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Review Article
The role of low-intensity pulsed ultrasound  
on bone and soft tissue healing
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Abstract: Low-intensity pulsed ultrasound (LIPUS) is a widely used therapy method for bone and soft tissue injury 
patients. However, the exact mechanism is not very clear until now. In this review, we summarized the possible 
mechanisms of LIPUS therapy on bone-tendon junction (BTJ), stem cells, muscle injury, wounds, bone healing, 
osteoporotic fracture, and osteoarthritis. Once the underlying mechanism of LIPUS is clarified, many patients will 
obtain benefits from this treatment method.
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Introduction

Ultrasound is widely applied for clinical imaging 
examination purposes, which is also a kind of 
physiotherapy to treat many bone and soft tis-
sue diseases. The range of ultrasound intensi-
ties for imaging purpose is 0.05-0.5 W/cm2. 
The surgical and therapeutic applications of 
ultrasound intensity range is 0.2-100 W/cm2 
[1]. Low-intensity pulsed ultrasound (LIPUS),  
at intensity of 30 mW/cm2, is a widely used,  
and Food and the Drug Administration (FDA) 
approved therapy method for promoting bone 
healing [2, 3]. LIPUS is a noninvasive modality, 
transmitting mechanical energy transcutane-
ously into biological tissues [4]. Consumption of 
the ultrasound generated mechanical energy 
lies on the attenuation and absorption of the 
transmitted tissue. LIPUS offers an instant 
mechanical stimulation in promotion of miner-
alization, endochondral ossification, and osteo-
blast proliferation [5-7]. 

In the process of LUPUS treatment for bone 
fracture, the application angle also played a key 
role in the therapy process. Chung SL et al 

reported that among the angles of 0°, 22°, 35° 
and 48°, the LUPUS transmission at 35° dem-
onstrated the best clinical effect on fracture 
healing [8]. The same therapy method which 
was applied in the different stage of disease 
might produce different effect for the patients. 
Therefore, it was important to select appro- 
priate stage of disease to implement LUPUS 
treatment. Fu SC et al reported that LIPUS 
increased collagen synthesis via up-regulating 
mRNA expression level of COL1A1 and COL3A1, 
and decreased matrix remodeling by down-reg-
ulating mRNA expression level of decorin and 
biglycan, demonstrating that LIPUS ought to be 
performed in the granulation stage but not in 
the remodeling stage in order to accelerate ten-
don healing process [9]. Although LIPUS stimu-
lation at 30 mW/cm2 is an approved therapy 
method by FDA for improving healing process  
in bone fractures and non-unions, Angle SR et 
al reported that the dose of 2 mW/cm2 could 
exert higher mineralization effect on rat bone 
marrow stromal cells than 30 mW/cm2 after five 
days LUPUS therapy, indicating that the most 
appropriate intensity of LIPUS for bone healing 
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might be adjusted in the early stage following 
bone fracture if this result was proved to be 
true in vivo [3]. As for the mechanism of thera-
peutic effect of low intensity ultrasound, Man J 
et al reported that continuous kHz ultrasound 
accelerated scratch-wound closure via cell 
migration while pulsed MHz promoted wound 
closure through both cell proliferation and 
migration [10].

Thus, we review the related available literature 
on the role of low-intensity pulsed ultrasound 
on bone and soft tissue healing, investigating 
its effect both at in vivo and in vitro level, and 
summing up the evidence available until now.

LIPUS on bone-tendon junction (BTJ)

After trauma and reconstructive surgeries, 
bone-tendon junction (BTJ) repair needed a 
long time immobilization which was related to 
postoperative weak knee. Lu MH et al report- 
ed that low intensity pulsed ultrasound obvi-
ously promoted newly formed bone at the  
BTJ healing interface and up-regulated stiff-
ness of the junction tissues with higher bone-
mineral density, indicating that low intensity 
pulsed ultrasound might be an effective thera-
py for BTJ injury [11]. LIPUS and/or functional 
electrical stimulation (FES) treatments signifi-
cantly increased the area and bone mineral 
content of new bone. The failure load and ulti-
mate strength of on patella-patellar tendon 
(PPT) complex were also highly improved in  
the three treatment groups. More new bone 
formed and higher tensile properties were 
showed in the LIPUS + FES group compared 
with the LIPUS or FES alone groups [12]. 
Jeremias Júnior SL et al [13] reported that Low-
intensity pulsed ultrasound which was trans-
mitted by a conventional ultrasound device 
could shorten the time for the calcaneus ten-
don healing process in rats, in accordance with 
the results of mechanical stress testing. The 
low-intensity pulsed ultrasound increased bone 
mineral density and osteoblast activity at the 
tendon-bone interface, involving in protein 
expression increase of VEGF, RUNX2 and 
Smad4, indicating that ultrasound therapy 
might develop an alternative method to treat 
patients following reconstructive surgeries 
involving the tendon-bone interface [14]. The 
possible molecular mechanism of the repair of 
acute ruptured Achilles tendon by LIPUS might 
involve in promotion of COX-2 and EP4 and 
increase of TGFbeta1 followed by collagen I and 
III [15].

LIPUS on stem cells

LIPUS promoted osteogenesis of adipose stem 
cells (ASCs), which were related to mRNA levels 
up-regulation of transcription factor 2, osteo-
pontin and osterix, as well as protein levels pro-
motion of runt-related transcription factor 2 
and osteopontin, indicating that LIPUS promot-
ed osteogenesis of ASCs [16]. 

LIPUS together with intra-articular injection of 
Mesenchymal Stem Cells (MSCs) could pro-
mote sagittal condylar development in left tem-
poromandibular joint of rat and LIPUS treat-
ment alone might promote sagittal condylar 
development. However, MSC application alone 
did not influence sagittal condylar growth [17]. 
Murine ASC adipogenesis was enhanced via 
mRNA promotion of PAR-γ1 and APN, as well as 
protein up-regulation of PPAR-γ, indicating that 
LIPUS could exert beneficial effects on adipose-
derived stem cells [18]. The exogenous mesen-
chymal stem cells (MSCs) demonstrated an 
obviously faster remodeling for fracture healing 
in rat model, which could be enhanced by low 
intensity pulsed ultrasound (LIPUS). The combi-
nation of MSCs and LIPUS might be used to 
deal with bone delayed union or nonunion [19]. 
LIPUS simulated the effects of syndecan-4 
engagement to advance Rac1 activation and 
focal adhesion formation to accelerate cell 
repair process, indicating the possible signal 
pathway involved in the molecular effect of 
ultrasound in culture [20]. Kumagai K et al 
reported that LIPUS promoted the homing of 
circulating osteogenic progenitors to the site of 
femoral fracture which might contribute to new 
bone formation [21].

LIPUS on muscle injury and wounds

LIPUS decreased the wound width and 
unhealed areas in palatal excisional wounds of 
rats, indicating that LIPUS was beneficial for 
epithelial and connective tissue closure [22]. 
Rennó AC et al reported that both LLLT and US 
therapies might exert beneficial effects on 
injured skeletal muscle, but LLLT demonstrated 
better beneficial effects on muscle metabolism 
following muscle injury in rats [23]. LIPUS treat-
ment led to higher proliferative rate and num-
ber of myoblastic cell, together with increase in 
myogenin and actin proteins of cells, and myofi-
bers, fast-twitch of gastrocnemius muscle of 
the left leg in mice, indicating that LIPUS could 
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promote muscle healing following laceration 
injury [24].

LIPUS on bone healing

As for the mechanism of clinical effect of ultra-
sound for bone fracture, low-intensity pulsed 
ultrasound obviously promoted the rate of bone 
union and volumetric bone mineral density, but 
this effect was abolished in sciatic neurectomy 
rats, indicating that the sensory innervation of 
bone significantly took part in sensing and 
responding to ultrasound treatment in rats 
[25]. LIPUS cooperated with alendronate to sig-
nificantly promote BMD in aged rats following a 
unilateral proximal tibial osteotomy [26]. As for 
the dose of LIPUS as treatment for tissue repair, 
Fung CH et al proved that LIPUS with intensity 
of 30 mW/cm2 could promote bone volume and 
woven bone ratio in comparison with control 
group, while LIPUS with intensity of 15 mW/cm2 
could not, indicating that the appropriate inten-
sity selection was crucial in the therapeutic 
effect of LIPUS [27]. 

LIPUS increased secretion of PGE (2) and NO 
from MLO-Y4 cells at the time within 24 h fol-
lowing LIPUS stimulation, which might be the 
mechanism of LIPUS controlling proliferation 
and differentiation of osteoblasts [28]. In addi-
tion to accelerate the process of bone fracture, 
LIPUS also could significantly alleviate the peri-
prosthetic osteolysis due to polyethylene in the 
distal part of the femur canal of rabbit model 
[29]. Ogawa T et al reported that LIPUS togeth-
er with bone marrow transplantation was apt to 
increase new bone formation [30]. As for com-
paring the effect of bone repair, Oliveira P et al 
reported that both Ultrasound (US) and low-
level laser therapy (LLLT) advanced the process 
of bone repair in rats, and there was no signifi-
cant difference of accelerating bone healing 
ability between the two methods [31]. The 
ultrasound therapy promoted the expression 
level of osteocalcin at 7 and 13 days following 
upper third of the tibia excision surgery, indicat-
ing that osteocalcin was apt to involve in the 
bone healing promotion mechanism by ultra-
sound [32]. Katano M et al reported that LIPUS 
shortened the femur fracture healing period 
and endochondral ossification in the process of 
bone healing, involving in endothelial cell migra-
tion and neovascularization near fracture areas 
[33].

Based on the results of three-dimensional 
quantitative micro-CT and morphometric para- 
meters, Tobita K et al reported that LIPUS 
decreased the time length for remodeling of 
callus and promote the mineralization of callus 
in rabbits [34]. According to the results of 
microfocus computerized tomography (micro-
CT) and histologic examination, LIPUS promot-
ed bone reossification of calvarial flat bone 
defects in rat compared to without LIPUS thera-
py [35]. Hui CF et al reported that there were 
osteochondral bridging and endochondral  
ossification between the cartilaginous and 
osseous tissues in LIPUS treatment group fol-
lowing spinal fusion surgery in rabbit, indicating 
that LIPUS was apt to accelerate spinal fusion 
by regulating osteointegration between the 
host bone and implanted materials [36]. 
Fávaro-Pípi E et al reported that LIPUS acceler-
ated bone fracture recovery and promoted 
expression level of osteogenic genes in rats, 
including bone morphogenetic protein 4 
(BMP4), osteocalcin and Runx2, especially at 
the late stage of bone repair [37]. Shakouri K et 
al reported that low-intensity pulsed ultrasound 
significantly increased callus mineral density 
with an insignificant promotion in the fractured 
bone strength [38].

LIPUS on osteoporotic fracture

Cheung WH et al reported that LIPUS promoted 
not only normal fracture healing but also osteo-
porotic fracture healing, and the osteoporotic 
treatment group showed better results in callus 
width, stiffness measurement and response of 
endochondral ossification than normal group in 
closed femoral fracture rats [39]. Cheung WH 
et al reported that LIPUS promoted osteopo-
rotic fracture healing via activating callus for-
mation, angiogenesis and callus remodeling, 
involving up-regulation of Col-1, bone morpho-
genetic protein-2, vascular endothelial growth 
factor and osteoprotegerin [40]. 

Ferreri SL et al reported that LIPUS improved 
load bearing characteristics, including trabe- 
cular mechanical strength and apparent level 
elastic modulus in estrogen deficient rat mo- 
del of osteopenia, indicating that LIPUS might 
be an alternative therapy method for osteope-
nia [41]. In order to compare the effect of  
promoting bone healing in rabbits with dis- 
raction osteogenesis between LIPUS and low-
level laser therapy (LLLT), Kocyigit ID et al 
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reported that LIPUS increased the mean BMD 
values at both 30 and 60 days postoperatively 
while LLLT just promoted the mean BMD values 
at 60 days postoperatively, demonstrating that 
both LIPUS and LLLT were helpful for distrac-
tion osteogenesis treatment [42]. As we knew, 
diabetes mellitus might delay the bone healing 
process and even lead to nonunion. Therefore, 
the intervention which could accelerate bone 
repair was required for the patients with diabe-
tes mellitus following bone fracture. For the 
patients with type 1 diabetes mellitus (DM), 
LIPUS promoted the growth factor expression, 
the formation of cartilage and neovasculariza-
tion in Wistar rats, indicating that LIPUS might 
exert beneficial effects on bone fracture 
patients with risk factors which might delay 
bone healing [43].

LIPUS on osteoarthritis

Gurkan I et al reported that PLIUS alleviated 
surface irregularities, decreased matrix loss 
degree with the inhibition of TGF-beta1 produc-
tion, and attenuated the proceeding of carti-
lage degeneration in Hartley guinea pigs, which 
might be an alternative therapy method for 
human osteoarthritis [44].

LIPUS down-regulated the Mankin scores and 
the expression level of MMP-13 in rabbit articu-
lar cartilage of animal model of Osteoarthritis 
[45] Low-intensity pulsed ultrasound (LIPUS) 
decreased MMP13 mRNA expression in cul-
tured chondrocytes and down-regulated the 
mRNA expression of MMP13 and MMP1 in 
articular cartilage explants, indicating that 
LIPUS could inhibit inflammation via regulating 
MMP mRNA expression so as to protect articu-
lar cartilage [46]. LIPUS together with dimethyl-
sulfoxide gel could reduce JNK phosphorylation 
and protein expression levels of TNFα, IL-1β, 
NFκB, inhibiting inflammatory response follow-
ing traumatic muscle injury [47].   

As for the role of cyclooxygenase-2 (COX-2) in 
the process of LIPUS treatment on endochon-
dral bone healing, Naruse K et al reported that 
LIPUS significantly shortened the endochondral 
bone remodeling period for wild-type mice, but 
LIPUS could not exert such effect on cyclooxy-
genase-2 knockout mice, demonstrating that 
COX-2 played a key role in the process of LIPUS 
treatment on endochondral bone healing [48]. 
The hyaluronan (HA) played an important ben-

eficial role for normal synovial joint function. 
LIPUS intervention promoted the level of HA 
synthase (HAS) 2,3 which activated HA secre-
tion and reduced the level of hyaluronidase 
(HYAL) 2 which inhibited HA secretion, resulting 
in cumulation of high-molecular weight HA, indi-
cating that LIPUS might be an effective therapy 
method for inflammatory joint diseases, for 
instance osteoarthritis [49].

Li X et al reported that LIPUS therapy acceler-
ated cartilage repair in rabbit knee osteoarthri-
tis via reducing the expression level of p38, 
ERK1/2 and MMP-13 [50]. LIPUS could obvi-
ously depress the proliferation of HIG-82 which 
was stimulated by proinflammatory cytokines. 
Moreover, LIPUS decreased histological lesions 
in knee joints of MRL/lpr mice. Therefore, 
LIPUS tended to be a possible treatment for 
inflammatory knee joint diseases [51]. 

In conclusion, LIPUS is used widely in orthope-
dic practice, including bone and soft tissue 
healing process. More clinical trials are required 
to confirm the effect of LIPUS on human being. 
If the therapeutic effect is proved to be true 
and reliable, many patients with orthopedic dis-
eases will achieve benefits from LIPUS.
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