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Abstract: miRNAs are a family of small non-coding RNAs that participate in diverse biological processes and play an 
important role in tumor progression. Single nucleotide polymorphisms miRNA genes may influence the expression 
and biological function of some miRNAs. In this meta-analysis, we calculated the odds ratio (OR) and 95% confi-
dence interval (CI) for rs2292832 and its correlation with the risk of hepatocellular carcinoma (HCC) based on 1700 
cases and 2044 controls. Our results suggest that rs2292832is associated with the risk of HCC, TT/CT may play a 
conservative role in disease progression (T vs. C: OR=0.91, 95% CI=0.74-1.13, P=0.400, ph=0.008; TT/CT vs. CC: 
OR=0.80, 95% CI=0.67-0.95, P=0.013, ph=0.286; TT vs. CT/CC: OR=0.94, 95% CI=0.70-1.26, P=0.672, ph=0.018; 
TT vs. CC: OR=0.77, 95% CI=0.62-0.95, P=0.014, ph=0.068; CT vs. CC: OR=0.82, 95% CI=0.68-0.99, P=0.035, 
ph=0.799; CT vs. CC/TT: OR=0.94, 95% CI=0.82-1.07, P=0.330, ph=0.533).
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Introduction

Liver cancer is the fifth most frequent type of 
cancer, and accounts for almost 2.5% of deaths 
worldwide, together with other end-stage liver 
disease [1, 2]. Liver cancer can be divided into 
the following types [2, 3]: hepatocellular carci-
noma (HCC), cholangiocarcinoma (CCA), com-
bined or mixed HCC/CCA, hepatoblastoma, and 
others. HCC comprises most cases (70-85%) of 
liver cancer [1, 3]. With its rising incidence in 
many countries and a strong tendency towards 
hemorrhage, degeneration and necrosis [4], 
HCC mortality remains obstinately high. Early 
diagnosis can improve prognosis, so a proper 
process of surveillance with the aim of enhanc-
ing survival is actively being pursued. Currently, 
α-fetoprotein (AFP) serology, radiology and 
biopsy are the main diagnostic tests for HCC. 

AFP and ultrasound (US) surveillance shows a 
survival benefit over non-surveillance control, 
although for effective surveillance, AFP serolo-
gy lacks adequate sensitivity and specificity [4, 
5]. Radiology can help to assess the size, num-
ber, location and pathological changes in the 
nidus of tumors, however, contrast-enhanced 
US may confuse HCC and CCA [4], and contrast 
agents may have limitations in patients with 
renal insufficiency. Biopsy is considered a gold 
standard for diagnosis; it has some advantages 
in the diagnosis of small liver cancer, although 
it also has the risk of needle track seeding. 
Therefore, to screen for HCC as early as possi-
ble, optimized surveillance indicators are 
needed.

Genetic diagnosis has potential for screening 
the HCC-susceptible population, and may pro-
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vide a new dimension for its clinical treatment. 
To date, we have seen major advances in diag-
nostic biomarkers [6-9] and drug therapy [10-
15] for HCC, as well in other end-stage liver dis-
ease [16-18]. And genetic mutation may have 
great influence on the progress of HCC via dif-
ferent signalling pathway.

miRNAs are a family of endogenous non-coding 
RNAs of 19-25 bases. They participate in the 
translation and expression of hundreds of 
genes by combining specific mRNA sequences 
[19-21], thus having a close correlation with 
tumor occurrence, progression and prognosis. 
miRNAs participate in the regulation of many 
oncogenes and anti-oncogenes, and have a sig-
nificant influence on a variety of tumors includ-
ing HCC [14, 19, 20]. After intranuclear tran-
scription, primary miRNAs (pri-miRNAs) are 
sheared into hairpin ring, structured precursor 
miRNAs (pre-miRNAs) by Drosha and transport-
ed to the cytoplasm by exportin-5/RanGTP. pre-
miRNAs are matured by Dicer and combine 
with functional proteins to form RNA-induced 

We searched Pubmed, EBSCO, Embase, 
Cochrane Library, Web of Science, Science 
Direct, Ovid, and Wiley Online Library, using the 
terms “(rs2292832 or miRNA-149 or microRNA 
149) and (cancer or tumor or carcinoma)”. The 
latest data were from May 2015.

Inclusion and exclusion criteria

Duplicate studies were preliminarily excluded. 
Then, we ruled out studies that were: not about 
HCC or rs2292832 polymorphism; not in 
humans; not case-control original studies; or 
lacking detailed genotype and SNP phenotype 
data. Quality assessment was performed under 
a set of predetermined criteria [27, 28] (Table 
1), articles were considered as “high quality” 
when scoring ≥ 12, and all the internalized 
studies in our meta-analysis were under the 
Hardy-Weinberg equilibrium expectation in 
control.

Data extraction

Data were collected by two independent inves-
tigators using the standard criteria in Table 1, 

Table 1. Scale for quality assessment
Criterion Score
Source of cases
Selected from population or cancer registry 3
Selected from hospital 2
Selected from pathology archives, but without description 1
Not described 0
Source of controls
Population-based 3
Blood donors or volunteers 2
Hospital-based (cancer-free patients) 1
Not described 0
Case-control match
Matched by age and gender 3
Not matched by age and gender 0
Specimens used for determining genotype
White blood cells or normal tissues 3
Tumor tissues or exfoliated cells of tissue 0
Hardy-Weinberg equilibrium in controls
Hardy-Weinberg equilibrium 3
Hardy-Weinberg disequilibrium 0
Total sample size
    >1000 3
    >500 and <1000 2
    >200 and <500 1
    <200 0

silencing complexes, which regulate 
the translation and degradation of tar-
get mRNAs [21]. Single nucleotide 
polymorphisms (SNPs) in miRNA 
genes can contribute to dysfunction 
of miRNA processing or target binding 
by interfering pri-miRNAs, pre-miRNAs 
and mature miRNAs, which may influ-
ence tumorigenesis. Therefore, miR- 
SNPs have attracted our interest. 
rs2292832 is an SNP located on ch- 
romosome 2: 240456086, which is 
on the coding gene of hsa-mir-149 
(chr2: 240456001-240456089 [+], 
miRBase), and the latter is modified 
into mature sequence hsa-miR-149-
5p (hsa-miR-149) or hsa-miR-149-3p 
(hsa-miR-149*) to execute its specific 
biological function. There have been 
several case-control studies of hsa-
mir-149C>T (rs2292832) and its asso-
ciation with HCC, although they have 
reported divergent opinions on wheth-
er it has an influence on the risk of 
HCC [22-26]. Here, we carried out a 
systematic analysis of this question.

Materials and methods

Search strategy
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and they reached agreement on all items. A 
third reviewer participated in the discussion to 
resolve any problems when discrepancies 
occurred. The following data were obtained 
from the eligible studies (Table 2): authors’ sur-
name; publication year; country and ethnicity of 
the study population; sources of case-control; 
specimens and genotyping methods used for 
each study; total number and genotype distri-
bution of study population; p value for the con-
trol of Hardy-Weinberg equilibrium (HWE).

Statistical analysis

STATA version 12.0 (Stata Corporation, College 
Station, TX, USA) was used for data analysis, 
and helped us understand the association 
between rs2292832 polymorphism and the 
risk of HCC. We calculated the odds ratio (OR) 
and 95% confidence interval (CI) for different 
types of genetic model, as described previously 

check the heterogeneity among eligible stud-
ies, and heterogeneity was considered present 
at P<0.05. Then, we used the random-effects 
model (Der Simonian-Laird method), or else we 
used the fixed-effects model (Mantel-Haenszel 
method) to calculate combined OR [31, 32]. A 
sensitivity analysis was carried out to establish 
the contribution of each study to the overall 
heterogeneity when it occurred (Stata com-
mand: meta inf). To determine whether there 
was a publication bias, we used Egger’s test 
and Begg’s funnel plot for consultation [33], 
and P<0.05 for Egger’s test was considered to 
show significant publication bias.

Results

Study characteristics

We searched Pubmed, EBSCO, Embase, Coch- 
rane Library, Web of Science, Science Direct, 

Table 2. Characteristics of case-control study

Author Year Country Ethnicity HWE of 
control Genotyping methods Case/Control Quality score Reference

Kim 2012 Korean Asian 0.345 PCR-RFLP 159/201 12 [23]
Kou 2014 Chinese Asian 0.877 PCR-RFLP 270/532 12 [24]
Liu 2014 Chinese Asian 0.054 PCR 327/327 15 [25]
Wang 2014 Chinese Asian 0.863 Sequenom MassARRAY 944/984 16 [26]

Figure 1. Flow chart of study 
identification.

[29, 30]: allele model (T vs. C); 
dominant model (TT/CT vs. 
CC); recessive model (TT vs. 
CT/CC); homozygous model 
(TT vs. CC); heterozygous 
model (CT vs. CC); and com-
plete over-dominant model 
(CT vs. CC/TT). Subgroup an- 
alysis was performed for dif-
ferent countries.

Stata commands “metan” 
and “metagen” were used to 
calculate the pooled OR 
(P<0.05 was considered of 
statistical significance) and 
decipher the most plausible 
genetic model [29]. We used 
the χ2 test to calculate the p 
value of HWE in each control 
group of included studies, and 
P<0.05 was considered to 
show deviation from HWE. We 
use the χ2-based Q test to 
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Ovid, and Wiley Online Library, and retrieved 
136, 94, 178, 3, 104, 5451, 46, and 2322 
records, respectively (Figure 1). We excluded 
articles that had unrelated titles and/or 
abstracts. Next, meta-analyses and meeting 
abstracts were removed. Four studies including 
1700 cases and 2044 controls were used in 
our systematic analysis [23-26]. As shown in 
Table 1, all the included studies were of high 
quality and the frequency departures of the 
control in these studies are under the expecta-
tion of HWE. One of these four studies [23] was 

from Korea, while the other three [24-26] were 
from China, and we carried out a subgroup 
analysis by country to determine population-
based heterogeneity. 

Meta-analysis

There were 1700 cases and 2044 controls in 
our systematic analysis. The random-effects 
model were used for the allele model (ph=0.008) 
and recessive model (ph=0.018), as they both 
had an overall P value for heterogeneity of < 

Figure 2. Forest plot of hepatocellular carcinoma susceptibility associated with miR149 rs2292832 polymorphism 
in different genetic models. A. Allele model: T versus C; B. Dominant model: TT/CT versus CC; C. Recessive model: 
TT versus CT/CC; D. Homozygous model: TT versus CC; E. Heterozygous model: CT vs. CC; F. Complete overdominant 
model: CT vs. CC/TT.
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0.05, whereas the fixed-effects model was 
used for the dominant model (ph=0.286), 
homozygous model (ph=0.068), heterozygous 
model (ph=0.799) and complete over-dominant 
model (ph=0.533) (Figure 2). There was a sig-
nificant decrease in the risk of HCC for mutant 
genes versus wild-type among TT/CT versus CC 
(OR=0.80, 95% CI=0.67-0.95, P=0.013), TT 
versus CC (OR=0.77, 95% CI=0.62-0.95, 
P=0.014), and CT versus CC (OR=0.82, 95% 
CI=0.68-0.99, P=0.035). There was no signifi-
cant decrease in overall OR for T versus C 
(OR=0.91, 95% CI=0.74-1.13, P=0.400), TT 
versus CT/CC (OR=0.94, 95% CI=0.70-1.26, 
P=0.672), and CT versus CC/TT (OR=0.94, 
95% CI=0.82-1.07, P=0.330) (Figure 2).

In subgroup analysis based on countries, there 
was a strong association between rs2292832 
polymorphism and HCC susceptibility in 
Chinese people (Figure 2): TT/CT versus CC 
(OR=0.78, 95% CI=0.65-0.93, P=0.007, 
ph=0.302), TT versus CC (OR=0.73, 95% 
CI=0.58-0.90, P=0.004, ph=0.136), and CT 
versus CC (OR=0.81, 95% CI=0.66-0.98, 
P=0.030, ph=0.692). There was no association 
between polymorphism and HCC risk in the 
genetic models of T versus C (OR=0.84, 95% 
CI=0.69-1.02, P=0.086, ph=0.042), TT versus 
CT/CC (OR=0.89, 95% CI=0.77-1.03, P=0.108, 
ph=0.080), and CT versus CC/TT (OR=0.96, 
95% CI=0.84-1.11, P=0.600, ph=0.754). There 
was only one study on Korean people, there-
fore, we did not perform a similar analysis on 
this population.

Genetic model optimization

The Stata command metagen, which is based 
on logistic regression, was used to screen the 
optimized genetic model. We set “OR(CT vs. 

CC)=OR(TT vs. CC)” as the null hypothesis and 
achieved a supportable result for the hypothe-
sis: OR(CT vs. CC)=0.801, 95% CI=0.665-0.966, 
P=0.020; OR(TT vs. CC)=0.794, 95% CI=0.652-
0.967, P=0.022; ph=0.118; pgenetic model= 
0.095>0.05. As the null hypothesis was estab-
lished and both of the ORs≠1, we selected the 
dominant model as the most optimized for 
rs2292832 polymorphism in HCC [29]. 

Publication bias 

Egger’s test and Begg’s funnel plot were used 
to appraise the publication bias of the meta-

data. As shown in Figure 3, there was no signifi-
cant asymmetry under all genetic models using 
Begg’s funnel plot. Similarly, Egger’s test also 
did not find obvious bias among all the genetic 
models: T versus C (t=0.18, P=0.872), TT/CT 
versus CC (t=0.46, P=0.693), TT versus CT/CC 
(t=0.01, P=0.991), TT versus CC (t=0.53, 
P=0.652), CT versus CC (t=1.00, P=0.423), and 
CT versus CC/TT (t=-0.78, P=0.517).

Sensitivity analysis

Using the Stata command metainf, we assessed 
the statistical robustness by deleting one study 
at a time to calculate the OR, and compared it 
with the original pooled OR. The results show 
that no individual studies significantly influ-
enced overall OR (Figure 4).

Discussion

Modulation of miRNAs may have a critical influ-
ence on the progression of HCC, by regulating 
cellular differentiation, proliferation, apoptosis, 
invasion and metastasis; thus, some of them 
should be considered as oncogenes or tumor 
suppressor genes, which may be potential tar-
gets for diagnosis and therapy [14, 34]. hsa-
mir-149 acts as an oncogene or tumor sup- 
pressor gene in different types of carcinoma. 
Ke et al. [35] found that miR-149 acted as a 
tumor suppressor by inhibiting expression of 
forkhead box M1 in non-small-cell lung cancer. 
Wang [36] also found that miR-149 inhibited 
proliferation and cell cycle progression in 
human gastric cancer by partially targeting the 
zinc finger and BTB domain holding 2 onco-
genes (ZBTB2). Others showed that miR-149 
suppressed apoptosis by directly regulating 
PUMA expression or through adjusting the mito-
chondrial network, and may act as an oncogene 
[37]. There are also inconsistent results on the 
function of miR-149* in different carcinomas. It 
may induce apoptosis of HeLa cells and the 
Be2C neuroblastoma cell line by inhibiting Akt1 
and E2F1 [38]. In contrast, miR-149* increases 
the expression of Mcl-1 by targeting glycogen 
synthase kinase-3α and resistance to apopto-
sis in melanoma cells, thus, it functions as an 
oncogene and p53-responsive miRNA [39]. 
There are still gaps in our knowledge of how 
miR-149 and miR-149* work in HCC. One study 
found that miR-149 inhibited the proliferation 
and tumorigenicity of HCC by targeting the AKT/
mTOR pathway [40]. This reminds us that SNPs 
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Figure 3. Begg’s funnel plot for publication bias test. A. Allele model: T versus C; B. Dominant model: TT/CT versus CC; C. Recessive model: TT versus CT/CC; D. 
Homozygous model: TT versus CC; E. Heterozygous model: CT vs. CC; F. Complete overdominant model: CT vs. CC/TT. Each point represent a separate study for the 
indicated study. OR means odds ratio, Log OR is the nature logarithm of OR, and the horizontal line represent size of effect.
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Figure 4. Sensitivity analysis for the influence on pooled OR by each study. A. Allele model: T versus C; B. Dominant model: TT/CT versus CC; C. Recessive model: TT 
versus CT/CC; D. Homozygous model: TT versus CC; E. Heterozygous model: CT vs. CC; F. Complete overdominant model: CT vs. CC/TT. Each study was omitted to 
caculate the specific OR, which presented by circles above. Dashed lines were used to represent each 95% CI correspondingly. 
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on miR-149 gene may lead to changes in its 
regulation pathway in HCC, either by affecting 
expression of miR-149/miR-149* or some 
other unknown pathways. In the present study, 
we found that rs2292832 polymorphism may 
have a significant influence on the risk of HCC, 
especially in the Chinese population. Compared 
to people with wild-type CC, those with TT/CT 
genotype had a lower risk of HCC in the domi-
nant model, which may be the optimized model 
selected by logistic regression. In the homozy-
gous and heterozygous models, our results 
also suggest that wild-type CC may have an 
association with higher susceptibility to HCC 
compared to TT and CT genotypes. In contrast, 
there was no significant difference in the allele, 
recessive and complete over-dominant models. 
The random-effects model was used to calcu-
late the OR in the allele model for its ph=0.008, 
and we could not reduce the heterogeneity to a 
acceptable range, even through subgroup anal-
ysis, so we can not overlook the associated 
error. Therefore, a large case-control study and 
further investigation of the pathway for how 
rs2292832 mutation influences HCC progres-
sion are still required.

Our meta-analysis had some limitations. First, 
although 1700 cases and 2044 controls were 
included, the sample size was still too small 
because we only had four studies in the meta-
analysis. Second, although we did not find a 
single study that had a significant influence on 
the overall OR based on sensitivity analysis, 
heterogeneity remains in our genetic models. 
Third, there exist the bais that brought by lan-
guage and grey literatures we couldn’t avoid. 
Fourth, we did not take into account the envi-
ronmental influence on individual gene expres-
sion because of a lack of relevant data. Lastly, 
we did not draw any reliable conclusion on 
whether different genotyping methods would 
have influenced the test results.

In conclusion, hsa-mir-149C>T (rs2292832) 
may have a significant influence on the risk of 
HCC, and TT/CT may play a conservative role in 
disease progression. This may help us find an 
earlier screening method for HCC, which can 
improve prognosis. Further studies on the 
rs2292832 polymorphism and its relationship 
with HCC are still required.
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