Original Article Analyzing the surgical resection of lung cancer

Jiaxin Wen^{1*}, Xiaobin Hou^{1*}, Ruilin Wang^{2*}, Yan Chang³, Kaifei Wang⁴, Xidong Ma⁵, Jieyin Wang⁵, Bomin Ma⁵, Zunliang Ma⁵, Zhiqiang Xue¹, Xiangyang Chu¹, Xizhou Guan⁴

¹Department of Thoracic Surgery, Chinese PLA General Hospital, Beijing, China; ²Department of Integrative Medical Center, 302 Military Hospital of China, Beijing, China; ³Department of Respiratory Diseases, General Hospital of The PLA Rocket Force, Beijing, China; ⁴Department of Respiratory Diseases, Chinese PLA General Hospital, Beijing, China; ⁵Department of Geriatrics, Yutai General Hospital, Shandong, China. ^{*}Equal contributors.

Received January 10, 2016; Accepted March 23, 2016; Epub July 15, 2016; Published July 30, 2016

Abstract: *Background*: Lung cancer is the leading cause of cancer deaths worldwide, compounded by late diagnosis. Tumor resection by surgery has been performed for selected lung cancer patients in specialized centers over the last century. Despite encouraging results from case-series reports, there remains a lack of robust clinical analysis of prevalent surgical techniques, especially in cases of pre- and post-operative smokers. The present systematic review and meta-analysis aimed to assess the different surgical techniques, their success rate and the various compounding factors that dictate the success of the intervention. *Methods*: A systematic search was performed using Ovid; Medline & E mbase, EBSCO; CINHAL, PsychINFO & SocINDEX and Cochrane Library databases to identify relevant studies. *Results and conclusions*: The identified studies were too heterogeneous to be combined using a formal meta-analysis. Therefore, a narrative synthesis was performed. Advances in operative and postoperative care have led to a decline in complications; however, mortality rates during the last decades have increased due to incidence of associated co-morbidity. The optimal timing of smoking cessation before lung resection is not known; however, it is highly recommended that lung cancer patients completely quit smoking to enhance the effectiveness of both surgical and chemotherapeutic treatment. There is a need to conduct more methodologically sound studies.

Keywords: Lung cancer, surgical resection, smoking cessation

Introduction

The public health significance of lung cancer is reflected by the fact that this disease is one of the most common cancers in the world and it has a high case fatality rate. In the span of a few decades, lung cancer has gone from being a rare disease to the most common cancer worldwide and the greatest cause of cancer death globally [1, 2]. In 2008, lung cancer accounted for 13% (1.6 million) of the total cases and 18% (1.4 million) of the deaths, worldwide [2]. Non-small cell lung cancer (NSCLC) comprises 80% of all cases. Mortality form lung cancer basically occurs through the metastatic spread of malignant cells to distant organs.

It is estimated that only 10% of new cases of bronchogenic carcinoma are potentially cured by surgery [3]. Surgery is the treatment of

choice for patients with stage I-II disease and selected patients with stage IIIA disease. Compared with radiotherapy in early stage disease, surgical treatment is the best alternative [4]. In European countries the proportion of patients with diagnosed lung cancer who undergo surgery for lung cancer varies between 10 and 20% [5, 6]. In the UK the resection rates in some areas are around 10%, but with quick access investigations the rate can easily be increased to 25% [7]. In the United States it is estimated that approximately 25-30% of patients with NSCLC are offered surgery with curative intent [8].

Surgery for tuberculosis formed the basis for lung cancer surgery techniques, but after the introduction of potent drugs for tuberculosis in the 1950's, lung cancer surgery became the major focus in chest surgery [9]. The first successful pneumonectomy was performed in 1933 by Drs. Graham and Singer in the USA [10]. The rate of complications was high duringthe first years, with a reported early mortality of 30% in 1944. The rate of explorative thoracotomy without resection was also high (50%) [11]. By 1940 lobectomy and pneumonectomy were performed regularly for NSCLC with remarkable progress in early surgical results [9]. During the next decades, radical pneumonectomy remained the golden standard, with a relatively low operative mortality, to be replaced in the 1960s by lobectomy as the standard in localized disease, resulting in a better surgical outcome and greaterpulmonary reserve [12].

Despite encouraging results from case-series reports, there remains a lack of robust clinical analysis of prevalent surgical techniques, especially in cases of pre- and post-operative smokers. Therefore, the objective of the current study was to perform a systematic review and meta-analysis aimed to assess the different surgical techniques, their success rate and the various compounding factors that dictate the success of the intervention.

Materials and methods

Search strategy

The following electronic databases were used to identify suitable studies: Ovid; Medline & Embase, EBSCO; CINHAL, PsychINFO & SocI-NDEX and Cochrane Library. These were searched using the following search terms including the Boolean operator "AND": [lung cancer] AND [surgical resection] AND [outcome] AND [smoking] AND [therapy or intervention] AND [adult]. A multi database search was conducted using the above search terms.

Inclusion/exclusion criteria

All papers retrieved by the database and journal searches were examined using the following inclusion criteria: published in peer reviewed journal; study examined data from original research; participants are adults, 18 years and over; study is written in English; study uses quantitative methods and analysis; participants have received surgical resection alone or in combination with adjuvant therapy; outcome measures include psychosocial or quality of life (e.g. depression, anxiety, quality of life dimensions); established or standardized assessment measures are used. Those not meeting the criteria above were excluded from the review. No restrictions were made regarding group size and the use of a control group. This was done to maximize the number of eligible studies.

Data extraction and analyses

Results from all searches were combined and duplicates were removed. The outcomes of the collected manuscripts were synthesized and formed the basis for the meta-analysis, which was done following recommendations from The Cochrane Collaboration and the Quality of Reporting of Meta-analyses guidelines.

Results

It was envisaged that the identified studies were be too heterogeneous to be combined using a formal meta-analysis. Therefore, a narrative synthesis was performed. The results are summarized according to the type of intervention used and outcome measures assessed.

Surgical methods

The standard in lung cancer surgery is open anatomical lobectomy, pneumonectomy orbilobectomy with mediastinal node sampling or dissection (systematic sampling or completedissection) either through a postero-lateral incision or by anterior muscle sparing thoracotomy. This is of importance both for complete removal of the tumor and for precise pathological staging for decision-making concerning adjuvant therapy, as well as for possible therapeutic benefit. As shown in Table 1, characteristics of the enrolled studies in lung cancer surgery were sumerised in general. Limited surgical resections in the form of segment resection should be considered in cases of poor pulmonary reserve [13, 14]. Japanese studies of limited resection with hilar lymphadenectomy for lesions smaller than 2 cm in diameter have shown five-year survival rates comparable to those of lobectomies [13]. However, lobectomy stillremains the treatment of choice for nonsmall cell lung cancer (NSCLC) because of the lower risk for local recurrencethan has been shown for limited resection [15, 16], even among patients with T1 tumors (increased mortality) [17]. Also, the operative risk is lower with lobectomy than with pneumonectomy, but the

Researcher	Country	Year	Study design	Disease and stage	Lob (n)	Sublob (n)	Reasons for limited resection
Ginsberg RJ, et al	America	1995	RCT	NSCLC T1N0 IA	125	122 (82 S, 40 W)	Intentional
Landreneau RJ, et al	America	1997	RS	NSCLC T1NOMO IA	117	102 (102 W)	Compromised
Kodama K, et al	Japan	1997	RS	NSCLC T1N0M0 <2 cm	77	63 (60 S, 3 W)	Intentional and compromised
Wertzel H, et al	Germany	1998	RS	NSCLC stage I	215	36 (S, W)	Compromised
Okada M, et al	Japan	2001	RS/PS	NSCLC T1N0M0 <2 cm	139	70 (70 S)	Intentional
Koike T, et al	Japan	2003	RS	NSCLC stage IA <2 cm	159	74 (60 S, 14 W)	Intentional
Campione A, et al	Italy	2004	RS	NSCLC stage IA	99	21 (21 S)	Compromised
Watanabe T, et al	Japan	2005	PS	NSCLC stage IA <2 cm	57	34 (20 S, 14 W)	Intentional
Kraev A, et al	America	2007	RS	NSCLC stage I	215	74 (74 W)	NR
Sienel W, et al	Germany	2007	RS	NSCLC stage IA	150	49 (49 S)	Compromised
De Giacomo T, et al	Italy	2009	RS	NSCLC stage I	116	36	Compromised
Zhang L, et al	China	2013	RS	NSCLC stage IA <2 cm	28	26 (26 S)	NR
Smith CB, et al	America	2013	RS	NSCLC stage IA	0	1946 (378 S, 1568 W)	NR
Koike T, et al	Japan	2013	RS	NSCLC stage IA	0	328 (216 S, 112 W)	Intentional and compromised
Altorki NK, et al	America	2014	RS	NSCLC stage IA	294	53	NR

Table 1. Characteristics of the enrolled studies in lung cancer surgery

RS, retrospective study; PS, prospective study; RCT, randomized controlled trial; Lob, lobectomy; Sublob, sublobectomy; S, segmentectomy; W, wedge resection; NR, not reported.

Table 2. Characteristics	of the enrolled	studies in	mediastinal	node dissection
--------------------------	-----------------	------------	-------------	-----------------

Researcher	Country	Year	Study design	Disease and stage	nSND (n)	SND (n)	nSND method
Sugi K, et al	Japan	1998	RCT	peripheral NSCLC <2 cm	56	56	S
Izbicki JR, et al	Germany	1998	RCT	resectable NSCLC	93	78	L
Nakanishi R, et al	Japan	1997	RS	NSCLC N2 stage IIIA	0	53	
Keller SM, et al	America	2000	RCT	NSCLC stage II and IIIA	187	186	S
Doddoli C, et al	France	2005	RS	NSCLC stage I	207	207	S
Ma W, et al	China	2013	RCT	NSCLC stage IA	45	45	L
Su X, et al	China	2008	RS	NSCLC stage I	180	180	S
Shapiro M, et al	America	2013	RS	NSCLC N0/N1	88	282	L
Wu Y, et al	China	2014	RS	NSCLC stage I	78	105	S
Okada M, et al	Japan	2006	RS	NSCLC stage I	377	377	L

nSND, lymph nodal sampling and lobe-specific nodal dissection; SND, systematic nodal dissection; S, lymph node sampling; L, lobe-specific nodal dissection.

proportion of patients undergoing pneumonectomy varies from 6-20%, even among those with stage I disease [18, 19]. The completeness of surgery is assessed by frozen sections of resection margins, and further resection is performed if necessary.

Mediastinal surgery

Nodal micro metastasis (N1 and N2) is found in up to 20% of patients with adenocarcinoma of <2 cm in diameter [20]. In the **Table 2**, we summarized the characteristics of the enrolled studies in mediastinal node dissection. In a study concerning patients with localized bronchoalveolar carcinoma smaller than 2 cm in diameter, no such metastases were found [21]. It is reported that 12% of patients with a tumor <1 cm and 16-19% of patients with a tumor size of <3 cm have positive N2 nodes [22, 23]. Some authors postulate that in the light of these findings, complete systematic dissection of mediastinal lymph nodes should be carried out in all patients with resectable lung cancer [23, 24] and with no exception also among patients with clinical stage I disease [25]. Resection of the sentinel node (of lymph node most likely to be positive with respect to the tumor location) seems to be reasonable [26] and if the sentinel node is positive for pathology a complete mediastinal dissection is required for curative resection [26]. Some authors have claimed that complete mediasti-

nal node dissection is associated with improved survival among patients with stage II and IIIA disease [27]. Furthermore, surgically discovered T1-2, N2 disease should be treated with complete systematic mediastinal nodal dissection to improve survival [28]. Other investigators did not find any effect of complete systematic mediastinal lymphadenectomy on survival, either 1) among patients with a tumor smaller than 2 cm in diameter [23, 29], 2) among patients with stage I disease [18], or 3) among all patients with resectable NSCLC, over and beyond the effects of lymph node sampling (resection of only suspicious lymph nodes) [30]. Despite data showing a high rate of N2 disease in small tumors, most surgeons prefer the technique of systematic node sampling, consisting of multiple predetermined levels of sampling (according to the tumor location). This method is safe and effective and may result in lower morbidity and mortality compared to complete systematic nodal dissection in the mediastinum [31]. PET scan plays an important role in mediastinal surgery, as it yields low false negative results and will therefore reduce the need for complete systematic lymph node dissection or sampling among PET negative patients [32].

Other surgical alternatives

Surgery for more advanced disease than stage I-II is controversial. Extended operations forlung cancer are defined as resection of adjacent organs such as the chest wall, diaphragm, pericardium, left atrium, superior vena cava and, in superior sulcus tumors, in the apex of the chest. In such surgery, en bloc resection is advised in order to avoid tumor spillage. The five-year survival after resection of T3 disease, with tumor invasion of the chest wall, is excellent (45%) [33], as long as the lymph nodes are free from tumor spread (NO). After complete resection of a superior sulcus tumor, five-year survival of around 40% can be expected [34]. Lung resection among patients with malignant pleural effusion is notbeneficial for survival, even in the absence of other pleural dissemination and when the effusion is considered as minor [35].

Video assisted thoracoscopic surgery (VATS) was introduced in the early 1990s with the aimof reducing surgical trauma compared with open surgery [36]. There is evidence that this technique when used during lobectomy reduc-

es postoperative pain compared with musclesparing thoracotomy (sparing both the anterior serratus muscle and the latissimusdorsi), butno effects are sustained beyond 3 weeks of surgery [37]. VATS lobectomy does not seem to be contraindicated (according to lymph node sampling) among patients with stage I NSCLC. with a low rate of missed positive lymph nodes compared with complete dissection of mediastinal lymph nodes in open surgery [38]. Preliminary five year survival rates after VATS lobectomy are comparable to results after open surgery [39]. However, some authors warn against the VATS technique on the grounds that a complete mediastinal lymph node dissection is not performed [22], and there is a need for long-term follow-up to determine the recurrence rate [40].

Bronchoplastic resection (bronchial sleeve resection aiming to spare the lung parenchyma) is an alternative to pneumonectomy, particularly among patients with limited pulmonary reserve. The mortality is somewhat higher than after classic lobectomy (0-9%), but it is arelatively safe method in experienced hands [41]. Tracheal sleeve pneumonectomy is a moreaggressive procedure in resection of NSCLC. This approach is used in tumors involving the lower trachea, carina and lung, with surgical mortality of up to 30% and limited five-year survival (about 15%) [42].

Early mortality and morbidity after surgical resection

Advances in operative and postoperative care have led to a decline in complications and mortality rates during the last decades [43-46]. Compared to the high mortality (30%) after pulmonary resections during the 1950s [9], the mortality is now generally lower than 5% [43, 47, 48]. Early mortality (defined as death within the first 30 days postoperatively or within the same period of hospitalization), has ranged from 1.2-4% after lobectomy [43, 48, 49] to 3.2-12% after pneumonectomy [43, 48-51] (with the highest rates after right-sided pneumonectomy [8]).

Since the proportion of older patients (>70 years) has increased in recent years, the incidence of associated co-morbidity has also increased [52]. Furthermore, cardiovascular and chronic obstructive pulmonary disease, in particular, is twice as common among lung cancer patients as in the normal population [53]. It is estimated that 10% of patients undergoing lung cancer surgery have severe concurrent disease [54]. The early mortality was higher in this group than in patients without co-morbidity [50, 54, 55].

There are four potential life-threatening complications of lung resections, namely injury to the major vessels, cardiac arrhythmia, myocardial infarction and contralateral pneumothorax [56]. Intraoperative complications, however, are relatively rare, and postoperative complications more often have serious consequences. These may be directly related to the intervention, such as technical, pulmonary, cardiac, hemorrhagic or septic events, or related to the major operative procedure, such as cardiovascular, gastrointestinal, genitourinary, peripheral vascular, neurological and thromboembolic complications [56]. Complications can be divided into two categories: non-life-threatening and life-threatening disorders, often with more than one etiological factor involved. Most of the morbidity after lung resection consists of pulmonary complications, such as a need for prolonged mechanical ventilation, pneumonia, atelectasis, adult respiratory distress syndrome (ARDS), emphysema and a need for oxygen on hospital discharge [56-58], which may lead to serious morbidity or mortality [57-59]. During the last decades, the rate of complications after lung surgery has been reduced by new anesthetic and surgical techniques and by consideration of the patient's risk factor profile prior to surgery.

Several factors have been identified as influencing the rate of major complications after lung cancer surgery, for example increasing age, gender (male), and pneumonectomy (or extent ofresection) [47, 50, 55, 60-62]. Some authors agree that older age alone should not be a contraindication to pulmonary resection [46, 63, 64], although special care should be observed in selecting patients for such surgery at older ages, in a view of the possibility of comorbidity, especially if pneumonectomy is necessary [52, 65]. Furthermore, weight loss, low serum albumin, low preoperative hemoglobin, preoperative smoking, peripheral vascular disease and hemiplegia are all associated with postoperative mortality and morbidity [47, 49, 62, 66].

To identify patients with reduced lung reserve before lung resection, there are a number of parameters that are measured. Reduced % diffusing capacity of the lung for carbon monoxide (%DL_{co}) [61, 67], low preoperative FEV1% [50, 68], and low predicted postoperative FEV1 [47] have all been postulated to have negative influence on the early outcome. Summarized together as a risk quotient, these factors seem to predict the risk for pulmonary complications better than each individual parameter alone [69]. A poor outcome at preoperative exercise testing has also been shown to correlate with postoperative cardiopulmonary complications [70].

Smoking and surgery

As early as in 1944 it was suggested that smoking prior to surgery, in general, was associatedwith postoperative pulmonary complications [71]. In recent years, some authors have again pointed out the beneficial effect of preoperative smoking cessation on the early outcome of surgery [47, 49, 72]. The optimal duration of smoking cessation before surgery remains unclear, but among patients undergoing coronary artery bypass grafting (CABG), about 2 months without smoking are needed to reduced morbidity after thoracotomy [73]. Little is known about the optimal timing of smoking cessation before lung resection. A recent study showed an association between smoking within one month of pneumonectomy and increasedrisk for pulmonary complications, compared with patients who stopped smoking more thanone month prior to surgery [72]. Smoked pack years preoperatively also correlate to survival after surgery; heavy smokers having a poorer prognosis than those who are not defined as heavy smokers [74]. Of interest also is the finding that those who have stopped smokingbefore surgery are more likely to continue being non-smokers postoperatively [75, 76]. Between 13 and 50% of smokers are expected to continue to smoke after surgery [75-77]. It has also been suggested that persistent smoking during other types of lung cancer therapy (chemotherapy) might lead to a poorer outcome, indicating the importance of smoking cessation among all lung cancer patients [78, 79].

Discussion

Over 150 prognostic factors [80] that influence long-term survival among patients with NSCLC

have been identified. Most of these factors are of limited importance, however, in clinical practice. The factors can be divided into three categories: those related to the tumor, to the patient, and to the treatment.

Tumor stage is the single most important prognostic factor, based on tumor size (T factor), lymph node invasion (N factor) and distant metastases (M factor; generally only MO patients are considered for surgical treatment) [81, 82]. Both T and N factors have an important impact on the prognosis among surgically treated patients [83, 84]. Blood vessel invasion [85, 86], visceral pleura invasion [87] and high serum levels of carcino-embryonic antigen all adversely influence survival [88, 89]. Overall, there appear to be no clear differences in survival by histopathological type [81, 84, 86, 90, 91], but there is some evidence of reduced survival among patients with adenocarcinoma [18, 92]. At least two authors have reported poorer prognoses among patients with adenocarcinoma undergoing pneumonectomy compared with patients with squamous cell carcinoma undergoing this operation, while no differences in survival were found following less extensive resections [93, 94]. These findings are likely to reflect a more aggressive N factor among patients with adenocarcinoma, which underlines the importance of taking tumor cell-type and tumor stage under consideration when comparing the outcome in different histopathological types [84, 93]. There are other molecular biological and proliferation markers that are documented as being risk factors for outcome, many of which are still under investigation [80].

Female sex and younger age (<65 or <70 years) have been postulated to have a protective effect in early stage carcinoma [5, 18, 82, 89, 90, 95], while arteriosclerosis, preoperative anemia, low FEV1 (<35% of predicted) [96] and weight loss prior to surgery negatively influence the prognosis [82, 85, 97]. Severe, but not mild or moderate comorbidity (using the Kapla-Feinstein index for co-morbidity) also affects long-term survival [54].

Overall, pneumonectomized patients tend to have a poorer prognosis than patients undergoing lobectomy [85, 98], although the recurrence rate is similar in the two groups. On the other hand, it has been postulated that there is no significance difference in prognosis between these two surgical alternatives after adjustment for other risk factors [99]. Surgical experience (higher volume clinics and specialists) seems to influence the outcome, and both the long-term survival and early outcome seem to be better with high quality experience [100, 101].

In the future, advanced screening programs might increase the number of patients with early stage disease and more patients could be available for surgery. During the last century, modern lung cancer surgery has evolved from general surgical practice into a thoracic specialty. An increase in the incidence of lung cancer from 1930 prompted pioneers to operate on lung cancers in the absence of other treatment alternatives. Since survival continues to be limited even after complete resection of carcinomas, establishment of more effective adjuvant therapy is needed to improve the prognosis. The role of chemotherapy and of radiation in early stage NSCLC remains unresolved.

Disclosure of conflict of interest

None.

Address correspondence to: Dr. Xizhou Guan, The Department of Respiratory Diseases of Chinese PLA General Hospital, Fuxing Road 28, Beijing, China. E-mail: xizhouguan2010@163.com; Drs. Xiangyang Chu and Zhiqiang Xue, The Department of Thoracic Surgery, Chinese PLA General Hospital, Fuxing Road 28, Beijing, China. E-mail: drchu301@aliyun.com (XYC); xuezhiqiang301@126.com (ZQX)

References

- [1] American Cancer Society. Global Cancer Facts and Figures; 2nd Edition 2008. Available at: http://www.cancer.org/acs/groups/content/ @epidemiologysurveilance/documents/document/acspc-027766.pdf. Pg 15. Accessed September 10, 2012.
- [2] World Health Organization. Cancer fact sheet. http://www.who.int/mediacentre/factsheets/ fs297/en/. Accessed September 11, 2012.
- [3] Nesbitt JC, Putnam JB Jr, Walsh GL, Roth JA, Mountain CF. Survival inearly-stage non-small cell lung cancer. Ann Thorac Surg 1995; 60: 466-72.
- [4] Reif MS, Socinski MA, Rivera MP. Evidencebased medicine in the treatment of non-small cell lung cancer. Clin Chest Med 2000; 21: 107-20, ix.
- [5] Gregor A, Thomson CS, Brewster DH, Stroner PL, Davidson J, Fergusson RJ, Milroy R; Scottish Cancer Trials Lung Group; Scottish Cancer

Therapy Network. Management and survival of patients with lung cancer in Scotlanddiagnosed in 1995: results of a national population based study. Thorax 2001; 56: 212-7.

- [6] Damhuis RA, Schutte PR. Resection rates and postoperative mortality in 7,899 patients with lung cancer. Eur Respir J 1996; 9: 7-10.
- [7] Laroche C, Wells F, Coulden R, Stewart S, Goddard M, Lowry E, Price A, Gilligan D. Improving surgical resection rate in lung cancer. Thorax 1998; 53: 445-9.
- [8] Downey RJ. Surgical management of lung cancer. J Thorac Imaging 1999; 14: 266-9.
- [9] Mountain CF. The evolution of the surgical treatment of lung cancer. Chest Surg Clin N Am 2000; 10: 83-104.
- [10] Graham EA, Singer JJ. Successful removal of an entire lung for carcinoma of the bronchus. J Am Med Assoc 1933; 101: 1371-4.
- [11] Björk VO. Bronchogenic carcinoma. ActaChirScandinavica 1947; XCV 95 Suppl 123.
- [12] Shimkin MB, Connelly RR, Marcus SC, Cutler SJ. Pneumonectomy and lobectomy inbronchogenic carcinoma. J Cardiovasc Surg 1962; 44: 503-519.
- [13] Okada M, Yoshikawa K, Hatta T, Tsubota N. Is segmentectomy with lymphnode assessment an alternative to lobectomy for non-small cell lung cancer of 2cm or smaller? Ann Thorac-Surg 2001; 71: 956-60.
- [14] Kodama K, Doi O, Higashiyama M, Yokouchi H. Intentional limited resectionfor selected patients with T1 N0 M0 non-small-cell lung cancer: a singleinstitutionstudy. J Thorac Cardiovasc Surg 1997; 114: 347-53.
- [15] Deslauriers J. Current surgical treatment of non-small cell lung cancer 2001. Eur Respir J Suppl 2002; 35: 61s-70s.
- [16] Landreneau RJ, Sugarbaker DJ, Mack MJ, Hazelrigg SR, Luketich JD, Fetterman L, Liptay MJ, Bartley S, Boley TM, Keenan RJ, Ferson PF, Weyant RJ, Naunheim KS. Wedge resection versus lobectomy for stage I (T1 NO MO) nonsmall cell lung cancer. J Thorac Cardiovasc Surg 1997; 113: 691-8.
- [17] Ginsberg RJ, Rubinstein LV. Randomized trial of lobectomy versus limited resection for T1 N0 non-small-cell lung cancer. Lung Cancer Study Group. Ann Thorac Surg 1995; 60: 615-22.
- [18] Wertzel H, Siebert H, Lange W, Swoboda L, Graf E, Hasse J. Results aftersurgery in stage-I bronchogenic carcinoma. Thorac Cardiovasc-Surg 1998; 46: 365-9.
- [19] Padilla J, Calvo V, Penalver JC, Sales G, Morcillo A. Surgical results and prognostic factors in early non-small-cell lung cancer. Ann Thorac Surg 1997; 63: 324-6.

- [20] Ohta Y, Oda M, Wu J, Tsunezuka Y, Hiroshi M, Nonomura A, Watanabe G. Can tumorsize be a guide for limited surgical intervention in patients with peripheral non-small-cell lung cancer? Assessment from the point of view of nodalmicrometastasis. J Thorac Cardiovasc Surg 2001; 122: 900-6.
- [21] Wu J, Ohta Y, Minato H, Tsunezuka Y, Oda M, Watanabe Y, Watanabe G. Nodaloccult metastasis in patients with peripheral lung adenocarcinoma of 2.0 cm orless in diameter. Ann Thorac Surg 2001; 71: 1772-7.
- [22] Riquet M, Manac'h D, Le Pimpec Barthes F, Dujon A, Debrosse D, DebesseB. Prognostic value of T and N in non-small cell lung cancer three centimeters orless in diameter. Eur J Cardiothorac Surg 1997; 11: 440-3.
- [23] Asamura H, Nakayama H, Kondo H, Tsuchiya R, Shimosato Y, Naruke T. Lymph node involvement, recurrence, and prognosis in resected small, peripheral, non-small cell lung carcinomas: are these carcinomas candidates forvideo-assisted lobectomy? J Thorac Cardiovasc Surg 1996; 111: 1125-34.
- [24] Passlick B, Kubuschock B, Sienel W, Thetter O, Pantel K, Izbicki JR. Mediastinal lymphadenectomy in non-small cell lung cancer: effectiveness inpatients with or without nodal micrometastases-results of a preliminary study. Eur J Cardiothorac Surg 2002; 21: 520-6.
- [25] Takizawa T, Terashima M, Koike T, Akamatsu H, Kurita Y, Yokoyama A. Mediastinal lymph node metastasis in patients with clinical stage I peripheral non-small cell lung cancer. J Thorac Cardiovasc Surg 1997; 113: 248-52.
- [26] Naruke T, Tsuchiya R, Kondo H, Nakayama H, Asamura H. Lymph nodesampling in lung cancer: how should it be done? Eur J Cardiothorac Surg 1999; 16 Suppl 1: S17-24.
- [27] Keller SM, Adak S, Wagner H, Johnson DH. Mediastinal lymph node dissectionimproves survival in patients with stages II and IIIa nonsmall cell lung cancer. Eastern Cooperative Oncology Group. Ann Thorac Surg 2000; 70: 358-65.
- [28] Nakanishi R, Osaki T, Nakanishi K, Yoshino I, Yoshimatsu T, Watanabe H, Nakata H, Yasumoto K. Treatment strategy for patients with surgically discovered N2 stage IIIA non-small cell lung cancer. Ann Thorac Surg 1997; 64: 342-8.
- [29] Sugi K, Nawata K, Fujita N, Ueda K, Tanaka T, Matsuoka T, Kaneda Y, Esato K. Systematiclymph node dissection for clinically diagnosed peripheral non-small cell lung cancer less than 2 cm in diameter. World J Surg 1998; 22: 290-4.
- [30] Izbicki JR, Passlick B, Pantel K, Pichlmeier U, Hosch SB, Karg O, Thetter O. Effectiveness of

radical systematic mediastinal lymphadenectomy in patients with resectable non-small cell lung cancer: results of a prospective randomized trial. Ann Surg 1998; 227: 138-44.

- [31] Deslauriers J, Gregoire J. Clinical and surgical staging of non-small cell lung cancer. Chest 2000; 117 Suppl 1: 96S-103S.
- [32] Poncelet AJ, Lonneux M, Coche E, Weynand B, Noirhomme P. PET-FDG scanenhances but does not replace preoperative surgical staging in non-small cell lung carcinoma. Eur J Cardiothorac Surg 2001; 20: 468-74; discussion 474-5.
- [33] Downey RJ, Martini N, Rusch VW, Bains MS, Korst RJ, Ginsberg RJ. Extent ofchest wall invasion and survival in patients with lung cancer. Ann Thorac Surg 1999; 68: 188-93.
- [34] Ginsberg RJ, Martini N, Zaman M, Armstrong JG, Bains MS, Burt ME, McCormack PM, Rusch VW, Harrison LB. Influence of surgical resection and brachytherapy in the management of superiorsulcus tumor. Ann Thorac Surg 1994; 57: 1440-5.
- [35] Sawabata N, Matsumura A, Motohiro A, Osaka Y, Gennga K, Fukai S, Mori T; Japanese National Chest Hospital Study group for Lung Cancer. Malignant minor pleural effusion detected on thoracotomy for patients with non-small cell lung cancer: is tumor resection beneficial for prognosis? Ann Thorac Surg 2002; 73: 412-5.
- [36] Landreneau RJ, Wiechmann RJ, Hazelrigg SR, Mack MJ, Keenan RJ, Ferson PF. Effect of minimally invasive thoracic surgical approaches on acute andchronic postoperative pain. Chest Surg Clin N Am 1998; 8: 891-906.
- [37] Landreneau RJ, Hazelrigg SR, Mack MJ, Dowling RD, Burke D, Gavlick J, Perrino MK, Ritter PS, Bowers CM, DeFino J. Postoperative painrelated morbidity: video-assisted thoracic surgery versusthoracotomy. Ann Thorac Surg 1993; 56: 1285-9.
- [38] Sagawa M, Sato M, Sakurada A, Matsumura Y, Endo C, Handa M, Kondo T. Aprospective trial of systematic nodal dissection for lung cancer by video-assisted thoracic surgery: can it be perfect? Ann Thorac Surg 2002; 73: 900-4.
- [39] McKenna RJ Jr, Wolf RK, Brenner M, Fischel RJ, Wurnig P. Is lobectomy byvideo-assisted thoracic surgery an adequate cancer operation? Ann Thorac Surg 1998; 66: 1903-8.
- [40] Daniels LJ, Balderson SS, Onaitis MW, D'Amico TA. Thoracoscopiclobectomy: a safe and effective strategy for patients with stage I lung cancer.Ann Thorac Surg 2002; 74: 860-4.
- [41] Shields TW. Sleeve Lobectomy. In: Shields, editor. General Thoracic Surgery. Philadelphia: Lipponcott Williams and Wilkins; 2000. pp. 399-409.
- [42] Shields TW. Tracheal Sleeve Pneumonectomy. In: Shields, editor. GeneralThoracic Surgery.

Philadelphia: Lipponcott Williams and Wilkins; 2000. pp. 423-432.

- [43] Ginsberg RJ, Hill LD, Eagan RT, Thomas P, Mountain CF, Deslauriers J, Fry WA, Butz RO, Goldberg M, Waters PF. Modern thirty-day operative mortality for surgical resections in lung cancer. J Thorac Cardiovasc Surg 1983; 86: 654-8.
- [44] de Perrot M, Licker M, Robert J, Spiliopoulos A. Time trend in the surgicalmanagement of patients with lung carcinoma. Eur J Cardiothorac Surg 1999; 15: 433-7.
- [45] Knott-Craig CJ, Howell CE, Parsons BD, Paulsen SM, Brown BR, Elkins RC. Improved results in the management of surgical candidates with lung cancer. Ann Thorac Surg 1997; 63: 1405-9.
- [46] Pagni S, McKelvey A, Riordan C, Federico JA, Ponn RB. Pulmonary resectionfor malignancy in the elderly: is age still a risk factor? Eur J Cardiothorac Surg 1998; 14: 40-4.
- [47] Kearney DJ, Lee TH, Reilly JJ, DeCamp MM, Sugarbaker DJ. Assessment of operative risk in patients undergoing lung resection. Importance of predicted pulmonary function. Chest 1994; 105: 753-9.
- [48] Wada H, Nakamura T, Nakamoto K, Maeda M, Watanabe Y. Thirty-day operative mortality for thoracotomy in lung cancer. J Thorac Cardiovasc Surg 1998; 115: 70-3.
- [49] Harpole DH Jr, DeCamp MM Jr, Daley J, Hur K, Oprian CA, Henderson WG, Khuri SF. Prognostic models of thirty-day mortality and morbidity after majorpulmonary resection. J Thorac Cardiovasc Surg 1999; 117: 969-79.
- [50] Bernard A, Ferrand L, Hagry O, Benoit L, Cheynel N, Favre JP. Identificationof prognostic factors determining risk groups for lung resection. Ann Thorac Surg 2000; 70: 1161-7.
- [51] Patel RL, Townsend ER, Fountain SW. Elective pneumonectomy: factorsassociated with morbidity and operative mortality. Ann Thorac Surg 1992; 54: 84-8.
- [52] Morandi U, Stefani A, Golinelli M, Ruggiero C, Brandi L, Chiapponi A, Santi C, Lodi R. Results of surgical resection in patients over the age of 70 years with non-small cell lung cancer. Eur J Cardiothorac Surg 1997; 11: 432-9.
- [53] Janssen-Heijnen ML, Schipper RM, Razenberg PP, Crommelin MA, Coebergh JW. Prevalence of co-morbidity in lung cancer patients and its relationship with treatment: a populationbased study. Lung Cancer 1998; 21: 105-13.
- [54] Battafarano RJ, Piccirillo JF, Meyers BF, Hsu HS, Guthrie TJ, Cooper JD, Patterson GA. Impact of comorbidity on survival after surgical resection in patients with stagel non-small cell lung cancer. J Thorac Cardiovasc Surg 2002; 123: 280-7.

- [55] Romano PS, Mark DH. Patient and hospital characteristics related to in-hospital mortality after lung cancer resection. Chest 1992; 101: 1332-7.
- [56] Shields TW, Ponn RB. Complications of Pulmonary Resection. In: Shields, editor. General Thoracic Surgery. Philadelphia: Lipponcott Williams and Wilkins; 2000. pp. 481-505.
- [57] Kutlu CA, Williams EA, Evans TW, Pastorino U, Goldstraw P. Acute lunginjury and acute respiratory distress syndrome after pulmonary resection. Ann Thorac Surg 2000; 69: 376-80.
- [58] Wang J, Olak J, Ultmann RE, Ferguson MK. Assessment of pulmonary complications after lung resection. Ann Thorac Surg 1999; 67: 1444-7.
- [59] Smetana GW. Preoperative pulmonary evaluation. N Engl J Med 1999; 340: 937-44.
- [60] Licker M, de Perrot M, Hohn L, Tschopp JM, Robert J, Frey JG, Schweizer A, Spiliopoulos A. Perioperative mortality and major cardio-pulmonary complications after lungsurgery for non-small cell carcinoma. Eur J Cardiothorac Surg 1999; 15: 314-9.
- [61] Yano T, Yokoyama H, Fukuyama Y, Takai E, Mizutani K, Ichinose Y. Thecurrent status of postoperative complications and risk factors after a pulmonary resection for primary lung cancer. A multivariate analysis. Eur J Cardiothorac Surg 1997; 11: 445-9.
- [62] Duque JL, Ramos G, Castrodeza J, Cerezal J, Castanedo M, Yuste MG, Heras F. Early complications in surgical treatment of lung cancer: a prospective, multicenter study. Grupo Cooperativo de Carcinoma Broncogenico de la Sociedad Espanola de Neumologia y Cirugia Toracica. Ann Thorac Surg 1997; 63: 944-50.
- [63] Roxburgh JC, Thompson J, Goldstraw P. Hospital mortality and long-term survival after pulmonary resection in the elderly. Ann Thorac Surg 1991; 51: 800-3.
- [64] Breyer RH, Zippe C, Pharr WF, Jensik RJ, Kittle CF, Faber LP. Thoracotomy inpatients over age seventy years: ten-year experience. J Thorac-Cardiovasc Surg 1981; 81: 187-93.
- [65] Dyszkiewicz W, Pawlak K, Gasiorowski L. Early post-pneumonectomy complications in the elderly. Eur J Cardiothorac Surg 2000; 17: 246-50.
- [66] Bernard A, Deschamps C, Allen MS, Miller DL, Trastek VF, Jenkins GD, Pairolero PC. Pneumonectomy for malignant disease: factors affecting early morbidity andmortality. J Thorac Cardiovasc Surg 2001; 121: 1076-82.
- [67] Ferguson MK, Reeder LB, Mick R. Optimizing selection of patients for majorlung resection. J Thorac Cardiovasc Surg 1995; 109: 275-81; discussion 281-3.
- [68] Dales RE, Dionne G, Leech JA, Lunau M, Schweitzer I. Preoperative prediction of pulmonary

complications following thoracic surgery. Chest 1993; 104: 155-9.

- [69] Melendez JA, Barrera R. Predictive respiratory complication quotient predicts pulmonary complications in thoracic surgical patients. Ann Thorac Surg 1998; 66: 220-4.
- [70] Epstein SK, Faling LJ, Daly BD, Celli BR. Inability to perform bicycle ergometry predicts increased morbidity and mortality after lung resection. Chest 1995; 107: 311-6.
- [71] Morton HJV. Tobacco smoking and pulmonary complications after surgery. Lancet 1944; 1: 368-70.
- [72] Vaporciyan AA, Merriman KW, Ece F, Roth JA, Smythe WR, Swisher SG, Walsh GL, Nesbitt JC, Putnam JB Jr. Incidence of major pulmonary morbidity after pneumonectomy: associationwith timing of smoking cessation. Ann Thorac Surg 2002; 73: 420-5.
- [73] Warner MA, Divertie MB, Tinker JH. Preoperative cessation of smoking and pulmonary complications in coronary artery bypass patients. Anesthesiology 1984; 60: 380-3.
- [74] Fujisawa T, Iizasa T, Saitoh Y, Sekine Y, Motohashi S, Yasukawa T, Shibuya K, Hiroshima K, Ohwada H. Smoking before surgery predicts poor long-term survival in patients with stage I non-small-cell lung carcinomas. J Clin Oncol 1999; 17: 2086-91.
- [75] Davison AG, Duffy M. Smoking habits of longterm survivors of surgery forlung cancer. Thorax 1982; 37: 331-3.
- [76] Dresler CM, Bailey M, Roper CR, Patterson GA, Cooper JD. Smoking cessation and lung cancer resection. Chest 1996; 110: 1199-202.
- [77] Sarna L, Padilla G, Holmes C, Tashkin D, Brecht ML, Evangelista L. Quality oflife of long-term survivors of non-small cell lung cancer. J Clin Oncol 2002; 20: 2920-9.
- [78] Dresler CM. Is it more important to quit smoking than which chemotherapy isused? Lung Cancer 2003; 39: 119-24.
- [79] Colice GL, Rubins J, Unger M. Follow-up and Surveillance of the Lung Cancer Patient Following Curative-Intent Therapy. Chest 2003; 123 Suppl: 272S-83S.
- [80] Brundage MD, Davies D, Mackillop WJ. Prognostic factors in non-small cell lung cancer: a decade of progress. Chest 2002; 122: 1037-57.
- [81] al-Kattan K, Sepsas E, Townsend ER, Fountain SW. Factors affecting long termsurvival following resection for lung cancer. Thorax 1996; 51: 1266-9.
- [82] Jazieh AR, Hussain M, Howington JA, Spencer HJ, Husain M, Grismer JT, Read RC. Prognostic factors in patients with surgically resected stages I and II non-small cell lung cancer. Ann Thorac Surg 2000; 70: 1168-71.

- [83] Mountain CF, Dresler CM. Regional lymph node classification for lung cancerstaging. Chest 1997; 111: 1718-23.
- [84] Jefferson MF, Pendleton N, Faragher EB, Dixon GR, Myskow MW, Horan MA. 'Tumour volume' as a predictor of survival after resection of non-small cell lung cancer (NSCLC). Br J Cancer 1996; 74: 456-9.
- [85] Thomas P, Doddoli C, Thirion X, Ghez O, Payan-Defais MJ, Giudicelli R, Fuentes P. Stage I nonsmall cell lung cancer: a pragmatic approach to prognosis after complete resection. Ann Thorac Surg 2002; 73: 1065-70.
- [86] Kessler R, Gasser B, Massard G, Roeslin N, Meyer P, Wihlm JM, Morand G. Blood vessel invasion is a major prognostic factor in resected non-small cell lung cancer. Ann Thorac Surg 1996; 62: 1489-93.
- [87] Manac'h D, Riquet M, Medioni J, Le Pimpec-Barthes F, Dujon A, Danel C. Visceral pleura invasion by non-small cell lung cancer: an underrated bad prognostic factor. Ann Thorac Surg 2001; 71: 1088-93.
- [88] Sawabata N, Ohta M, Takeda S, Hirano H, Okumura Y, Asada H, Maeda H. Serum carcinoembryonic antigen level in surgically resected clinical stage I patients with non-small cell lung cancer. Ann Thorac Surg 2002; 74: 174-9.
- [89] Suzuki K, Nagai K, Yoshida J, Moriyama E, Nishimura M, Takahashi K, Nishiwaki Y. Prognostic factors in clinical stage I non-small cell lung cancer. Ann Thorac Surg 1999; 67: 927-32.
- [90] Bouchardy C, Fioretta G, De Perrot M, Obradovic M, Spiliopoulos A. Determinants of long term survival after surgery for cancer of the lung: Apopulation-based study. Cancer 1999; 86: 2229-37.
- [91] vanRens MT, de la Riviere AB, Elbers HR, van Den Bosch JM. Prognostic assessment of 2,361 patients who underwent pulmonary resection for non-small cell lung cancer, stage I, II, and IIIA. Chest 2000; 117: 374-9.
- [92] Mountain CF, Lukeman JM, Hammar SP, Chamberlain DW, Coulson WF, Page DL, Victor TA, Weiland LH. Lung cancer classification: the relationship of disease extent and celltype to survival in a clinical trials population. J Surg Oncol 1987; 35: 147-56.

- [93] Mizushima Y, Sugiyama S, Noto H, Kusajima Y, Yamashita R, Sassa K, Kobayashi M. Prognosis for patients with pneumonectomy or lesser resections for non-small cell lung cancer based on histologic cell type. Oncol Rep 1998; 5: 689-92.
- [94] Deneffe G, Lacquet LM, Verbeken E, Vermaut G. Surgical treatment of bronchogenic carcinoma: a retrospective study of 720 thoracotomies. Ann Thorac Surg 1988; 45: 380-3.
- [95] de Perrot M, Licker M, Bouchardy C, Usel M, Robert J, Spiliopoulos A. Sex differences in presentation, management, and prognosis of patients with non-small cell lung carcinoma. J Thorac Cardiovasc Surg 2000; 119: 21-6.
- [96] Ringbaek T, Borgeskov S, Lange P, Viskum K. Diagnostic and therapeutic process and prognosis in suspected lung cancer. Scand Cardiovasc J 1999; 33: 337-43.
- [97] Clee MD, Hockings NF, Johnston RN. Bronchial carcinoma: factors influencing postoperative survival. Br J Dis Chest 1984; 78: 225-35.
- [98] Martin J, Ginsberg RJ, Venkatraman ES, Bains MS, Downey RJ, Korst RJ, Kris MG, Rusch VW. Long-term results of combined-modality therapy in resectable non-small cell lung cancer. J Clin Oncol 2002; 20: 1989-95.
- [99] Ferguson MK, Karrison T. Does pneumonectomy for lung cancer adversely influence longterm survival? J Thorac Cardiovasc Surg 2000; 119: 440-8.
- [100] Silvestri GA, Handy J, Lackland D, Corley E, Reed CE. Specialists achieve better outcomes than generalists for lung cancer surgery. Chest 1998; 114: 675-80.
- [101] Bach PB, Cramer LD, Schrag D, Downey RJ, Gelfand SE, Begg CB. The influence of hospital volume on survival after resection for lung cancer. N Engl J Med 2001; 345: 181-8.