Petersen RC, Berr C, Owen MJ, Lopez-Arrieta J, Varadarajan BN, Becker JT, Rivadeneira F, Nalls MA, Graff-Radford NR, Campion D, Auerbach S, Rice K, Hofman A, Jonsson PV, Schmidt H, Lathrop M, Mosley TH, Au R, Psaty BM, Uitterlinden AG, Farrer LA, Lumley T, Ruiz A, Williams J, Amouyel P, Younkin SG, Wolf PA, Launer LJ, Lopez OL, van Duijn CM, Breteler MM; CHARGE Consortium; GERAD1 Consortium; EADI1 Consortium. Genome-wide analysis of genetic loci associated with Alzheimer disease. JAMA 2010; 303: 1832-1840.
- [15] Parikh I, Fardo DW and Estus S. Genetics of PICALM Expression and Alzheimer's Disease. PLoS One 2014; 9: e91242.
- [16] Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, Pahwa JS, Moskvina V, Dowzell K, Williams A, Jones N, Thomas C, Stretton A, Morgan AR, Lovestone S, Powell J, Proitsi P, Lupton MK, Brayne C, Rubinsztein DC, Gill M, Lawlor B, Lynch A, Morgan K, Brown KS, Passmore PA, Craig D, McGuinness B, Todd S, Holmes C, Mann D, Smith AD, Love S, Kehoe PG, Hardy J, Mead S, Fox N, Rossor M, Collinge J, Maier W, Jessen F, Schürmann B, Heun R, van den Bussche H, Heuser I, Kornhuber J, Wiltfang J, Dichgans M, Frölich L, Hampel H, Hüll M, Rujescu D, Goate AM, Kauwe JS, Cruchaga C, Nowotny P, Morris JC, Mayo K, Sleegers K, Bettens K, Engelborghs S, De Deyn PP, Van Broeckhoven C, Livingston G, Bass NJ, Gurling H, McQuillin A, Gwilliam R, Deloukas P, Al-Chalabi A, Shaw CE, Tsolaki M,

- Singleton AB, Guerreiro R, Mühleisen TW, Nöthen MM, Moebus S, Jöckel KH, Klopp N, Wichmann HE, Carrasquillo MM, Pankratz VS, Younkin SG, Holmans PA, O'Donovan M, Owen MJ, Williams J. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nat Genet 2009; 41: 1088-1093.
- [17] Ohara T, Ninomiya T, Hirakawa Y, Ashikawa K, Monji A, Kiyohara Y, Kanba S, Kubo M. Association study of susceptibility genes for late-onset Alzheimer's disease in the Japanese population. Psychiatr Genet 2012; 22: 290-293.
- [18] Jiang T, Yu JT, Tan MS, Wang HF, Wang YL, Zhu XC, Zhang W, Tan L. Genetic variation in PICALM and Alzheimer's disease risk in Han Chinese. Neurobiol Aging 2014; 35: 934, e1-e3.
- [19] Schjeide BM, Schnack C, Lambert JC, Lill CM, Kirchheiner J, Tumani H, Otto M, Tanzi RE, Lehrach H, Amouyel P, von Arnim CA, Bertram L. The role of clusterin, complement receptor 1, and phosphatidylinositol binding clathrin assembly protein in Alzheimer disease risk and cerebrospinal fluid biomarker levels. Arch Gen Psychiatry 2011; 68: 207-213.
- [20] Kauwe JS, Cruchaga C, Karch CM, Sadler B, Lee M, Mayo K, Latu W, Su'a M, Fagan AM, Holtzman DM, Morris JC; Alzheimer's Disease Neuroimaging Initiative, Goate AM. Fine mapping of genetic variants in BIN1, CLU, CR1 and PICALM for association with cerebrospinal fluid biomarkers for Alzheimer's disease. PLoS One 2011; 6: e15918.
- [21] Gharesouran J, Rezazadeh M, Khorrami A, Ghojazadeh M, Talebi M. Genetic Evidence for the Involvement of Variants at APOE, BIN1, CR1, and PICALM Loci in Risk of Late-Onset Alzheimer's Disease and Evaluation for Interactions with APOE Genotypes. J Mol Neurosci 2014; 54: 780-786.
- [22] Liu G, Zhang L, Feng R, Liao M, Jiang Y, Chen Z, Zhao B, Li K. Lack of association between PICALM rs3851179 polymorphism and Alzheimer's disease in Chinese population and APOE & -negative subgroup. Neurobiol Aging 2013; 34: 1310, e9-e10.
- [23] First MB. Diagnostic and statistical manual of mental disorders. DSM IV-4th edition. APA p 1994. pp. 97-327.
- [24] Li HL, Shi SS, Guo QH, Ni W, Dong Y, Liu Y, Sun YM, Bei-Wang, Lu SJ, Hong Z, Wu ZY. PICALM and CR1 variants are not associated with sporadic Alzheimer's disease in Chinese patients. J Alzheimers Dis 2011; 25: 111-117.
- [25] Chen LH, Kao PY, Fan YH, Ho DT, Chan CS, Yik PY, Ha JC, Chu LW, Song YQ. Polymorphisms of CR1, CLU and PICALM confer susceptibility of

- Alzheimer's disease in a southern Chinese population. Neurobiol Aging 2012; 33: 210, e1-e7.
- [26] Ding D and Hong Z. Population-based prevalence survey and genetic epidemiology of cognitive impairment among elderly. Fudan University 2012.
- [27] Yu JT, Song JH, Ma T, Zhang W, Yu NN, Xuan SY, Tan L. Genetic association of PICALM polymorphisms with Alzheimer's disease in Han Chinese. J Neurol Sci 2011; 300: 78-80.
- [28] Klimkowicz-Mrowiec A, Sado M, Dziubek A, Dziedzic T, Pera J, Szczudlik A, Slowik A. Lack of association of CR1, PICALM and CLU gene polymorphisms with Alzheimer disease in a Polish population. Neurol Neurochir Pol 2013; 47: 157-160.
- [29] Piaceri I, Bagnoli S, Lucenteforte E, Mancuso M, Tedde A, Siciliano G, Piacentini S, Bracco L, Sorbi S, Nacmias B. Implication of a genetic variant at PICALM in Alzheimer's disease patients and centenarians. J Alzheimers Dis 2011; 24: 409-413.
- [30] Belcavello L, Camporez D, Almeida LD, Morelato RL, Batitucci MC, de Paula F. Association of MTHFR and PICALM polymorphisms with Alzheimer's disease. Mol Biol Rep 2015; 42: 611-6.
- [31] Liu G, Zhang S, Cai Z, Ma G, Zhang L, Jiang Y, Feng R, Liao M, Chen Z, Zhao B, Li K. PICALM gene rs3851179 polymorphism contributes to Alzheimer's disease in an Asian population. Neuromolecular Med 2013; 15: 384-388.
- [32] Jones EL, Mok K, Hanney M, Harold D, Sims R, Williams J, Ballard C. Evidence that *PICALM* affects age at onset of Alzheimer's dementia in Down syndrome. Neurobiology Aging 2013; 34: 2441. e1-e5.
- [33] Baig S, Joseph SA, Tayler H, Abraham R, Owen MJ, Williams J, Kehoe PG, Love S. The Distribution and Expression of Picalm in Alzheimer Disease. J Neuropathol Exp Neurol 2010; 69: 1071.
- [34] Bushlin I, Petralia RS, Wu F, Harel A, Mughal MR, Mattson MP, Yao PJ. Clathrin assembly protein AP180 and CALM differentially control axogenesis and dendrite outgrowth in embryonic hippocampal neurons. J Neurosci 2008; 28: 10257-10271.
- [35] Xiao Q, Gil SC, Yan P, Wang Y, Han S, Gonzales E, Perez R, Cirrito JR, Lee JM. Role of phosphatidylinositol clathrin assembly lymphoid-myeloid leukemia (PICALM) in intracellular amyloid precursor protein (APP) processing and amyloid plaque pathogenesis. J Biol Chem 2012; 287: 21279-21289.
- [36] Tian Y, Chang JC, Fan EY, Flajolet M, Greengard P. Adaptor complex AP2/PICALM, through in-

- teraction with LC3, targets Alzheimer's APP-CTF for terminal degradation via autophagy. Proc Natl Acad Sci U S A 2013; 110: 17071-17076.
- [37] Gil SC. The Role of PICALM in Amyloid Plaque Pathogenesis in Alzheimer's Disease. 2011.
- [38] Lambert J, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC. Beecham GW. Grenier-Boley B. Russo G. Thorton-Wells TA, Jones N, Smith AV, Chouraki V, Thomas C, Ikram MA, Zelenika D, Vardarajan BN, Kamatani Y, Lin CF, Gerrish A, Schmidt H, Kunkle B, Dunstan ML, Ruiz A, Bihoreau MT, Choi SH, Reitz C, Pasquier F, Cruchaga C, Craig D, Amin N, Berr C, Lopez OL, De Jager PL, Deramecourt V, Johnston JA, Evans D, Lovestone S, Letenneur L, Morón FJ, Rubinsztein DC, Eiriksdottir G, Sleegers K, Goate AM, Fiévet N, Huentelman MW, Gill M, Brown K, Kamboh MI, Keller L, Barberger-Gateau P, McGuiness B, Larson EB, Green R, Myers AJ, Dufouil C, Todd S, Wallon D, Love S, Rogaeva E, Gallacher J, St George-Hyslop P, Clarimon J, Lleo A, Bayer A, Tsuang DW, Yu L, Tsolaki M. Bossù P. Spalletta G. Proitsi P. Collinge J, Sorbi S, Sanchez-Garcia F, Fox NC, Hardy J, Deniz Naranjo MC, Bosco P, Clarke R, Brayne C, Galimberti D, Mancuso M, Matthews F; European Alzheimer's Disease Initiative (EADI); Genetic and Environmental Risk in Alzheimer's Disease; Alzheimer's Disease Genetic Consortium; Cohorts for Heart and Aging Research in Genomic Epidemiology, Moebus S, Mecocci P, Del Zompo M, Maier W, Hampel H, Pilotto A, Bullido M, Panza F, Caffarra P, Nacmias B, Gilbert JR, Mayhaus M, Lannefelt L, Hakonarson H, Pichler S, Carrasquillo MM, Ingelsson M, Beekly D, Alvarez V, Zou F, Valladares O, Younkin SG, Coto E, Hamilton-Nelson KL, Gu W, Razquin C, Pastor P, Mateo I, Owen MJ, Faber KM, Jonsson PV, Combarros O, O'Donovan MC, Cantwell LB, Soininen H, Blacker D, Mead S, Mosley TH Jr, Bennett DA, Harris TB, Fratiglioni L, Holmes C, de Bruijn RF, Passmore P, Montine TJ, Bettens K, Rotter JI, Brice A, Morgan K, Foroud TM, Kukull WA, Hannequin D. Powell JF, Nalls MA, Ritchie K, Lunetta KL, Kauwe JS, Boerwinkle E, Riemenschneider M, Boada M, Hiltuenen M, Martin ER, Schmidt R, Rujescu D, Wang LS, Dartigues JF, Mayeux R, Tzourio C, Hofman A, Nöthen MM, Graff C, Psaty BM, Jones L, Haines JL, Holmans PA, Lathrop M, Pericak-Vance MA, Launer LJ, Farrer LA, van Duijn CM, Van Broeckhoven C, Moskvina V, Seshadri S, Williams J, Schellenberg GD, Amouyel P. Metaanalysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. Nat Genet 2013; 45: 1452-8.

PICALM gene and Alzheimer's disease

- [39] Carrasquillo MM, Belbin O, Hunter TA, Ma L, Bisceglio GD, Zou F, Crook JE, Pankratz VS, Dickson DW, Graff-Radford NR, Petersen RC, Morgan K, Younkin SG. Replication of CLU, CR1, and PICALM associations with alzheimer disease. Arch Neurol 2010; 67: 961-964.
- [40] Carrasquillo MM,Crook JE, Pedraza O, Thomas CS, Pankratz VS, Allen M, Nguyen T, Malphrus KG, Ma L, Bisceglio GD, Roberts RO, Lucas JA, Smith GE, Ivnik RJ, Machulda MM, Graff-Radford NR, Petersen RC, Younkin SG, Ertekin-Taner N. Late-onset Alzheimer's risk variants in memory decline, incident mild cognitive impairment, and Alzheimer's disease. Neurobiol Aging 2015; 36: 60-67.
- [41] Lambert JC, Zelenika D, Hiltunen M, Chouraki V, Combarros O, Bullido MJ, Tognoni G, Fiévet N, Boland A, Arosio B, Coto E, Del Zompo M, Mateo I, Frank-Garcia A, Helisalmi S, Porcellini E, Pilotto A, Forti P, Ferri R, Delepine M, Scarpini E, Siciliano G, Solfrizzi V, Sorbi S, Spalletta G, Ravaglia G, Valdivieso F, Alvarez V, Bosco P, Mancuso M, Panza F, Nacmias B, Bossù P, Piccardi P, Annoni G, Seripa D, Galimberti D, Licastro F, Lathrop M, Soininen H, Amouyel P. Evidence of the association of *BIN1* and *PICALM* with the AD risk in contrasting European populations. Neurobiol Aging 2011; 32: 756, e11-5.
- [42] Corneveaux JJ, Myers AJ, Allen AN, Pruzin JJ, Ramirez M, Engel A, Nalls MA, Chen K, Lee W, Chewning K, Villa SE, Meechoovet HB, Gerber JD, Frost D, Benson HL, O'Reilly S, Chibnik LB, Shulman JM, Singleton AB, Craig DW, Van Keuren-Jensen KR, Dunckley T, Bennett DA, De Jager PL, Heward C, Hardy J, Reiman EM, Huentelman MJ. Association of CR1, CLU, and PICALM with Alzheimer's disease in a cohort of clinically characterized and neuropathologically verified individuals. Hum Mol Genet 2010; 19: 3295-301.
- [43] Chung SJ, Lee JH, Kim SY, You S, Kim MJ, Lee JY, Koh J. Association of GWAS top hits with late-onset Alzheimer disease in Korean population. Alzheimer Dis Assoc Disord 2013; 27: 250-257.

- [44] Lee JH, Cheng R, Barral S, Reitz C, Medrano M, Lantigua R, Jiménez-Velazquez IZ, Rogaeva E, St George-Hyslop PH, Mayeux R. Identification of novel loci for Alzheimer disease and replication of CLU, PICALM, and BIN1 in Caribbean Hispanic individuals. Arch Neurol 2011; 68: 320-328.
- [45] Ashford JW and Mortimer JA. Non-familial Alzheimer's disease is mainly due to genetic factors. J Alzheimers Dis 2002; 4: 169-177.
- [46] Jun G, Naj AC, Beecham GW, Wang LS, Buros J, Gallins PJ, Buxbaum JD, Ertekin-Taner N, Fallin MD, Friedland R, Inzelberg R, Kramer P, Rogaeva E, St George-Hyslop P; Alzheimer's Disease Genetics Consortium, Cantwell LB, Dombroski BA, Saykin AJ, Reiman EM, Bennett DA, Morris JC, Lunetta KL, Martin ER, Montine TJ, Goate AM, Blacker D, Tsuang DW, Beekly D, Cupples LA, Hakonarson H, Kukull W, Foroud TM, Haines J, Mayeux R, Farrer LA, Pericak-Vance MA, Schellenberg GD. Meta-analysis confirms CR1, CLU, and PICALM as Alzheimer disease risk loci and reveals interactions with APOE genotypes. Arch Neurol 2010; 67: 1473-1484.
- [47] Morgen K, Ramirez A, Frölich L, Tost H, Plichta MM, Kölsch H, Rakebrandt F, Rienhoff O, Jessen F, Peters O, Jahn H, Luckhaus C, Hüll M,Gertz HJ, Schröder J, Hampel H, Teipel SJ, Pantel J, Heuser I, Wiltfang J, Rüther E, Kornhuber J, Maier W, Meyer-Lindenberg A.Genetic interaction of *PlCALM* and *APOE* is associated with brain atrophy and cognitive impairment in Alzheimer's disease. Alzheimers Dement 2014; 10 Suppl: S269-76.
- [48] Zhang P, Qin W, Wang D, Liu B, Zhang Y, Jiang T, Yu C. Impacts of PICALM and CLU variants associated with Alzheimer's disease on the functional connectivity of the hippocampus in healthy young adults. Brain Struct Funct 2015; 220: 1463-75.