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Abstract: PSMD10, also known as gankyrin, is associated with the proteasome and has been shown to be an on-
coprotein in the liver. Here, we report that PSMD10 expression is stimulated by the histone demethylase JMJD2A/
KDM4A and its interaction partner, the ETV1 transcription factor, in LNCaP prostate cancer cells. Global analysis of 
expression patterns revealed that PSMD10 mRNA levels are positively correlated with those of both JMJD2A and 
ETV1. In human prostate tumors, PSMD10 is highly overexpressed at the protein level and correlates with JMJD2A 
overexpression; further, PSMD10 expression is enhanced in the prostates of transgenic JMJD2A mice. Moreover, 
PSMD10 is particularly overexpressed in high Gleason score prostate tumors. Downregulation of PSMD10 in LNCaP 
prostate cancer cells impaired their growth, indicating that PSMD10 may exert a pro-oncogenic function in the 
prostate. Lastly, we observed that PSMD10 expression is correlated to YAP1, a component of the Hippo signaling 
pathway and whose gene promoter is regulated by JMJD2A, and that PSMD10 can cooperate with YAP1 in stimulat-
ing LNCaP cell growth. Altogether, these data indicate that PSMD10 is a novel downstream effector of JMJD2A and 
suggest that inhibition of the JMJD2A histone demethylase by small molecule drugs may be effective to curtail the 
oncogenic activity of PSMD10 in various PSMD10-overexpressing tumors.
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Introduction

Many epigenetic regulators have been identi-
fied during the last decade that function to sup-
press or to enhance tumor formation [1, 2]. One 
of the most versatile epigenetic marks is the 
modification of various histone lysine residues 
by methylation, which is controlled by the 
antagonism between histone methyltransfer-
ases and demethylases [3]. Over 20 different 
histone demethylases are currently known and 
the vast majority of them belongs to the JmjC 
domain-containing (JMJD) protein family [4]. 
Amongst the JMJD proteins, also called KDM 
(lysine demethylase) proteins, the JMJD2 sub-
family is the largest one with 6 respective 
genes in the human genome [5-7]. The first 
JMJD2 protein characterized was JMJD2A/
KDM4A that was reported to act as a transcrip-
tional corepressor [8, 9]. However, the subse-
quent characterization of JMJD2A as an enzyme 

capable of removing the repressive H3K9me3 
and H1.4K26me3 marks revealed that it can 
also function as a transcriptional coactivator 
[10-13].

Bioinformatical analyses as well as immunohis-
tochemistry have shown that JMJD2A is overex-
pressed in prostate tumors and that high 
JMJD2A expression correlates with increased 
Gleason score and metastasis [14, 15]. 
Furthermore, transgenic mice that prostate-
specifically overexpress JMJD2A develop pros-
tatic intraepithelial neoplasia, demonstrating 
that JMJD2A overexpression is an underlying 
cause for the initiation of prostate cancer [15]. 
Mechanistically, JMJD2A can interact with two 
prostate cancer relevant proteins, the andro-
gen receptor and ETV1 (ETS variant 1), and 
affect their transcriptional potential [15, 16]. 
The androgen receptor is abnormally activated 
or overexpressed in prostatic malignancies and 
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a prime target for their therapy [17]. Like the 
androgen receptor, ETV1 is a DNA-binding tran-
scription factor highly regulated through post-
translational modification [18-23] and overex-
pressed in about 5-10% of all human prostate 
tumors [24, 25]. Furthermore, ETV1 transgenic 
mice develop prostatic intraepithelial neoplasia 
and combining ETV1 overexpression with com-
plete loss - but not with inactivation of just one 
allele - of the PTEN tumor suppressor leads  
to adenocarcinomas [26-28]. In addition, joint 
overexpression of ETV1 and JMJD2A combined 
with PTEN haplo insufficiency results in the pro-
gression of prostatic intraepithelial neoplasia 
to the carcinoma stage, indicating that the 
JMJD2A-ETV1 complex has oncogenic proper-
ties [15].

PSMD10 (proteasome 26S subunit, non-
ATPase, 10), also called gankyrin, was originally 
cloned as a component of the 26S proteasome 
[29, 30]. In particular, PSMD10 binds to the S6 
ATPase of the proteasome, yet this interaction 
seems to be not stable and suggests that 
PSMD10 may interact with other protein com-
plexes aside from the proteasome [31]. The 
yeast ortholog of PSMD10 is not required for 
cell growth and viability, implying that mamma-
lian PSMD10 might not be an essential protein 
[30, 31]. Notably, PSMD10 is an oncoprotein 
and appears to play an important role in liver 
cancer. It is overexpressed in hepatocellular 
carcinomas, predicts a poor outcome and is 
required for efficient liver cancer cell growth 
and invasion in vitro as well as tumorigenicity 
and metastasis in vivo [32-34]. However, the 
role of PSMD10 in prostate cancer has 
remained unexplored. In this report, we 
describe that PSMD10 is one downstream 
effector of the histone demethylase JMJD2A, 
thereby implicating PSMD10 as a potential pro-
moter of prostate tumorigenesis.

Materials and methods

Knockdown experiments

All shRNAs were cloned into pSIREN-RetroQ 
(Clontech) and targeted the following sequenc-
es: PSMD10 #1, 5’-TCGAATAACTGTTGAGATT-3’; 
PSMD10 #2, 5’-GAGAATGGTGGAAGGTTAA-3’; 
YAP1, 5’-AGTAATAGTTGGTTGTGAA-3’; JMJD2A 
#3, 5’-GTTGAGGATGGTCTTACCT-3’; JMJD2A #5, 
5’-GGACTTAGCTTCATAACTA-3’. ETV1 shRNA #1 
and shRNA #5 were described before [35]. The 

resulting retroviral vectors were cotransfected 
with two packaging plasmids encoding VSVG 
and Gag-Pol into human 293T cells, which were 
grown in DMEM media supplemented with 10% 
fetal bovine serum [36], by the calcium phos-
phate coprecipitation method [37, 38]. Result- 
ing virus was harvested as described before 
[39]. Then, LNCaP cells were infected with ret-
rovirus for two or three times and selected by 
incubation with 1 µg/ml puromycin [40].

RT-PCR

Total RNA was isolated from LNCaP cells with 
Trizol (Invitrogen) and reverse transcribed utiliz-
ing pd(N)6 random primers. Then, PSMD10 
mRNA levels were quantitated using iQ SYBR 
Green Supermix (BioRad) and employing a real-
time PCR machine. PSMD10 mRNA levels were 
normalized to those of GAPDH by the compara-
tive cycle time method [41]. Primers specific for 
PSMD10 were 5’-GGCCGATAAATCCCTGGCTA-3’ 
and 5’-CAGGCTAAGTGTAGAGGAGTG-3’ (yielding 
a 459 bp product), while primers for amplifying 
a 226 bp GAPDH cDNA fragment were 5’- 
GAGCCACATCGCTCAGACACC-3’ and 5’-TGACAA- 
GCTTCCCGTTCTCAGC-3’.

Western blotting

Protein extracts were run on SDS polyacryl-
amide gels [42], proteins transferred to PVDF 
membrane (Millipore) and then challenged with 
antibodies [43]. Next, secondary antibodies 
coupled to horseradish peroxidase were 
employed for incubation of the membranes 
[44] and signals detected with enhanced che-
miluminescence and exposure to film [45].

Immunohistochemistry

A human tissue microarray encompassing 31 
matching normal and cancerous prostate tis-
sue cores (AccuMax A302IV, slide #139) was 
treated for 20 min with Bond Epitope Retrieval 
Solution I and then stained with a Leica Bond-III 
apparatus. Mouse monoclonal PSMD10 anti-
body was from Santa Cruz Biotechnology 
(gankyrin 3A6C2, sc-101498) and employed at 
a dilution of 1:100. Staining intensity was 
scored on a scale of 0-3, while a score of 1-4 
was employed to determine the percentage of 
stained cells. The final staining index was calcu-
lated as the product of these two scores. Since 
the tissue microarray contained two cores for 
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tumor tissue, but only one core for normal tis-
sue, the staining index for tumor tissue was 
defined as the average from each pair of tumor 
cores. For staining of mouse tissue derived 
from syngeneic wild-type and JMJD2A trans-
genic mice [15], 40 min of treatment with Bond 
Epitope Retrieval Solution I was followed by 
staining with rabbit polyclonal PSMD10 anti-
bodies (Santa Cruz Biotechnology, gankyrin 
H-231, sc-8991) at a 1:100 dilution.

Cell growth assay

LNCaP cells stably expressing shRNA or 
HA-tagged PSMD10 (or empty vector pQCXIH) 
were seeded into 96-wells at a density of 3000 
cells per well [46]. Then, cells were grown for 
the indicated number of days, after which 
growth was determined with the PrestoBlue 
cell viability kit (Invitrogen) by measuring fluo-
rescence at 590 nm.

Statistical analysis

Statistical tests are described in the respective 
figure legends. R values are Pearson correla-
tion coefficients. A P value of less than 0.05 
was considered statistically significant.

Results

Stimulation of PSMD10 expression by JMJD2A 
and ETV1

To understand the physiological role of the his-
tone demethylase JMJD2A and its interaction 
partner ETV1, we previously performed mRNA 
microarray experiments with LNCaP prostate 
cancer cells in order to detect genes commonly 
regulated by JMJD2A and ETV1 [15]. Analysis of 
these microarray data revealed that among the 
256 genes becoming downregulated by > 1.4-
fold upon JMJD2A shRNA expression was 

Figure 1. PSMD10 as a target of JMJD2A. A: Analysis of published microarray experiments (Gene Expression Om-
nibus GSE47750) with LNCaP prostate cancer cells. Shown are changes (compared to control shRNA) of PSMD10 
mRNA levels upon downregulation of JMJD2A or ETV1. B: Quantitative RT-PCR results for PSMD10 mRNA after 
downregulation of JMJD2A or ETV1 in LNCaP cells. Shown are averages (n = 3) with standard deviations. Statistical 
significance was determined by one-way ANOVA with Bonferroni correction. C: Corresponding western blots. D: Im-
munohistochemical staining for PSMD10 in the prostate from a wild-type or JMJD2A transgenic mouse.
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PSMD10, yet PSMD10 did not meet the criteri-
on of > 1.4-fold downregulation with ETV1 
shRNA (Figure 1A). However, when we per-
formed quantitative RT-PCR to validate the 
microarray data, we found that both ETV1  
and JMJD2A shRNAs led to more than 1.8- 
fold downregulation of PSMD10 mRNA levels 
(Figure 1B), indicating that the microarray data 
underestimated the degree of PSMD10 regula-
tion by JMJD2A and ETV1. Altogether, these 
data suggest that PSMD10 transcription is reg-
ulated by both JMJD2A and ETV1.

Since mRNA levels are not always indicative of 
protein levels, we explored if PSMD10 protein 
levels were also reduced upon either JMJD2A 
or ETV1 downregulation in LNCaP cells. We 
indeed observed that this was the case (Figure 
1C). In addition, we performed immunohisto-
chemistry on prostates from transgenic mice 
that prostate-specifically overexpressed JMJD- 
2A [15] and found robustly enhanced PSMD10 
protein expression in JMJD2A transgenic com-
pared to syngeneic wild-type mice (Figure 1D). 
This supports the notion that JMJD2A overex-
pression results in a concomitant increase of 
PSMD10 protein levels.

We then interrogated PSMD10 expression in a 
collection of 3949 mRNA microarrays repre-
senting a multitude of different tissues and 
experimental conditions [47]. In this huge data-
set, we observed a strong positive correlation 
between JMJD2A and PSMD10 mRNA expres-
sion levels (Figure 2A). An even stronger corre-
lation existed between ETV1 and PSMD10 
(Figure 2B). Collectively, these data indicate 
that PSMD10 gene transcription is regulated by 
JMJD2A and ETV1 not only in the prostate but 
rather globally.

PSMD10 overexpression in human prostate 
tumors

Since both JMJD2A and ETV1 are highly impli-
cated in prostate tumorigenesis, we next ana-
lyzed the expression of PSMD10 in human 
prostate tumors. First, we employed published 
microarray data [48] and found that PSMD10 
mRNA levels correlated with those of JMJD2A 
in human prostate tumors (Figure 3A), further 
supporting the notion that JMJD2A stimulates 
PSMD10 expression. Possibly due to the fact 
that ETV1 is only overexpressed in 5-10% of 
prostate tumors [24, 25], we did not detect  
any significant correlation between ETV1 and 
PSMD10 in this microarray data set because 
the number of samples (n = 85) might be too 
low. Analysis of other published microarray 
data [49, 50] indicated that PSMD10 mRNA 
levels correlate with the Gleason score (Figure 
3B and 3C); please note that a Gleason score 
of 6 or less implies a good prognosis, while 
Gleason scores above 6 are associated with 
progressively poorer outcome. This suggests 
that PSMD10 expression increases with the 
aggressiveness of prostate cancer and may 
thus contribute to the transition from indolent 
to advanced disease.

To complement the bioinformatics analysis, we 
also stained a human tissue microarray con-
taining matching normal and cancerous pros-
tate tissues. We found that PSMD10 protein 
expression was highly overexpressed in the 
vast majority of human prostate tumors (Figure 
4A). Moreover, since we previously stained the 
same tissues with JMJD2A antibodies [15], we 
were able to correlate PSMD10 with JMJD2A 
staining. A highly significant correlation 
between JMJD2A and PSMD10 protein levels 

Figure 2. Global correlation between PSMD10 and either JMJD2A or ETV1 mRNA expression. A: PSMD10 versus 
JMJD2A mRNA levels. R = 0.12, P = 2.3×10-9. Trendline is indicated in red color. B: Likewise for PSMD10 and ETV1. 
R = 0.42, P = 10-110.
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was thereby uncovered (Figure 4B), which fur-
ther corroborates that PSMD10 expression is 
stimulated by JMJD2A. Unfortunately, we could 
not find a suitable ETV1 antibody for immuno-
histochemistry, therefore not allowing us to 
assess if likewise ETV1 and PSMD10 protein 
levels might be correlated in prostate tissue.

PSMD10 as a cell growth regulator

To determine if and how PSMD10 affects pros-
tate cancer cells, we downregulated PSMD10 
with two different shRNAs in LNCaP cells. 
Growth of these cells was then assessed and 
found to be significantly reduced after six days 

(Figure 5A). We also overexpressed PSMD10 in 
LNCaP cells, yet this did not result into any 
change of cell growth (Figure 5B), possibly 
because endogenous PSMD10 amounts were 
already at saturating levels. Regardless, our 
experiments demonstrate that PSMD10 is a 
positive regulator of growth in LNCaP prostate 
cancer cells, which is consistent with its origi-
nal identification as an oncoprotein [32].

Cooperation between PSMD10 and YAP1

We previously identified the YAP1 gene, which 
encodes for a transcriptional cofactor in the 
Hippo signaling pathway [51], as a target of the 

Figure 3. PSMD10 mRNA levels in 
human prostate cancer. A: Analysis 
of published microarray data [48] 
with cBioPortal (www.cbioportal.
org) showing a correlation between 
JMJD2A and PSMD10 mRNA levels 
(n = 85). R = 0.47, P = 2.9×10-6. B: 
Increased PSMD10 mRNA levels in 
Gleason score 8 prostate tumors; P 
= 0.027 (Student’s t-test). Shown are 
log2-transformed mRNA levels (me-
dian and respective 25-75 percentile 
range). Data were derived from pub-
lished microarray data [49] and ana-
lyzed with Oncomine (www.oncomine.
org). C: Analogous; P = 4.5×10-6 (Stu-
dent’s t-test). Data were derived from 
published microarray data [50].
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JMJD2A-ETV1 complex [15]. Interestingly, 
Ingenuity pathway analysis of our published 
microarray data [15] revealed that PSMD10 
and YAP1 participate in a common network of 
JMJD2A-regulated genes in LNCaP prostate 
cancer cells (Figure 6A). This prompted us to 
study if PSMD10 and YAP1 are coregulated on 
a global scale. And indeed, there was a signifi-
cant correlation between PSMD10 and YAP1 
mRNA levels across 3949 microarray data sets 
(Figure 6B).

We then asked the question if this coregulation 
of PSMD10 and YAP1 might be biologically rel-
evant. To this end, we downregulated either 
PSMD10 or YAP1 alone in LNCaP prostate can-
cer cells, or both together. Efficient reduction  
of PSMD10 and/or YAP1 protein levels was 
obtained with our shRNAs (Figure 6C). Then, we 
examined how this would affect LNCaP cell 
growth. As expected from published data for 
YAP1 [15, 52] or from the results for PSMD10 
shown in Figure 5A, individual depletion of 
YAP1 or PSMD10 reduced prostate cancer cell 
growth (Figure 6D). Excitingly, joint downregula-
tion of YAP1 and PSMD10 resulted in a signifi-
cant further reduction of cell growth, indicating 
that YAP1 and PSMD10 cooperate in facilitat-
ing LNCaP cell growth.

Discussion

In this report, we provide evidence that PSMD10 
expression is regulated by the JMJD2A histone 

LNCaP prostate cancer cells, it is unclear 
whether or not this involves the direct binding 
of these two transcription factors to the 
PSMD10 gene promoter and its subsequent 
stimulation. For instance, we cannot exclude an 
indirect mechanism by which JMJD2A and ETV1 
upregulate expression of another transcription 
factor that then binds to and stimulates the 
PSMD10 promoter. Regardless, our discovery 
that JMJD2A and ETV1 expression levels are 
globally correlated with those of PSMD10 sug-
gests that PSMD10 is not only an effector of 
JMJD2A and ETV1 in prostate cancer cells, but 
potentially in many other cancers. In particular, 
this may be relevant in breast cancer, since 
overexpression or dysregulation of JMJD2A and 
ETV1 has been reported for breast tumors [53-
57] and overexpressed PSMD10 appears to 
promote especially the metastasis of breast 
cancer cells [58, 59].

Interestingly, PSMD10 is also overexpressed in 
human cholangiocarcinomas and a predictor 
for overall survival [60]. Likewise, YAP1, which 
is a versatile transcriptional regulator [61, 62], 
was reported to be overexpressed in this can-
cer and phenocopied PSMD10 with regard to 
its ability to promote tumorigenesis and metas-
tasis [63]. Similar to our data showing a correla-
tion between PSMD10 and YAP1 mRNA levels, 
there was significant coexpression of YAP1 and 
PSMD10 at the protein level in cholangiocarci-
nomas. Further, YAP1 and PSMD10 were each 

Figure 4. Overexpression of PSMD10 in human prostate tumors. A: Nuclear 
PSMD10 staining in 31 matching normal prostates and tumors was graded on 
a scale of 0-12. Staining was discriminated between grades 0-8 and > 8; P 
= 1.4×10-16 (two-tailed Fisher’s exact probability test). B: Correlation between 
nuclear JMJD2A and PSMD10 staining across the 31 matching normal and can-
cerous prostate specimens. R = 0.87, P = 5.1×10-21. Trendline is indicated in 
red color.

demethylase, which likely 
does so in conjunction with 
the ETV1 transcription fac-
tor. Furthermore, we show 
for the first time that 
PSMD10 is overexpressed 
in prostate tumors and its 
expression appears to cor-
relate with the severity of 
the disease. Lastly, our 
data have uncovered that 
PSMD10 is a growth pro-
moting protein in prostate 
cancer cells and may coop-
erate with YAP1 in this 
regard.

Although our findings dem-
onstrate that JMJD2A and 
ETV1 can stimulate the 
expression of PSMD10 in 
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able to stimulate the expression of the other, 
which seems to occur through indirect tran-
scriptional mechanisms [63]. However, this is 
different from our results in LNCaP cells, since 
there was no impact on the expression of the 
respective other protein when YAP1 or PSMD10 
were downregulated (see Figure 6C). Hence, it 
may be that there are cell type-specific differ-
ences in how transcription of the YAP1 and 
PSMD10 genes are regulated.

Several mechanisms by which PSMD10 con-
tributes to liver oncogenesis have been 
described. These include the activation of the 
CDK4 protein kinase, possibly by blocking the 
interaction of the cell cycle inhibitor p16 with 

CDK4, which leads to enhanced phosphoryla-
tion of the retinoblastoma tumor suppressor 
and its subsequent degradation [31, 32, 64]. 
Likewise, the stability of the p53 tumor sup-
pressor is compromised by PSMD10, since 
PSMD10 binds to the MDM2 ubiquitin ligase 
and thereby increases MDM2-mediated ubiqui-
tylation of p53 [65]. Further, PSMD10 facili-
tates the degradation of the transcription fac-
tor C/EBP when it is phosphorylated on S193, 
which promotes carcinogen-induced liver 
tumorigenesis [66]. On the other hand, PSMD10 
protects OCT4, a transcription factor playing 
important roles in stem cell maintenance, from 
degradation by sequestering WWP2, an E3 
ligase normally targeting OCT4 for proteasomal 

Figure 5. Role of PSMD10 in cell proliferation. A: Downregulation of PSMD10 with two different shRNAs in LNCaP 
prostate cancer cells reduces their growth. Shown are averages (n = 3) with standard deviations. *, P < 0.0001 
(one-way ANOVA with Bonferroni correction). Corresponding western blots are shown on the top. B: Analogous, over-
expression of HA-tagged PSMD10 in LNCaP cells. Arrow points at the endogenous PSMD10 protein, which runs at a 
slightly lower apparent molecular weight than the ectopic HA-tagged PSMD10.
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destruction. The consequence is an expansion 
of tumor-initiating cells in the liver, which is pre-
dicted to aggravate hepatocarcinogenesis [67]. 
It remains to be studied if these or other mech-
anisms pertain to PSMD10’s function as a 
growth promoter in prostate cancer cells.

Despite the fact that PSMD10 is an established 
oncoprotein, there are currently no drugs avail-
able to inhibit its activity. Our study implicates 
that alternative routes of reducing PSMD10 
activity should be considered, namely the inhi-
bition of either JMJD2A or ETV1 since that 
would reduce PSMD10 expression. In fact, mul-
tiple small molecule drugs have been devel-
oped to inhibit the enzymatic activity of the his-
tone demethylase JMJD2A, but their utility has 

not yet been tested in the clinic [68-75]. 
Similarly, some progress has been made to 
develop inhibitors of the ETV1 transcription fac-
tors [76, 77]. Another possibility of counteract-
ing PSMD10 overexpression may entail target-
ing the YAP1 protein, since YAP1 might be stim-
ulating PSMD10 transcription in some cell 
types and/or the co-overexpressed YAP1 pro-
tein could aggravate the oncogenic impact of 
PSMD10. Similar to JMJD2A and ETV1, poten-
tial inhibitors of YAP1 were discovered, but 
have not yet been clinically tested for cancer 
therapy [78, 79].

In conclusion, we have identified PSMD10 as a 
downstream effector of the histone demethyl-
ase JMJD2A and the DNA-binding ETV1 protein. 

Figure 6. Relationship between PSMD10 and YAP1. A: Ingenuity pathway analysis revealing a gene network con-
taining both YAP1 and PSMD10 upon JMJD2A downregulation in LNCaP cells. B: Global coexpression of PSMD10 
and YAP1 mRNA. R = 0.44, P = 4.6×10-114. Trendline is indicated in red color. C: Joint downregulation of YAP1 and 
PSMD10 in LNCaP prostate cancer cells. Shown are indicated western blots. D: Corresponding cell growth assay. 
Averages (n = 3) and standard deviations are depicted. *, P < 0.0001 (one-way ANOVA with Bonferroni correction).
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Hence, together with YAP1, which is likewise 
regulated by these two oncogenic transcription 
factors, PSMD10 overexpression may contrib-
ute to tumor formation in the prostate and 
other organs.
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