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Abstract: Genomic studies have provided key insights into how cancers develop, evolve, metastasize, recurrence 
and respond to treatment. The advance of liquid biopsy using circulating tumor DNA (ctDNA), the next-generation 
sequencing (NGS) and bioinformatics has led to an unprecedented view of the cancer genome and its evolution, 
and made the dynamic monitoring of recurrence and selective evolution of cancer during therapy a reality. Here we 
illustrate a proposed strategy of personalized and dynamic therapy for gastric cancer based on the technologies of 
ctDNA and NGS. The goal of this strategy is to realize personalized and dynamic systemic therapy for gastric cancer 
and improve patients’ outcomes.

Keywords: Circulating tumor DNA, next-generation sequencing, personalized cancer therapy, dynamic therapy

Introduction

Repeated biopsies of tumors during the course 
of treatment are crucial for the improved under-
standing and monitoring of changes in tumor 
cell populations during disease progression 
and in response to therapies. However, repeat-
ed biopsies of tumor tissue involve invasive 
procedures and tumor heterogeneity will con-
found interpretation of analyses. The ability to 
investigate solid tumor through noninvasive 
sampling of blood is one of the most exciting 
and rapidly advancing fields in cancer diagnos-
tics. Analysis of circulating tumor DNA (ctDNA) 
derived from different metastatic sites may 
provide a more comprehensive picture than the 
analysis of a single metastatic lesion. The appli-
cation of next-generation sequencing (NGS) 
together with advanced computational meth-
ods has recently allowed ctDNA-based tumor 
genotyping. These advanced noninvasive diag-
nostic capabilities and their applications in 
guiding precision cancer therapies are poised 
to change the ways in which we select and mon-
itor gastric cancer therapy. 

Combination of liquid biopsy and next-genera-
tion sequencing

Circulating tumor DNA (ctDNA) enters the circu-
lation following apoptosis and/or necrosis of 
tumor cells and is typically fragmented to 
around 160-180 bp reflecting the degradation 
of DNA into nucleosomal units which is charac-
teristic of the apoptotic process [1, 2]. 

ctDNA from blood samples necessitated 
repeated sampling of cancer-derived materials 
to adjust therapy in response to tumor evolu-
tion under selective pressure. ctDNA can be 
detected in a range of different solid malignan-
cies and levels have been shown to increase 
with disease stage. DNA7. It was reported that 
mutations present in ctDNA are highly concor-
dant with those present in the matched tumor 
[2-6]. It was also reported that enumeration of 
ctDNA amounts can allow dynamic changes in 
tumor burden to be accurately tracked over 
time [2, 4]. ctDNA has a superior sensitivity to 
other circulating biomarkers and a dynamic 
range that correlates with tumor burden [7]. 
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ctDNA offers a relatively easy and noninvasive 
method for the analysis of primary, metastatic 
and recurrent tumors. Numerous studies dem-
onstrated the utility of monitoring the patients’ 
blood for ctDNA to detect cancer progress, evo-
lution, or resistance to therapy [1-5, 8-19]. 

The analysis of ctDNA is challenging and 
requires highly sensitive techniques due to the 
small fraction of tumor specific DNA present 
within background levels of normal cell-free 
DNA (cfDNA). Recent advances in genomics 
technologies are now providing new opportuni-
ties for the analysis of ctDNA. NGS technolo-
gies are now being applied to plasma DNA anal-
ysis to allow more comprehensive detection of 

mutations across wider genomic regions. 
Advances in NGS have made it possible to pre-
cisely characterize all somatic coding muta-
tions that occur during the development and 
progression of individual cancers. Whole-
genome sequencing (WGS) has now been 
directly applied to plasma DNA analysis, to pro-
vide an unprecedented view of somatic chro-
mosomal alterations and copy number aberra-
tions in ctDNA genome-wide [20, 21]. NGS of 
ctDNA has been demonstrated to be an effec-
tive non-invasive tool for monitoring tumor bur-
den, evolution, therapeutic responses and 
resistance to therapy [2-5, 9-18]. Numerous 
studies have also demonstrated that ctDNA 
analysis can allow the emergence of mutations 

Figure 1. A proposed strategy of personalized and 
dynamic therapy for cancer.
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associated with treatment resistance to be 
assessed noninvasively from plasma DNA [6, 8, 
10, 22, 23].

Monitoring tumor burden and treatment 
response is important in all phases of cancer 
management to avoid continuing ineffective 
therapies, to prevent unnecessary side-effects 
and to determine the benefit of new therapeu-
tics. The combination of ctDNA and NGS facili-
tated the oncologists to investigate cancer to a 
new level, the dynamic genetic level.

Heterogeneity between primary tumors, cor-
responding metastatic tumors, and recurrent 
tumors

Over the past few years, genomic studies have 
demonstrated intratumor heterogeneity and 
heterogeneity in primary tumors, correspond-
ing metastatic and recurrent tumors as recog-
nized characteristics of solid tumors [6, 12, 13, 
16, 17, 24-40]. These genomic differences may 
affect the clinical outcome of anticancer thera-
py. A retrospective study investigated the role 
of PTEN loss, AKT phosphorylation and KRAS 
mutations in primary colorectal tumors and 
their corresponding metastases on the activity 
of cetuximab plus irinotecan, which gave us 
direct evidence to reveal that the genetic het-
erogeneity in primary colorectal tumors and 
their corresponding metastases have different 
responses to EGFR-targeted therapy [41]. 
Studies of glioma recurrences found that the 
driver mutation landscapes were often signifi-
cantly different from the initially detected driver 
mutations, suggesting that clones initiating 
recurrences had branched off early in tumor 
evolutionary histories [12]. Morrissy AS, et al. 
demonstrated the heterogeneity between pri-
mary tumor and recurrent tumor [13]. These 
studies indicated that molecularly targeted 
therapy is unlikely to be effective when the tar-
get is absent in the metastatic or recurrent 
tumors. In certain contexts, continued therapy 
in absent of target might accelerate tumor pro-
gression [42].

Natural evolution during cancer progress and 
selective evolution during cancer therapy

Cancer is a disease characterized by Darwinian 
evolution [43, 44]. Clones evolve dynamically in 
space and time underpinning important emer-
gent features such as metastasis, drug resis-
tance and recurrence [6, 16, 25, 31, 32, 34, 
35]. Advances in NGS and bioinformatics have 

led to an unprecedented view of the cancer 
genome and its evolution. An overwhelming 
body of evidence has been collected demon-
strating that cancers evolve during progression 
and therapy [10, 43, 45-47]. Therapy repre-
sents a very defined and stringent selection 
pressure during the evolution of a cancer, and 
several studies have now traced the clonal evo-
lution of tumors during the course of treatment 
[12, 34, 48-51].

Natural and selective evolution of cancer is 
likely to have important consequences in clini-
cal practice and novel techniques to obtain rep-
resentative samples for genetic analyses, 
especially from metastatic and recurrent dis-
ease, are urgently needed to understand the 
clonal dynamics of evolving tumors through 
course of disease and therapy.

Hypothesis and perspective

Given these advances and the scientific data 
mentioned above, here we hypothesize and 
illustrate a proposed strategy of personalized 
and dynamic therapy for cancer (Figure 1). As 
shown in Figure 1, we choose gastric cancer as 
an example to illustrate the personalized and 
dynamic therapy strategy. In this strategy, radi-
cal surgery will be firstly performed when a gas-
tric cancer is pathologically confirmed, follow-
ing the dynamic therapy such as chemotherapy, 
chemotherapy in combination with molecularly 
targeted therapy, or laparoscopic palliative sur-
gery based on the results from NGS using 
ctDNA and imaging technologies such as CT, 
MRI or PET-CT. The ctDNA in blood during the 
progress of therapy was obtained and analyzed 
using NGS. The goals of this strategy are: to 
obtain the drug sensitivity data for drug selec-
tion; to obtain the drug resistance data for ter-
mination of the current ineffective therapies 
and obtain the renewed drug sensitivity data to 
choose new effective drugs; to find potential 
predictive and prognostic markers; to realize 
early detection of cancer and detection of mini-
mal residual disease, to monitor the evolution 
of molecular resistance, and finally to realize 
personalized and dynamic systemic therapy for 
cancer and improve patients outcomes.
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