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Abstract: We assessed the benefit of bone morphogenic protein-2 (BMP-2) and low-level laser irradiation (LLLI) on 
the osseointegration of synthetic bone grafts. Synthetic bone grafts are safe alternatives to autografts. BMP-2 and 
LLLI have been shown separately to improve bone healing. However, their effects have not been evaluated together 
with synthetic materials. Here, we used a rat model to compare the efficacy of BMP-2 and LLLI on synthetic graft 
healing. Male Sprague-Dawley rats (n = 35) were divided equally into groups: control (defect only), graft only, graft 
and BMP-2, graft and LLLI, and a combination of graft, LLLI, and BMP-2. A 3 × 3 mm monocortical tibial defect was 
filled using a synthetic graft with or without 2 mg/mL BMP-2 pre-treatment. LLLI was performed using an optical 
fibre and an indium-gallium-arsenide-phosphate laser for 60 s daily for 7 days, delivering 6.0 J/day. Histopathol-
ogy was performed 4 weeks post-graft using a standardised scoring system (1-5, based on the degree of healing 
observed). Groups were compared using the MannWhitney U test, with p values < 0.05 considered significant. 
Osteogenesis was poor in both the control and graft-only groups (1.4 ± 0.5 and 2.3 ± 0.5, respectively). BMP-2- (4.3 
± 0.5), LLLI- (3.7 ± 0.5), and BMP-2/LLLI-treated (4.7 ± 0.5) grafts all displayed significantly more healing than the 
control or graft alone groups (P < 0.001). Both BMP-2 and LLLI significantly improved the osseointegration of syn-
thetic bone grafts. However, no synergy was noted between the therapies.
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Introduction

The repair of bony defects is a complex process 
in the human body. Various graft materials 
have been used to help bone repair. Among 
them, autografts have been considered the 
gold standard. Autografts are successful in 
osseointegration because they are the sub-
ject’s own bone. However, other graft materials 
are also widely used due to such disadvantag-
es as the need for a second operation to 
remove the autograft. Among these, synthetic 
grafts are biocompatible materials that are 
freed of organic materials, eliminating the risk 
of infection, and are compatible with human tis-

sues [1]. They generally have an osteoconduc-
tion effect mechanism. However, this charac-
teristic of the graft material may not be suf- 
ficient for a good response in all cases. Thus, 
other methods have been used to increase the 
effectiveness of these materials, including low-
level laser irradiation (LLLI).

Positive effects of LLLI on bone recovery have 
been shown in many clinical and experimental 
studies [2]. LLLI stimulated osteoblast precur-
sor cells and increased osteoblastic cell prolif-
eration, and thus, contributed to the formation 
of new cells [3]. Although the effects of LLLI in 
tissue repair are not fully understood, LLLI stim-
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ulates wound healing, collagen synthesis, and 
nerve damage repair [4-8]. A study by Tang and 
Chai showed that LLLI increased the effective-
ness of red blood cells, macrophages, fibro-
blasts, chondrocytes, and osteoclasts in the 
fracture area [9]. Furthermore, LLLI promotes 
cell proliferation and protein synthesis by 
increasing the synthesis of DNA and RNA [10, 
11]. LLLI reportedly triggers a low amount of 
reactive oxygen species and cell stimulation, 
and increases mitochondrial respiration and 
ATP synthesis [12].

Proteins such as recombinant human (rh) bone 
morphogenic protein-2 (BMP-2) have a positive 
effect on bone formation. In 1965, Urist showed 
that placing decalcified bone matrix (DBM) out-
side skeletal areas led to the induction of bone 
formation [13]. The morphogenesis typically ob- 
served during embryogenic bone development 
is recapitulated following implantation of DBM 
outside the skeletal area, and natural bone for-
mation ensues. Bone matrix proteins, especial-
ly bone morphogenetic proteins (BMPs), have 
osteoinductive potential [14]. In 1979, Urist 
first isolated proteins that caused bone induc-
tion, and observed that bone morphogenetic 
activity was higher than that of demineralised 
bone [15]. BMPs are members of the trans-
forming growth factor-beta family. Currently, 15 
BMPs are known. They are divided into sub-
groups according to their amino acid sequence 
similarities. Among them, BMP-2, BMP-4, and 
BMP-7 have the most effective osteoinductive 
properties; the BMP-2 protein possesses the 
greatest osteoinductive properties [14]. Cur- 
rently, most rhBMP-2 is obtained using Chinese 
hamster ovary cells [16].

In this study, we sought to examine and com-
pare the effectiveness of LLLI and BMP-2 appli-

Kocatepe University, Afyonkarahisar, Turkey. 
The animals were housed in groups of seven 
per plastic cage in a controlled environment 
(22°C, 12/12-h light/dark cycle) with free ac- 
cess to drinking water and a diet of standard 
laboratory rat food pellets. The experimental 
protocol was approved by the Animal Experi- 
mentation Ethics Committee of Kocatepe Uni- 
versity (Decision number: 2014-49533702/ 
120). The animals were maintained and used in 
accordance with the Animal Welfare Act and 
the Guide for the Care and Use of Laboratory 
Animals. The rats were divided randomly into 
five groups: Group A (control group), tibia defect 
model with no treatment (n = 7); Group B (graft 
group), tibia defect model treated with graft (n 
= 7); Group C (laser group), tibia defect model 
treated with graft and LLLI (n = 7); Group D 
(BMP-2 group), tibia defect model treated with 
graft and BMP-2 (n = 7); and Group E (BMP-2 
and laser group), tibia defect model treated 
with graft, BMP-2, and LLLI (n = 7).

Preparation of BMP-2

We added 50 µg of distilled water to a vial that 
contained 10 µg of rhBMP-2 (R&D Systems, 
Minneapolis, MN, USA) to obtain a final concen-
tration of 0.2 mg/mL. The biomaterial was 
soaked in 25 µg of rhBMP-2 solution for 15 min 
before it was placed in the defect.

Laser application

The low-level laser source used was an indium-
gallium arsenide phosphate (InGaAsP) semi-
conductor diode device (Biolase Inc., Irvine, CA, 
USA), with the laser beam delivered via an opti-
cal fibre. The surgical hand piece directly con-
tacted the area of interest without the fibre tip. 
The irradiation parameters are presented in 
Table 1.

Table 1. The irradiation parameters
Parameter Value
Wavelength 940 nm (infrared)
Beam area 0.0707 cm2 (circle of diameter, 0.3 cm)
Output power 0.1 W
Irradiation time 60 s
Energy density 85 J/cm2

Power density 1.414 W/cm2

Energy delivered 6.0 J
Emission mode Continuous
Application In contact

cation, which have positive effects on 
bone regeneration and repair, on bone 
repair. With this aim, synthetic graft mate-
rial, both treated and untreated, was ap- 
plied to critical-dimension bony defects 
formed in rat tibia.

Materials and methods

Animals

The study included 35 male Sprague-
Dawley rats (mean age, 12 weeks; weight, 
290-350 g) and was conducted at the 
Health Institution Research Centre, Afyon 



Effects of low-level laser on graft healing

15711	 Int J Clin Exp Med 2016;9(8):15709-15718

Holes (6-mm diameter) were created in the rat 
femur bones. The bones were directly irradiat-
ed with the laser immediately after surgery and 
every day after the surgery for a week. The 
parameters shown in Table 1 were applied dur-
ing each treatment session in the study.

Rat tibia defect model and surgical procedure

Surgical procedures were performed under 
general anaesthesia induced using a combina-
tion of ketamine chlorhydrate (Ketalar, 0.08 
mL/100 g body weight; Pfizer Istanbul/Turkey) 
and 2% xylazine (Rompun, 0.04 mL/100 g body 
weight; Bayer Istanbul/Turkey). A monocortical 
bone defect was created on the left tibia in all 
animals. After moving the left leg into a flexion 
position, the overlying skin of the left tibia was 
shaved and disinfected with iodated alcohol. A 
1.5 cm incision was then made in the skin and 
muscle to expose the bone surface of the mid-
dle third of the tibia, where a monocortical 
defect was created on the wider region. A 1 mm 
diameter rod and a size 12 stainless steel den-
tal burr (Meisinger GmbH, Neuss, Germany) 
were used in a low-speed hand piece under 
constant sterile saline irrigation to create an 
oval bone defect measuring ~3 mm in width 
and 3 mm in length. The muscular layer was 
sutured with resorbable 5.0 catgut suture (Do- 
gsan, Trabzon, Turkey), and the skin was sutu- 
red with an interrupted 3.0 silk suture (Dogsan, 
Trabzon, Turkey). Upon completion of the surgi-
cal procedure, each animal received a single 
50 mg/kg dose of cefazolin sodium (Cefamezin; 
Zentiva/Turkey) via intramuscular injection.

Histopathological and biochemical evaluation

Following surgery, rats in each study group 
were sacrificed on day 28 using a high-dose 
combination of ketamine and xylazine. Bone 
regeneration and fibrotic healing were evaluat-
ed by histopathology. Histological samples 
were fixed in 10% formalin for 72 h and decalci-
fied in a 10% ethylenediaminetetraacetic acid 

solution for ~2 months. After decalcification 
was complete, dehydration was carried out in a 
graded alcohol series, and the samples were 
embedded in paraffin wax blocks. For each 
tibia defect, 4-5 μm-thick transverse sections 
were prepared. All slices were stained with hae-
matoxylin and eosin and Masson’s trichrome. 
Histological examination of the slides was car-
ried out using a light microscope. An experi-
enced pathologist evaluated all parameters 
using a histological scoring technique. The 
pathologist was blinded to the study groups to 
which each specimen belonged. Healed bone 
was observed at the repair stage of healing in 
all groups. Findings of fibrous tissue, cartilage 
tissue, immature ossification, and mature bone 
formation were observed in the groups. Accor- 
ding to these findings, a semi-quantitative clas-
sification of bone healing was used as follows 
(Table 2).

Statistical analysis

We used SPSS software (v. 15.0 for Windows) 
for statistical analysis. Determinative statistics 
are shown as numbers and percentages for 
categorical variables, and medians and inter-
quartile ranges. The categorical variable ratios 
were tested among the groups using χ2 analy-
ses. Multiple group comparisons of ordinal vari-
ables from two groups were carried out using 
Kruskal-Wallis H tests. Analyses of sub-groups 
were carried out with the Mann-Whitney U test 
and interpreted following Bonferroni correction. 
The statistical significance level was set at P < 
0.05.

Results

Histopathological findings: haematoxylin and 
eosin staining (Figure 1)

Minimal fibrous tissue development and bone 
marrow areas were observed around the defect 
gap in Group 1 (control; Figure 1A). A low level 
of new bone formation, fibrous tissue forma-

Table 2. Histological scoring table used for statistical analysis
Osteogenesis None 1 = 1 point = fibrous and cartilage tissue
Osteogenesis Weak 2 = 2 points = low trabecular bone with woven bone cells 
Osteogenesis Medium 3 = 3 points = trabecular bone with woven bone cells (immature bone)
Osteogenesis Good 4 = good trabecular bone with lamellar bone cells and compact bone 
Osteogenesis Perfect 5 = perfect trabecular bone with lamellar bone cells and compact bone (mature bone)
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tion, and bone marrow elements was observed 
in Group 2 (graft group; Figure 1B).

Fibrous tissue formation and new bone forma-
tion were observed around the graft in Group 3 
(laser group; Figure 1C). New lamellar bone for-
mation was observed between the areas of 
recovery in Group 4 (BMP-2 group); the areas of 
recovery were covered by bone marrow (Figure 
1D). In Group 5 (BMP-2/laser group), new bone 
formation was observed in the fibrous tissue 

areas around the graft and trabecular bone 
marrow areas were observed (Figure 1E).

Histopathological findings: Masson’s trichrome 
staining (Figure 2)

In Group 1 (control group), fibrous tissue areas 
were evident, with widespread collagen fibres 
observed; bleeding foci were observed between 
the bone marrow and fat tissue areas (Figure 
2A). Recovery with fibrous tissue was observed 

Figure 1. A-E. (H&E×10). Black arrow: fibrous tis-
sue, red arrow: new bone formation, yellow star: 
graft, black star: bone marrow, CB: compact bone.
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between the bone marrow areas around the 
graft, in addition to new bone formation, in 
Group 2 (graft Group; Figure 2B). In Group 3 
(laser group), new bone formation of the lamel-
lar structure, bone marrow, increased collagen 
fibres, and osteoblastic activity were observed 
(Figure 2C). Fibrous tissue development around 
graft areas and an increase in new bone forma-
tion were seen in Group 4 (BMP-2 group; Figure 
2D). In Group 5 (BMP 2-laser group), ossifica-
tion of the chondroid tissue around the defect 

area, an evident increase in bone formation, 
and slight fibrous tissue were observed (Figure 
2E).

Statistical findings

The prevalence of osteogenesis levels in all 
study groups is summarised in Table 3. A statis-
tically significant difference in the prevalence 
of histopathological osteogenesis scores was 
found among all groups (P < 0.001; Table 3; 
Figure 3).

Figure 2. A-E. (M&T×10). Black arrow: fibrous tis-
sue, red arrow: new bone formation, yellow star: 
graft, black star: bone marrow, CB: compact bone.
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A statistically significant difference was found 
in the mean histopathological scores of the 
amount of osteogenesis in all groups (P < 
0.001). While the mean score was not statisti-
cally significant between Group A and B (P > 
0.005), a statistically significant increase was 
detected among the mean scores of Groups C, 
D, and E when compared with the mean scores 
of Groups A and B (P < 0.005). While Group E 
had the highest mean score, no statistically sig-
nificant difference was detected between 
Group E and Groups C and D (P > 0.005; Table 
4; Figure 4).

tegration, leading to searches for other meth-
ods and materials [17]. These include the appli-
cation of BMP-2 and lasers. Although many 
studies have examined the effects of BMP-2 
and lasers on bone recovery, few studies have 
investigated their effects on graft materials 
applied to defect areas and their use in combi-
nation [18-20]. In this study, the effectiveness 
of BMP-2 and lasers on graft material applied 
in defect areas was examined.

In the literature, there are studies showing posi-
tive effects of BMPs on bone repair. Kuvat et al. 
performed a Le Fort 1 osteotomy in a patient 
with a class III defect, to whom they applied 
orthognathic surgery and 1 cc demineralised 
bone matrix + 20 mg ox collagen protein for 
rigidification between the segments to increase 
osteosynthesis. They then examined the recov-
ery period of the patient. Ossification of a struc-
ture showing trabeculation with osteoblastic 
and osteocytic activity, mimicking intramem-
branous ossification, was observed via histopa-
thology. Osteocytes were reportedly surround-
ed by osteoblasts and osteoclasts in the 
mesenchymal structure [21]. Harmut Feifel et 
al. reported that when they applied ProOsteon® 

Table 3. Prevalence of osteogenesis levels
GROUP A GROUP B GROUP C GROUP D GROUP E
n % n % n % n % n % p

Osteogenesis No 4 57.1 0 0.0 0 0.0 0 0.0 0 0.0 < 0.001
Poor 3 42.9 5 71.4 0 0.0 0 0.0 0 0.0
Fair 0 0.0 2 28.6 0 0.0 2 28.6 0 0.0

Good 0 0.0 0 0.0 5 71.4 5 71.4 2 28.6
Excellent 0 0.0 0 0.0 2 28.6 0 0.0 5 71.4

Table 4. Histopathological scoring of osteo-
genesis

Mean ± SD Median IQR p
GROUP A 1.4 ± 0.5 1 1-2 < 0.001
GROUP B 2.3 ± 0.5 2 2-3
GROUP C 4.3 ± 0.5*,β 4 4-5
GROUP D 3.7 ± 0.5*,β 4 3-4
GROUP E 4.7 ± 0.5*,β 5 4-5
*Different from Group A and βdifferent from Group B 
(Mann-Whitney U test with Bonferroni correction, P < 
0.005). (SD: Standart Deviation, IQR: Inter Quartile 
Range).

Figure 3. The prevalence of osteogenesis levels in all groups.

Discussion

In this study, we examined the 
effects of low-level laser and 
BMP-2 treatment, alone and in 
combination, on the recovery 
of a critical-dimension bone 
defect. Although autografts, 
xenografts, and synthetic ma- 
terials have long been used for 
the repair of bony defects, 
they are not sufficient solu-
tions to the problem. They 
have limited areas of use, high 
costs, difficulties in access, 
and they do not always yield 
the required result in osteoin-
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500 alone or in combination with Colloss® in a 
bony defect that they opened in rabbit femur 
and assessed bone recovery on days 28, 84, 
168, and 365, the application increased ossifi-
cation; however, this increase was not statisti-
cally significant [22].

It has been suggested that BMP-2 triggers the 
transformation of mesenchymal and root cells 
into osteoblasts and chondroblasts, and thus, 
increases new bone formation [23]. In this 
study, bone recovery in the BMP-2 group was 
higher than that in the control group and the 
group where only the graft was used. There is 
no clear measure of the BMP-2 dosage to be 
used for application, as different values have 
been reported in the literature [24-26]. Because 
we observed greater recovery in the groups 
that received BMP-2 alone and in combination 
with laser treatment than that in the control 
group suggests that the dosage of 0.2 mg/mL 
used in this study was sufficient. 

There are various uses of LLLI in the clinic [27, 
28]. Although its mechanism is not fully under-
stood, there are many in vivo and in vitro stud-
ies indicating that it has positive effects on 
bony defect recovery [29-31]. Studies on the 
bone regeneration-stimulating effects of LLLI 
are ongoing. LLLI increases bone mineralisa-
tion and the population of osteoblast cells [32, 
33]. It has been reported that the application of 

length [37]. LLLI has been studied using the fol-
lowing wavelengths: 588 nm, [38, 39] 780 nm, 
[40] 830 nm, [33, 41-43] 735 nm, [44] 808 
nm, [45] and 1064 nm [46, 47]. Use of the ‘cor-
rect’ wavelength is important for a specific indi-
cation; however, the ‘best’ wavelength for any 
particular indication has not yet been deter-
mined. Abo Elsaad et al. compared groups by 
applying bioactive glass and bioactive glass 
plus a laser together in the treatment of intra-
bone defects. They applied LLLI on days 0, 3, 5, 
and 7 device. A basic rule in the determination 
of treatment ranges is that several applications 
(3-5) per week at medium dosages are better 
than fewer applications at higher dosages [42]. 
In their study in which they assessed the effec-
tiveness of LLLI in intra-bone defects, Ozcelik 
et al. applied laser irradiation right after the 
operation and on days 1, 3, and 7 following the 
operation [38]. Further studies are needed to 
determine the most appropriate duration of 
irradiation. In our study, laser irradiation was 
applied right after the operation, and on days 1, 
2, 3, 4, 5, 6, and 7 postoperation. The applica-
tion of laser energy on these days demonstrat-
ed reliable results in tissue repair, and our 
results are consistent with others.

If laser irradiation is applied in the early period 
of recovery, it is more effective in the process 
by which the defect is filled. Brynes et al. exam-
ined the effects of LLLI on cutaneous wounds 

Figure 4. Histopathological scores of the amount of osteogenesis in all groups.

LLLI increases the amount of 
ATP, accelerates mitosis, cor-
rects tissue repair, stimu-
lates bone repair, balances 
the production of fibroblasts 
by normalising the accumula-
tion of collagen and elastic 
fibrils in tissue repair, inc- 
reases peripheral blood cir-
culation, and reduces anti-
inflammatory activity [34, 
35]. It was shown that LLLI 
played an important role in 
alveolar repair after tooth 
extraction and affected the 
processes of proliferation, 
differentiation, and calcifica-
tion in osteoblast cultures 
[36].

The effects of LLLI on cells 
depend on the laser wave-
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in a type II diabetes animal model. They indi-
cated that there was a significant level of devel-
opment in the histology of wound closure and 
wound recovery following laser application at a 
dosage of 4 J/cm² [48]. In their study that ex- 
amined wound healing after tooth extraction in 
a rat model, Takeda et al. applied LLLI with a 
GaAlAs laser in the area of extraction for 1 
week. It was determined that LLLI both incre- 
ased fibroblast proliferation and accelerated 
bone matrix formation [49]. In a clinical study 
by Amorim et al., in which they examined the 
recovery of the tooth gum after gingivectomy 
and LLLI, a 685-nm diode laser was applied 
immediately after the gingivectomy, 24 h later, 
and on Days 3 and 7, at an energy intensity of 4 
J/cm². A biometric examination indicated that 
LLLI was an effective auxiliary treatment [50]. 
In a study in which they examined the effects of 
LLLI on mouse femurs, Merli et al. applied a 
GaAlAs laser at a wavelength of 670 nm, a 
power of 15 mW, and a dose of 16 J/cm² at 0, 
24, 48, and 72 h, to the defects they created. 
Histological assessments of the subjects that 
were sacrificed on day 14 indicated that there 
was an increase in new bone formation in the 
group to which the laser was applied when 
compared with the control group [51].

Despite different treatment protocols, the 
aforementioned results were consistent with 
our study in terms of early bone recovery. The 
recovery was greater in both groups to which 
the laser was applied in our study versus the 
control group. In this study, as well as in other 
studies showing positive effects on bone recov-
ery, the bone recovery in the group to which the 
laser was applied showed the ‘best’ recovery 
after the group to which the laser in combina-
tion with BMP-2 was applied [3, 19, 52]. A full 
trabecular recovery was observed in Group 5, 
where the laser in combination with BMP-2 was 
applied. These results were consistent with 
Renno et al. and Khodra et al. [53, 54].

Conclusion

In conclusion, we determined that the use of 
LLLI and BMP-2 had positive effects on the 
osteointegration of graft material applied to 
bony defects formed in rat tibia and the repair 
of the defect. Laser application alone had a 
better effect than BMP-2 application alone, and 
the use of BMP-2 in combination with the laser 
yielded a still better result.
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