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Folic acid inhibits hypoxia-induced THP-1 cells  
inflammation by suppressing NF-κB signaling pathway
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Abstract: Lowering of homocysteine by folic acid is known to prevent cardiovascular events. However, the mecha-
nism by which this impact related diseases is not clear. Therefore, we investigated whether folic acid has protective 
effects on the inflammatory response to hypoxia of human mononuclear cells in vitro, and the involved signaling 
pathways. The human monocyte cell line THP-1 cells were pretreated with folic acid for 30 min, and then incubated 
with 1% O2 for 24 h to induce hypoxia injuries. The protein levels and mRNA expression of interleukin-1 beta (IL-1β) 
and interleukin-8 (IL-8) were respectively determined by ELISA and qRT-PCR. The expressions of hypoxia-inducible 
factor-1 alpha (HIF-1α), prolyl hydroxylase1 (PHD1), inhibitor of nuclear factor κB kinase beta (IKKβ), nuclear fac-
tor κB (NF-κB) were analyzed with western blotting and immunofluorescence. The results showed that hypoxia 
increased the expression of IL-1β and IL-8 accompanied by significant augmentation of HIF-1α, IKKβ and NF-κB ex-
pression as well as inhibition of PHD1. However, pretreatment with folic acid significantly reduced hypoxia-induced 
production of IL-1β and IL-8. Moreover, folic acid markedly attenuated hypoxia-induced upregulation of HIF-1α, IKKβ 
and NF-κB, and upregulated PHD1. In summary, folic acid inhibits the inflammatory response of THP-1 cells to hy-
poxia by inhibiting NF-κB pathways, which may represent one of the mechanisms by which folic acid exerts a protec-
tive effect in cardiovascular disorders.
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Introduction

Folate, also named vitamin B9, is a water-solu-
ble vitamin that can be found naturally in food 
or in its synthetic form, folic acid, in supple-
ments and fortified foods. It is a necessary vita-
min to support health and reduce disease risk 
[1]. Humans cannot synthesize folate and 
therefore must fulfill their requirements through 
diet. Inadequate folate intake may increase the 
risk of neural tube defects, megaloblastic ane-
mia, cancer, cognitive dysfunction and hyper-
homocysteinemia [1, 2]. 

Numerous studies have found that folic acid 
may prevent cardiovascular disease (CVD). 
Adequate levels of folic acid help reduce the 
risk of ischemic heart disease, deep vein throm-
bosis, and stroke [3], and the mortality of stroke 
[4]. Additionally, most studies have indicated 
that folic acid protects against arteriosclerotic 

vascular disease by lowering homocysteine [5], 
which is regarded as an independent risk factor 
for CVD [6]. However, how folic acid prevents 
CVD mechanistically is still unclear. It has been 
reported that folic acid improves vascular func-
tion by modulating endothelial nitric oxide syn-
thase and the cofactor tetrahydrobiopterin, 
independent of homocysteine lowering. This 
modulation reduces vascular superoxide pro-
duction and causes antioxidant effects [7-9]. It 
is worth noting that some researchers have 
found the anti-inflammatory effects of folic acid 
in vivo and in vitro, involving the reduction of 
several inflammatory cytokines and pro-inflam-
matory factors [10-12]. We have shown previ-
ously that folic acid significantly decreases lipo-
polysaccharide (LPS)-induced nitric oxide (NO), 
tumor necrosis factor alpha (TNF-α), and inter-
leukin-1 beta (IL-1β) production in RAW264.7 
cells [13]. Moreover, folate deficiency can en- 
hance the inflammatory response of macro-
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phages [14]. In addition, our earlier studies 
have demonstrated that rats fed with deficient 
folate exhibited more severe inflammation of 
the vascular endothelium compared with those 
fed a methionine-rich diet [15]. It is clear that 
inflammation plays a central role in all phases 
of the atherosclerotic process and anti-inflam-
matory effect may yield novel therapeutic tar-
gets [16]. Therefore, folic acid may be protec-
tive against cardiovascular disease through its 
anti-inflammatory effect.

In early stages of atherogenesis, monocytes, 
an innate immune cell, are strongly linked to 
inflammation. Monocytes recruit and express 
pro-inflammatory cytokines in arterial wall [17]. 
Hypoxia has been proposed as an important 
underlying cause of the inflammatory response 
in atherosclerotic lesions [18]. Hypoxia not only 
activates the hypoxia-inducible factor (HIF) 
family by inhibiting prolyl hydroxylases (PHDs), 
but also inhibits the nuclear factor κB kinase 
(IKK) and nuclear factor κB (NF-κB). Activation 
of NF-κB can encode inflammatory mediator 
genes and increases secretion of inflammatory 
factors such as IL-1β, interleukin-8 (IL-8) [19, 
20]. Moreover these inflammatory cells increa- 
se oxygen consumption. This creates a vicious 
circle of hypoxia, angiogenesis and inflamma-
tion which occurs deep in the plaque, enhanc-
ing plaque growth and increasing the risk of 
plaque rupture [21, 22]. However, little is known 
about the role of folic acid in the inflammation 
process in human mononuclear cells THP1 
under hypoxia conditions.

In this study, we investigated the effects of folic 
acid on hypoxia-induced inflammatory respons-
es, as measured by IL-1β and IL-8 production in 
THP-1 cells. We attempted to further identify 
the signaling pathway by measuring changes in 
the levels of HIF-1α, PHD1, IKKβ, and NF-κB. 
Our study may provide a possible therapeutic 
use of folic acid in vascular inflammatory 
disease.

Materials and methods 

Materials

Folic acid and dimethyl sulfoxide (DMSO) were 
purchased from Sigma-Aldrich (St. Louis, USA). 
Materials for cell culture were purchased from 
GIBCO (NY, USA). Trizol reagent was obtained 
from Invitrogen (Carlsbad, USA). Antibodies 
against NF-κB p65 and IKKβ were purchased 

from Cell Signaling Technology (Charlottesville, 
USA). The antibody of PHD1 and HIF-1α were 
purchased from Novus Biologicals (Littleton, 
USA) and BD Biosciences (New Jersey, USA) 
respectively. Antibody against β-actin was pur-
chased from Boster (Wu Han, China). ELISA kits 
for IL-8 and IL-1β quantification were purchased 
from R&D Systems (Minneapolis, USA). Octyl-α-
ketoglutarate was purchased from Cayman 
Chemical (Ann Arbor, USA). Fluorescent nuclei 
dye, DAPI, and donkey anti-rabbit IgG-FITC were 
purchased from Roche (Basel, Switzerland) and 
Santa Cruz Biotechnology (Dallas, USA), respec-
tively. The Anoxomat instrument was purchased 
from Advanced Instruments, Inc. (Boston, USA) 
and was used to create hypoxic environments 
in jars.

Cell culture and viability assay

THP-1 cells were maintained in RPMI-1640 
medium containing 10% fetal bovine serum 
(FBS), 100 U/mL of penicillin and 100 μg/mL of 
streptomycin at 37°C in a 5% CO2 incubator. 
THP-1 cells were pretreated with folic acid at 
0-40 μg/mL for 24 h, then moved to the respec-
tive incubators and incubated in either normox-
ia (21% O2 and 5% CO2) or hypoxia (1% O2 and 
5% CO2) in a sealed jar that was pre-balanced 
for the desired O2 concentration for 24 h.  

A commercially available cell viability assay kit 
was used to evaluate the cytotoxic effects of 
folic acid, using MTT-based colorimetry. THP-1 
cells (2×105 cells/well) were plated with a vari-
ety of concentrations of folic acid at 0-40 μg/
mL in 96-well microtiter plates, and were then 
cultured for 24 h at 37°C in a 5% CO2 incubator. 
At the termination of culture, 20 μL MTT (5 mg/
mL) was added to each well, followed by incu-
bation for 4 h at 37°C in a 5% CO2 incubator. 
Then 100 μL mixed liquid containing 10% lauryl 
sodium sulfate, 5% isobutyl alcohol and 12 mΜ 
HCl was added to each well, followed by incuba-
tion for 24 h at 37°C in a 5% CO2 incubator. 
Finally, 96-well microtiter plates were put on 
the shaker to shake for 10 min and the optical 
density values were determined using an 
EL×800 reader (Bio-Tek Instruments, Winooski, 
VT, USA) at 570 nm.   

Measurement of cytokine levels 

THP-1 was treated as previously described. The 
released IL-1β and IL-8 to the medium were 
determined using ELISA kits, according to the 
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manufacturer’s instructions. Optical density 
was measured at 450 nm, and the amount of 
cytokines was calculated from a standard curve 
prepared with the recombinant protein. 

RNA preparation and qRT-PCR

THP-1 cells were prepared as previously 
described. Total RNA was extracted by using 
Trizol reagent. The reverse transcriptional reac-
tion was performed with Transcriptor First 
Strand cDNA Synthesis Kit (Roche, Switzerland). 
The levels of IL-1β and IL-8 mRNA were mea-
sured by quantitative real-time polymerase 
chain reaction (qRT-PCR) using FastStart 
Universal SYBR Green Master (ROX) (Roche, 
Switzerland). The following primer pairs were 
used: β-actin forward 5’-CCTGGCACCCAGCAC- 
AA T-3’ and reverse 5’-GGGCCGGACTCGTCAT- 
AC-3’. IL-1β forward 5’-TCTTCGACACATGGGAT- 
AACGA-3’ and reverse 5’-TCCCGGA GCGTG-
CAGTT-3’. IL8 forward 5’-CTCTGCACCCAGTTTT- 
CCTT-3’ and reverse 5’-GTGCAGTTTTGCCAAG- 
GAGT-3’. The PCR conditions were as follows: 
10 s at 95°C for denaturation, 30 s at 60°C for 
annealing with 40 cycles. The internal control 
was β-actin.

Western blot analysis

The protein levels of HIF-1α, PHD1, IKKβ and 
NF-κB p65 were analyzed by Western blot. 
Proteins (~30 μg) from whole cell lysates, cyto-
solic extracts, or nuclear extracts were sepa-
rated by 10% SDS-PAGE and electrotransferred 
to polyvinylidene difluoride (PVDF) membranes. 
The membranes were then incubated subse-

quently with specific primary antibodies and 
secondary antibodies conjugated with horse-
radish peroxidase. The bands were visualized 
using the ECL system, and the band density 
was determined by Quantity One software (Bio-
Rad, USA).

Immunofluorescence staining

THP-1 cells were fixed in PBS (pH 7.4) with 4% 
paraformaldehyde for 15 min. Next, fixed cells 
were permeabilized in PBS with 0.5% Triton 
X-100 for 10 min. After three washes, the cells 
were incubated with blocking solution (goat 
serum) for 15 min. Cells were then incubated 
with a rabbit anti-human NF-κB p65 antibody 
(dilution 1:200) overnight at 4°C. After washing 
with PBS, the cells were incubated for 1 h with 
Goat Anti-rabbit IgG-FITC antibody. After five 
washes, cells were stained with DAPI (1 μg/ml) 
for 15 min, followed by a wash with methyl alco-
hol. Confocal immunofluorescence analysis 
was performed using a Leica TCS SP5II micro-
scope (Leica Microsystems, Germany) with a 
40× oil-immersion objective lens.

Statistical analysis

Data are expressed as mean ± SD and ana-
lyzed using one way ANOVA followed by a 
Bonferroni post-hoc correction for multiple 
comparisons. All experiments were repeated at 
least three times. A P-value ≤ 0.05 was consid-
ered statistically significant. The SPSS 13.0 
statistical software package was used in 
analysis.

Results 

The cytotoxicity of folic acid in THP-1 cells

We evaluated cytotoxicity of folic acid at differ-
ent concentrations (0-40 μg/mL) using MTT 
assay, to rule out the possibility that inflamma-
tory cytokines result from the toxicity effect of 
folic acid. Folic acid-induced cytotoxicity was 
negligible in THP-1 cells at concentrations of 
0.4-40 μg/mL (Figure 1).

Folic acid inhibits hypoxia-induced IL-1β and 
IL-8 mRNA expression and release in THP-1 
cells

IL-1β and IL-8 release was examined after folic 
acid pretreatment and hypoxia exposure using 
an ELISA assay. IL-1β and IL-8 concentration in 

Figure 1. Effects of folic acid on THP-1 cell viability. 
The cytotoxic effect of folic acid in THP-1 cells was 
measured by MTT assay. Data shown are means ± 
SD representative of 5 independent experiments.
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the medium was significantly increased after 
hypoxic treatment for 24 h and was inhibited in 
a dose-dependent manner by treatment with 
folic acid (0.4-40 μg/mL) (Figure 2A and 2B). 
QRT-PCR further confirmed that hypoxia caus- 
ed marked increases in IL-1β and IL-8 mRNA 
expression, which were significantly attenuated 
by folic acid pretreatment (Figure 2C and 2D). 

Folic acid regulates PHD1, HIF-1α, IKKβ and 
NF-κB in THP-1 cells exposed to hypoxia 

PHDs belong to a family of oxygen-sensing pro-
teins. Under low oxygen conditions, the PHDs 
activity is inhibited, and the rate of HIF-1α 
hydroxylation is suppressed. This leads to HIF-
1α accumulation in the cytoplasm, where it 
dimerizes with an HIF-1β and translocates to 
the nucleus. This complex then transcriptional-
ly activates genes related to hypoxia adapta-
tion and regulation of the inflammatory res- 
ponse [23]. PHD1, one of the PHD’s subunits, 
also controls NF-κB activity through regulation 
of IKKβ. Once IKKβ is activated, it phosphory-
lates IκBα, leading to its degradation, and also 

enhances NF-κB activity [19]. NF-κB is the mas-
ter regulator of the inflammatory response. Its 
major subunit is NF-κB p65 [24]. 

As shown in Figure 3A, folic acid significantly 
inhibited hypoxia-induced activation of HIF-1α 
and increased PHD1 activities. Meanwhile, folic 
acid markedly suppressed hypoxia-induced 
activation of IKKβ and NF-κB p65 (Figure 3B). 
These data suggest that hypoxia-induced 
NF-κB signaling was significantly inhibited by 
folic acid in a dose-dependent manner.

Hypoxia induces IL-1β and IL-8 production by 
suppressing PHD1 and activating the NF-κB 
pathway in THP-1 cells

To further understand the mechanism underly-
ing folic acid’s effect on the NF-κB signaling, we 
used octyl-α-ketoglutarate (α-KG), an activator 
of PHD, to modulate the pathway. HIF-1α is  
activated and PHD1 is suppressed during the 
exposure to hypoxia (Figure 4A). Furthermore, 
PHD1-mediated repression of IKKβ was sup-
pressed, possibly resulting in enhanced IKKβ 

Figure 2. Effects of folic acid on hypoxia-induced IL-1β and IL-8 production and gene expression in THP-1 cells. THP-1 
cells were pretreated with folic acid at 0.4-40 μg/mL for 30 min and then incubated under hypoxic conditions (1% 
O2) for 24 h. The protein levels of IL-1β (A) and IL-8 (B) were measured by ELISA. The mRNA expression of IL-1β (C) 
and IL-8 (D) was analyzed by qRT-PCR. The results are representative of 5 independent experiments and expressed 
as mean ± SD. ###P<0.001 compared with control group. *P<0.05, **P<0.01 or ***P<0.001 compared with 
hypoxia alone.
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activity and increased NF-κB p65 activity in the 
hypoxia conditions (Figure 4B). However, α-KG 
(1 mM) significantly inhibited hypoxia-induced 
activation of HIF-1α and increased PHD1 activi-
ties even under the hypoxia (Figure 4A). IKKβ 
and NF-κB p65 were significantly inhibited, 
possibly by activated PHD1 (Figure 4B). 

We next determined the mechanistic roles of 
the inflammatory factors. IL-1β and IL-8 produc-
tion was examined after the α-KG pretreatment 
and hypoxic exposure using an ELISA assay. 
IL-1β and IL-8 secretion was increased signifi-
cantly after hypoxic treatment for 24 h, but had 
a marked suppression caused by α-KG (1 mM) 
treatment (Figure 5A and 5B). The qRT-PCR 
further confirmed that hypoxia caused marked 
increases in IL-1β and IL-8 mRNA expression, 
which were significantly attenuated by α-KG 
pretreatment (Figure 5C and 5D). The results 
above suggest that hypoxia induces IL-1β and 
IL-8 production via suppression of PHD1 and 
activation of the NF-κB pathway in THP-1 cells.

Folic acid and α-KG inhibit hypoxia-induced 
nuclear translocation of NF-κB p65 in THP-1 
cells

To investigate the effects of hypoxia, folic acid 
and α-KG on the nuclear translocation of NF-κB, 
NF-κB p65 subunit was detected by immuno-
fluorescence and imaged using confocal mic- 
roscopy. As shown in Figure 6, the nuclear 
translocation of hypoxia-induced NF-κB p65 
significantly increased, while NF-κB p65 was 
found exclusively in the cytoplasm in normoxia. 
Furthermore, the relative expression of NF-κB 
p65 was higher in hypoxia than in normoxia. In 
addition, when THP-1 cells were pretreated with 
folic acid (4 μg/mL) or α-KG (1 mM), nuclear 
translocation of NF-κB p65 was markedly re- 
duced and the relative expression was decrea- 
sed, in striking contrast to the effects of hypo- 
xia alone. These results indicate that, under 
hypoxic conditions, folic acid has anti-inflam-
matory effects in THP1 cells via inactivation of 
the NF-κB pathway. 

Figure 3. Folic acid inhibits hypoxia-induced activation of NF-κB pathway in THP-1 cells. THP-1 cells were pretreated 
with folic acid at 0.4-40 μg/mL for 30 min and then incubated under hypoxic conditions (1% O2) for 24 h. PHD1, 
HIF-1α, IKKβ and NF-κB p65 protein levels were analyzed by Western blot. β-actin was used as a control. The results 
are representative of 3 independent experiments and expressed as mean ± SD. #P<0.05 or ##P<0.01 compared 
with control group. *P<0.05, **P<0.01 or ***P<0.001 compared with hypoxia alone.
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Discussion 

Hypoxia exists in vivo whenever oxygen demand 
exceeds oxygen supply. It is generally defined 
as levels between 0.5% and 3% oxygen by vol-
ume [25]. We chose to use a concentration of 
1% O2 because this level has been used in vari-
ous cell culture models previously [26, 27]. 
Hypoxia is found to exist in atherosclerotic 
lesions, which causes an increase in lipid-load-
ed macrophages and local inflammation, two 
steps in the pathogenesis of human atherogen-
esis [18]. Monocytes and lymphocytes are 
recruited to the artery wall and express pro-
inflammatory cytokines such as IL-1β and IL8. 
IL-1β is a highly inflammatory cytokine, particu-
larly in humans, that promotes systemic and 
local inflammation, and causes acute and 
extensive damage in atherosclerotic lesions 
[28]. IL-8, a chemokine, is produced in several 
tissues upon inflammation, ischemia, trauma 

etc., and has been found to be associated with 
atherosclerotic lesion formation. IL-8 may be 
involved in the recruitment of inflammatory 
cells into atherosclerotic plaques [29, 30]. This 
study demonstrates that in THP-1 cells hypoxia 
initiates an inflammatory response as mea-
sured by inflammatory markers. IL-1β and IL8 
levels increase, both in levels of secreted pro-
tein and gene-expression. However, folic acid 
causes a pronounced effect, decreasing secre-
tion and gene expression of IL-1β and IL-8. 

NF-κB, a ubiquitous transcription factor, plays 
an important role in immune and inflammatory 
responses by regulating genes encoding pro-
inflammatory cytokines (IL-1β), adhesion mole-
cules, chemokines (IL-8), and enzymes [19]. 
The NF-κB canonical pathway is predominantly 
dependent on IKKβ. Once IKK is activated, the 
IKK complex phosphorylates IκB-α and dissoci-
ates from IκB-α, thereby freeing NF-κB to trans-

Figure 4. Effects of α-KG (PHD activator) on hypoxia-induced activation of NF-κB pathway in THP-1 cells. THP-1 
cells were pretreated with α-KG at 1 mM for 30 min and then incubated under hypoxic conditions (1% O2) for 24 
h. PHD1, HIF-1α, IKKβ and NF-κB p65 protein levels were analyzed by Western blot. β-actin was used as a control. 
The results are representative of 3 independent experiments and expressed as mean ± SD. #P<0.05, ##P<0.01 
or ###P<0.001 compared with control group. *P<0.05, **P<0.01 or ***P<0.001 compared with hypoxia alone.
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locate to the nucleus and activate transcription 
of target genes [31]. Hypoxia can activate 
NF-κB in an IKK-dependent manner. Some 
studies imply that IKKβ is a key physiological 
link between the hypoxic response and inflam-
mation because IKKβ contains an evolutiona- 
rily conserved LxxLAP consensus motif for 
hydroxylation by PHDs. Moreover, silencing of 
PHD1 augments NF-κB activation more effi-
ciently than silencing of PHD2 or PHD3 [26]. 
The present study demonstrates that hypoxia 
inhibits PHD1 and upregulates HIF-1α, IKKβ, 
and NF-κB p65 in THP-1 cells. When cells were 
pretreated with the α-KG, PHD1 was activated 
even though cells were under hypoxic condi-
tions. Additionally, HIF-1α, IKKβ and NF-κB p65 
were suppressed, and the inflammatory media-
tors (IL-1β and IL-8) were inhibited compared 
with the hypoxia only. These results suggest 
that hypoxia may act by inhibiting PHD1 activity, 
increasing the activity of cellular IKKβ/NF-κB 
pathway, and subsequently upregulating IL-1β 

and IL-8 in THP-1 cells. We found that the effect 
of folic acid on this signaling pathway was simi-
lar to the effect of α-KG. This may imply that 
folic acid acts by activating PHD1, thereby 
inhibiting the IKKβ/NF-κB pathway to regulate 
the inflammatory response. Others have sh- 
owed that folic acid may affect the NF-κB path-
way as well [12, 13, 32]. However, further stud-
ies are needed to determine how folic acid 
affects this pathway. For the first time we have 
demonstrated the inhibitory effects and under-
lying mechanisms of folic acid on hypoxia-
induced inflammation in THP-1 cells.

Folic acid is an important vitamin for humans. It 
is thought that folic acid prevents cardiovascu-
lar events by lowering homocysteine. However, 
there is still no consensus on the relation 
between folic acid and homocysteine. We 
hypothesized that folic acid alone might cause 
an anti-inflammatory effect. Previous evidence 
shows that folic acid can significantly attenuate 

Figure 5. Effects of α-KG (PHD activator) on hypoxia-induced IL-1β and IL-8 production and gene expression in THP-1 
cells. THP-1 cells were pretreated with α-KG at 1 mM for 30 min and then incubated under hypoxic conditions (1% 
O2) for 24 h. The protein levels of IL-1β (A) and IL-8 (B) were measured by ELISA. mRNA expression of IL-1β (C) and 
IL-8 (D) was analyzed by qRT-PCR. The results are representative of 3 independent experiments and expressed as 
mean ± SD. #P<0.05 or ##P<0.01 compared with control group. *P<0.05, **P<0.01 or ***P<0.001 compared 
with hypoxia alone.
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LPS-induced NO, TNF-α, and IL-1β production in 
RAW264.7 cells [13]. Maternal folic acid sup-
plementation during pregnancy protects aga- 
inst LPS-induced preterm delivery, fetal death 
and intrauterine growth retardation through its 
anti-inflammatory effects [12]. Additionally, 
folic acid supplementation may markedly 
reduce the circulating level of IL-8 in healthy 
overweight subjects [11]. Folic acid has been 
found to possess anti-inflammatory effects, 
but its concentration differs in various studies. 
We and others have performed dose-response 
studies, showing that the most effective con-
centration of folic acid to reduce inflammatory 
mediators is about 40 μg/mL, while the least 
effective concentration is about 0.2 μg/mL [13, 
32]. Our study demonstrates that folic acid pro-
nouncedly inhibits hypoxia-induced IL-1β and 
IL-8 production, as measured by proteins levels 
and gene-expression in THP-1 cells. The most 
effective concentration of folic acid in sup-
pressing IL-1β and IL-8 under hypoxia is 40 μg/
mL. The effect of folic acid may be attributed to 

regulation of the PHD1, IKKβ, and NF-κB, where 
the NF-κB pathway may reverse hypoxia-
induced IL-1β and IL-8 production. 

In summary, this study reveals that hypoxia ini-
tiates an inflammatory response as measured 
by inflammatory markers (IL-1β and IL-8) in 
THP-1 cells, via inhibition of PHD1 and upregu-
lation of HIF-1α, IKKβ, and NF-κB p65. In addi-
tion, folic acid has pronounced anti-inflamma-
tory effects, inhibiting secretion and gene-
expression of IL-1β and IL-8 via regulation of the 
NF-κB inflammatory signaling pathway. These 
findings may represent one of the mechanisms 
by which folic acid exerts a protective effect in 
atherogenesis and progression of vascular 
disease.
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