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Abstract: Extensive protein cross-linking and aggregation are some of the most common molecular events in the 
pathogenesis of Alzheimer’s disease (AD). Both β-amyloid (Aβ) plaques and neurofibrillary tangles, which are 
extracellular and intracellular proteinaceous aggregates, respectively, contribute to neuronal death and 
progressive cognitive decline. Although protein cross-linking has been recognized and extensively studied for 
many years, the underlying mechanisms are largely unknown. Recent data indicates that tissue transglutaminase 
(tTG), which catalyzes the cross-linking of a wide spectrum of proteins including Aβ, tau, α-synuclein and 
neurofilament proteins, may be involved in protein aggregation in AD. Many AD risk factors, such as trauma, 
inflammation, ischemia and stress, up-regulate tTG protein and activity levels. In this review, we summarize the 
evidence that tTG plays a role in AD, especially in cross-linking of Aβ, tau, α-synuclein and neurofilament proteins. 
An experimentally testable hypothesis is that tTG may play a central role in AD pathogenesis and that it provides a 
conceptual link between sporadic and familial AD through a shared pathogenic pathway. 
Key Words: Tissue transglutaminase (tTG, TG2), Alzheimer’s disease, β-amyloid (Aβ), tau, α-synuclein, 
neurofilament proteins, protein cross-linking. 
 
 
Introduction 
 
Alzheimer's disease (AD) affects millions of 
people worldwide with, unfortunately, ever 
increasing incidence. Currently there is no cure 
for this devastating disease, and even 
symptomatic relief remains modestly effective. 
Underlying the behavioral and cognitive 
decline of AD is the progressive neuronal dys-
function and ultimately cell death by processes 
that are not fully understood. 
 
Grossly, the brain of AD usually shows atrophy 
with reduced volume and weight due to 
extensive loss of neurons in the neocortex. 
Histologically, the most remarkable and 
consistent morphological features are the 
neuritic senile plaques and neurofibrillary 
tangles (NFTs) [1]. The major proteinaceous 
component of the plaques is the extensively 
cross-linked β-amyloid (Aβ) with non-amyloid 
components comprising the core of the 
plaques [2, 3]. Mature NFTs are composed of 
aggregates of hyperphosphorylated tau [4, 5] 

and many other proteins, such as ubiquitin [6-
8] and neurofilaments [9-11]. The mechanism 
underlying the extensive protein cross-linking 
in AD is still unknown, but tissue trans-
glutaminase (tTG) has been implicated in this 
process [12, 13]. In this review, we will focus 
on the potential biological significance of tTG 
in the pathogenesis of AD. 
 
Tissue Transglutaminase 
 
Tissue transglutaminase (also known as TG2, 
EC 2.3.2.13) is a member of the Ca++-
dependent transglutaminase (TG) family that 
catalyzes protein cross-linking [12, 14, 15] 
(Figure 1). The γ-glutamyl-ε-lysine isopeptide 
bond formed by the action of these enzymes 
produces highly insoluble protein complexes 
that are extremely stable, showing resistance 
to 2% SDS and 8M urea or enzymatic 
degradation [14, 16]. These protein scaffolds 
may stabilize the structural integrity of the 
dying cells before their clearance by 
phagocytosis, thus preventing the nonspecific 
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Figure 1 Simplified scheme of tTG-catalyzed isopeptide formation between glutamine and lysin in a calcium-
dependent manner. Glutamyl residue in one protein molecule serves as acyl donor or amine acceptor, and lysyl 
residue in another protein serves acyl acceptor or amine donor. With calcium, tTG catalyzes a covalent cross-
linking between the proteins by forming γ-glutamyl-ε-lysine isopeptide bond. Modified from Greenberg CS et al 
[12]. 
 
 
release of harmful intracellular components 
such as lysosomal enzymes, nucleic acid, and 
the resulting inflammatory responses. 
 
Nine different TGs have been identified in 
mammals and human [17-19] including TG C 
[20, 21], K [22], E [23], P [24], X [18], factor 
XIII [14, 17] and Band 4.2 protein [25, 26]. 
These enzymes are subject to various post-
translational modifications such as 
phosphorylation, fatty acylation and proteolytic 
cleavage which regulate the activity and 
subcellular distribution of the enzyme under 
different biological conditions [27, 28]. The 
tTG gene encodes a monomeric protein 
composed of 685-691 amino acids in human 
and other vertebrates [29-33] with a 
calculated molecular weight of about 80 kDa, 
although a shorter form of tTG might also exist 
[34]. The human tTG gene has been mapped 
to chromosome 20 and includes 13 exons and 
12 introns [35, 36]. General features of 
members of the TG family and detailed 
biochemistry of tTG have been summarized in 
several recent reviews [37, 38]. 
 
The x-ray crystal structure of human tTG 
complexed with GDP at 2.8-Å resolution 
showed that the monomer has four distinct 
domains that are quite similar to Factor XIII 
[39-41]. These include an N-terminal β-
sandwich domain, a transamidation catalytic 
core, and two C-terminal barrels (Figure 2). 
These features suggest a structural basis for 
the negative regulation of transamidation 
activity by the bound nucleotide, and positive 
regulation of transamidation by Ca++ [41]. With 
truncated tTG-GST fusion protein, it was found 
that the N-terminal β-sandwich domain and 
the catalytic domain are required for tTG 
enzymatic activity, while the C-terminal barrels 
are not [42]. 

Tissue TG is particularly interesting due to its 
wide spread expression in many tissues 
including brain. It is expressed in both central 
and peripheral nervous systems [43-47]. In 
brains, tTG is localized mostly in the 
cytoplasmic compartment of neurons [43, 48, 
49], although it can also be found in nuclei 
and extracellular matrix [19]. Growing data 
suggests that tTG is involved not only in some 
physiological processes such as differentiation 
and apoptosis but also in multiple pathological 
processes such as wound healing and 
neurodegenerative diseases by producing 
protein conjugates [50-58]. Among all 
members of the TG family, tTG is one of the 
most extensively studied and has been 
implicated in multiple human diseases 
including AD [59]. 
 
Many AD Risk Factors Induce Expression of 
tTG 
 
Since the majority of cases of AD are sporadic 
without a clear genetic cause, and an even a 
large percentage of familial cases cannot be 
explained by the overproduction of Aβ, multiple 
factors, especially environmental factors are 
likely involved in the pathogenesis of AD. In 
fact, traumatic brain injury [60, 61], aging [62-
64], inflammation [65, 66], ischemic damage 
(infarcts and ischemia) [67-71] and brain 
stress [72-75] have all be shown to increase 
the risk of AD. Many of them overly induce tTG 
expression and/or activity. 
 
Tissue TG is Increased in Brain after Trauma 
 
For many years, traumatic brain injury (TBI) 
has been associated with enhanced AD risk 
[76-78]. Epidemiological evidence and 
retrospective clinical studies implicated TBI as 
a common preceding event prior to AD [79, 
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Figure 2 Schematic representation of the structural domains of transglutaminase, amino acid residue distribution 
region of the catalytic core and Ca++-binding domain. The scheme was drawn based on the data from Liu S. et al 
[42] with reference to [37, 38]. 
 
 
80], especially in those without ApoE4, a 
known genetic risk factor for AD [81-83]. 
Dementia pugilistica (DP) is a progressive 
memory disorder that occurs after repeated 
head trauma in professional boxers. It is 
characterized by NFTs that are composed of 
hyperphosphorylated tau protein indis-
tinguishable from NFTs in AD brains. Animal 
studies have shown that TBI induces cognitive 
impairment [84-86] and at an ultrastructural 
level increases deposition of Aβ [87]. 
Abnormal tau proteins isolated from DP brains 
were indistinguishable from the six abnormally 
phosphorylated brain tau isoforms in AD brains 
[88]. These data supports the notion that TBI 
increases susceptibility to AD [89, 90]. There 
are a variety of other similarities between TBI 
and AD including highly aggregated Aβ that is 
typically resistant to proteolytic degradation 
[91]. These aggregated Aβ species found in AD 
[92] can also be found in various TBI animal 
models [87, 93, 94]. In a study on human 
subjects, significantly more Aβ immuno-
reactive neurons were observed after head 
injury than controls [95]. The levels of Aβ was 
increased in the cerebrospinal fluid of patients 
after severe brain injury and remained 
elevated for some time after the initial event 
[78]. Extensively aggregated and phos-
phorylated tau is detected in rat brain after 
traumatic injury. In this model, normal-looking 
neurons in the telencephalon and brainstem 
were immunoreactive for phosphorylated tau 
six months after injury. Cortical neuronal 
counts gradually decreased, with up to 42% 
decrease at 6 months after injury [94]. These 
data suggests that recurrent TBI may cause DP 
through pathological mechanisms similar to 
those seen in AD. A single TBI may increase 
susceptibility to sporadic AD decades after the 
event. 
 
Tissue TG is usually up-regulated in injured 
tissues, which suggests that it plays a role in 

wound repair [96-98]. In model of spinal cord 
ischemia, overall TG activity increased 
transiently and then declined to control levels 
after one week [99]. After injury of superior 
cervical ganglion or vagus nerve, TG activity 
was also increased [100, 101]. Recent studies 
have shown that both tTG mRNA and protein 
are up-regulated after TBI [102]. While 
increased tTG synthesis and activation under 
such circumstances is part of the normal 
protective cellular response contributing to 
tissue homeostasis by stabilization of the 
extracellular matrix and cellular integrity, 
pathologic protein cross-linking may also occur 
as seen in AD. 
 
Tissue TG is Up-Regulated in Brain with 
Ischemia, Inflammation and Other Cell 
Stresses 
 
In addition to TBI, other AD risk factors such as 
ischemia, inflammation and cell stress [64, 
65, 68, 72, 73, 103-105] induce tTG 
expression or activity. Focal brain infarct elicits 
inflammation in the lesion and the surrounding 
brain tissues with a rapid up-regulation of pro-
inflammatory cytokines such as TN F-α and IL-
1β [106]. Both TNF-α and IL-1β can induce tTG 
expression in cultured cells [107]. After global 
cerebral ischemia in gerbils, tTG activity was 
followed by incorporation of [3H]-putrescine 
into dimethyl-casein throughout the 48 hours 
of reperfusion following a 3 minute occlusion. 
In experimental animals, significant increases 
were found in the ischemic hippocampus at 
24 hours of reperfusion, while minor changes 
were observed in the cortex. Both RT-PCR and 
western-blot demonstrated a substantial up-
regulation of tTG in the ischemic hippo-
campus, suggesting that tTG is part of the 
tissue stress response after global brain 
ischemia/reperfusion [108]. Increased 
expression of tTG at both mRNA and protein 
levels was also seen following middle cerebral 

Int J Clin Exp Pathol (2008) 1, 5-18 7 



Wang et al/Tissue Transglutaminase and AD 

artery occlusion in rats [109]. Tissue TG mRNA 
level peaked on day 5 after injury in the 
ipsilateral cortex. However, in the ipsilateral 
hippocampus, tTG induction peaked 1 day 
after injury and to a lesser extent than 
observed in the ipsilateral cortex. Western blot 
analysis demonstrated that tTG protein 
expression progressively increased from day 1 
to day 7 after ischemia, with greater 
expression in cortex than hippocampus. These 
results demonstrate that tTG mRNA and 
protein expression increases significantly after 
ischemic injury. The temporal profile of tTG 
induction after ischemia was similar to that 
observed in TBI animal model [102], 
suggesting a similar role of tTG in both 
pathological conditions [109]. 
 
Tissue TG can also be induced by cerebral 
inflammation [106] and brain stress induced 
by glutamate excitotoxicity, calcium influx, 
oxidative stress, inflammatory cytokines and 
UV exposure [110]. These data suggests that 
Aβ can also induce tTG expression, possibly 
through effects on cellular redox status or 
calcium flux. There are indications that 
activated tTG redistributed to the plasma 
membrane [110]. At this location, tTG may 
play an active role in excitotoxic neuronal cell 
death, a likely component of acute central 
nerve system (CNS) injury and chronic CNS 
neurodegenerative disease [111, 112]. 
 
Tissue TG Catalyzes the Cross-Linking of 
Critical Proteins of AD Pathology 
 
The most characteristic pathological structures 
of AD pathology are senile plaques and NFTs 
[1] (Figure 3A and B). The major components 
in senile plaques are Aβ1-40 and Aβ1-42. 
Some senile plaques have a condensed core 
that contains truncated α-synuclein fragments 
[2, 113]. Small amounts of neurofilaments can 
also be found in plaques [114]. The dominant 
component of NFTs is the hyperphospho-
rylated tau, a microtubule binding protein 
[115-117]. Recently, α-synuclein had also 
been found in NFTs [118-120]. So far, all of 
those major components found in senile 
plaques and NFTs have been shown to be 
substrates of tTG. 
 
The first suggestion that tTG may play a role in 
AD was made by Selkoe and colleagues [121] 
when they showed tTG can covalently cross-
link neurofilament proteins into insoluble 
polymers in vitro by forming γ-glutamyl-ε-lysine 

intermolecular bridges. Later studies indicated 
that tTG can catalyze cross-linking of Aβ [122], 
amyloid precursor protein (APP) [123-127], tau 
[128-135] and α-synuclein [134, 136, 137] in 
addition to neurofilament proteins. 
 
Tissue TG Cross-Links Aβ and APP 
 
Several years after a potential link between 
tTG and AD was suggested [121], Ikura and 
colleagues reported that tTG could cross-link 
synthetic Aβ1-28 in vitro exclusively through 
Lys16 [123]. This finding was quickly extended 
to the Aβ1-42 [124] and APP [138] by 
independent groups. Using the incorporation 
of site-specific probes followed by enzymatic 
digestion and sequencing of tracer-containing 
fractions, Lys16, Lys28 and Gln15 in Aβ were 
all susceptible to cross-linking by tTG [139]. Aβ 
cross-linking catalyzed by tTG could be 
inhibited by specific inhibitors (e.g., dansyl-
cadaverine and spermine) and non-steroidal 
anti-inflammatory drugs (e.g., indomethacin, 
meclofenamic acid, diflunisal and salicylic 
acid) [140]. Immunochemical demonstration 
of tTG in amyloid plaques in AD brains 
suggests a role in plaque formation by cross-
linking Aβ or other components [141]. The in 
vivo data demonstrating a direct link between 
tTG and cross-linking of Aβ are still missing. 
 
Tissue TG Cross-Links tau 
 
Tau protein is an excellent substrate of TG and 
tTG both in vitro and in vivo [126]. Dudek and 
colleagues showed that in the presence of TG 
tau formed macromolecular complexes that 
were insoluble in ionic detergent, β-
mercaptoethanol, guanidine-HCl and urea. 
Furthermore, they demonstrated that the 
filamentous tau aggregates had increased 
immunoreactivity to the monoclonal antibody 
Alz-50 [126]. To determine which domains of 
tau were modified by tTG, [3H]-putrescine-
labeled tau was digested with chymotrypsin. 
Mass spectrometric analysis demonstrated 
that tau was modified at only one or a few 
discrete sites, primarily in the carboxyl half of 
the molecule. Thus, cross-linking is selective 
for only a subset of the many glutamine 
residues in tau. Furthermore, a tau deletion 
construct (T264) containing a portion of the 
microtubule binding domain, which is normally 
a substrate of TG, cannot be cross-linked. This 
provides evidence that the cross-linking may 
be conformation-dependent [142]. 
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Figure 3 Characteristic structures of AD brain. (A) Senile plaque (arrowhead) and senile plaque with a condensed 
core (arrow) and (B) neurofibrillary tangles (arrows) (silver staining x 400). 
 

Similar observations were reported by another 
group who used purified tTG from guinea pig 
liver to cross-link recombinant human tau 
protein [143]. Cross-linking site analysis of 
human tau (tau23 and tau40) showed that 
eight glutamines can function as amine 
acceptor residues, with two major sites at 
Gln351 and Gln424. In addition, 10 lysine 
residues were identified as amine donors, 
most of which are clustered adjacent to the 
microtubule binding repeats of tau in regions 
known to be solvent accessible in filamentous 
tau [144]. When over-expressed in cultured 
SH-SY5Y cells, tTG was co-immunoprecipitated 
with tau [145]. Recently, tau protein cross-
linking catalyzed by TG was further confirmed 
in P301L tau transgenic mice [135]. Studies 
on human specimens indicate that tTG may be 
involved in cross-linking of tau pathology seen 
in AD brains. A study performed on frozen 
prefrontal cortex of 9 AD and 9 age- and 
postmortem interval-matched controls showed 
that total TG activity was significantly higher in 
AD compared to controls. Tissue TG protein 
levels determined by quantitative immuno-
blotting were elevated approximately 3-fold in 
AD compared to controls. Interestingly, there 
were no significant differences in TG activity or 
tTG protein levels in the cerebellum from the 
same panel of samples between control and 
AD cases [146]. Furthermore, the level of 

isopeptide bonds, the catalytic product of tTG, 
was increased in AD brains compared to 
controls [147, 148]. In one study, a 
statistically significant (45%) elevation in ε-(γ-
glutamyl)-lysine cross-links was found in AD 
when compared to control cortex [147]. Using 
single- and double-label immunofluorescence 
confocal microscopy and immunoaffinity 
purification and immunoblotting, another study 
found isopeptide bonds in NFTs and paired 
helical filament tau early in AD. The number of 
neurons that are immunoreactive with the 
antibody against ε-(γ-glutamyl)-lysine bonds 
was significantly higher in AD cortex compared 
with age-matched controls and schizophrenics 
[148]. 
 
TG activity, including tTG, may also play a role 
in NFTs seen in progressive supranuclear palsy 
(PSP) brains [149]. We double-stained AD 
brains with anti-tau and anti-isopeptide 
antibodies which showed that tau and 
isopeptide co-localized in many, although not 
all, tangle-bearing neurons (Figure 4A, Wang 
DS et al: unpublished data). Some amyloid 
plaques also showed colocalization of 
isopeptide and Aβ, but the intensities of 
isopeptide immunostaining were relatively 
weaker (Figure 4B). This may reflect further 
protein degradation in plaques, epitope 
masking or partially stronger immunostaining  
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Figure 4 A. Isopeptides and tau protein co-localized in neurofibrillary tangles. The section was stained with mouse 
monoclonal anti-isopeptide antibody manually first with HRP-DAB. Then the section was treated with DAKO double 
staining kit followed by CP13 antibody with AP-NACP for color-development. Brown is isopeptide and blue is tau. 
Arrows indicate tangle-bearing neurons stained by both anti-isopeptide and anti-tau antibodies. B. Isopeptide and 
Aβ double-staining show colocalization of both proteins in the plaques (arrows) and NFTs (arrow head). The 
intensities of isopeptide in plaques are relatively weaker that are potentially due to further protein degradation in 
this type of lesions during the relative lengthy morphogenesis compared to structures like NFT. Magnification: 
200 x. 
 

of very abundant Aβ. Together, the available 
data suggests that TG, especially tTG, could be 
a contributing factor in NFT formation. 
 
Tissue TG Cross-Links α-Synuclein 
 
Alpha-Synuclein, an intracellular neuronal 
protein and a synaptic marker, is also a 
common substrate of tTG. A 35-residue 
peptide derived from α-synuclein is a major, 
non-Aβ component (NAC) of plaques [3, 150, 
151]. It is usually localized to the condensed 
core of the amyloid plaques [152]. TG 
catalyzes the formation of covalently linked 
NAC polymers in vitro as well as polymers with 
Aβ. The tTG-reactive amino acid residues in 
NAC are Gln79 and Lys80. Lys80 is localized 
in a consensus motif Lys-Thr-Lys-Glu-Gly-Val, 
which is conserved in the synuclein gene 
family [134]. Purified tTG catalyzed α-synuclein 
cross-linking, leading to the formation of high 
molecular weight aggregates in vitro. Over-
expression of tTG resulted in formation of 
detergent-insoluble α-synuclein aggregates in 
cellular models. Immunohistochemical studies 
on postmortem brain tissue confirmed the 
presence of TG-catalyzed ε-(γ-glutamyl)-lysine 
isopeptide in the halo of Lewy bodies in 
Parkinson's disease and dementia with Lewy 
bodies, co-localizing with α-synuclein [136]. 
Furthermore, both tTG protein and isopeptide 
coimmunoprecipitated with α-synuclein in 

extracts of PD substantia nigra. The isopeptide 
was detected in both α-synuclein monomer 
and its higher molecular weight oligomers, 
indicating this modification was early in Lewy 
body formation [137]. Interestingly, we and 
others found α-synuclein and tau co-exist in 
many NFTs or Lewy body-like structures, 
usually with an α-synuclein core surrounded by 
tau-positive periphery [119, 120, 153]. This 
indicates α-synuclein cross-linking and 
aggregation may be an initial event which 
precedes tau aggregation in the morpho-
genesis of Lewy bodies and NFTs [120]. 
 
Tissue TG and Isopeptide are Increased in AD 
Compared to the Age-Matched Controls 
 
Recently we showed that tTG and tTG activity 
are elevated in AD brains compared to controls 
[37, 48, 154]. As discussed above, iso-
peptides have been found in plaques [141] 
and tangles [148]. Our recent study showed 
that levels of tTG, tTG activity and isopeptide 
immunoreactivity in brain homogenates 
correlate inversely with neuropsychological 
test scores reflective of overall cognitive 
function (Wang DS et al: manuscript in 
preparation). In these brains, tTG and tTG 
activity were increased compared to age-
matched normal controls. Isopeptide levels 
showed a more robust inverse correlation with 
clinical cognitive measures than tTG or tTG 
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Figure 5 Hypothetical mechanisms for the role of tTG in AD pathogenesis. Increased brain tTG induced by multiple 
factors such as trauma, inflammation and ischemic injury will cross-link protein like α-synuclein (ASN), Aβ and tau. 
In sporadic AD, increased Aβ due to trauma, inflammation and ischemia will further increase tTG levels. 
Aggregated Aβ may serve as a long-term chronic stimulant for the tTG and keep the pathogenic process going 
even after the initial factors no longer present. In familial AD (FAD), excessive production Aβ may be sufficient to 
increase tTG and initiate AD pathogenesis, with or without additional factors seen in sporadic AD. FAD: familial 
Alzheimer’s disease; SAD: sporadic Alzheimer’s disease. 
 

activity. This suggests that although tTG and 
its activity are increased during AD 
pathogenesis, this increase may be limited or 
may reach a steady-state level, but that 
isopeptide immunoreactivity, the product of 
tTG activity, may continue to increase and 
accumulate during the disease process. The 
results suggest that accumulation of cross-
linked protein gradually results in neuronal 
dysfunction and cognitive decline. 
 
Although insoluble and 70% formic acid-
extractable isopeptide correlated with both 
neuropathological and neuropsycho-logical 
data, total isopeptide levels in crude 
homogenate only showed significant 
correlation with some neuropsychological, but 
not neuropathologic measures (Wang DS et al: 
unpublished data). It is likely that formic acid-
extractable isopeptides are derived from 
insoluble end-stage structures such as neuritic 
plaques and NFTs. Thus, one would expect a 
robust correlation with neuropathological 
measures (e.g., plaque and tangles counts) as 

well as clinical cognitive data. On the other 
hand, total isopeptide immunoreactivity 
includes isopeptides from other proteins that 
may not be present in insoluble lesions. It is 
tempting to speculate that these soluble 
isopeptide-containing proteins may contribute 
to neuronal dysfunction independent of 
plaques and tangles. 
 
Hypothetical Role of tTG in AD Pathogenesis 
 
Based on the above studies, we propose a 
hypothetical mechanism for the role of tTG in 
AD pathogenesis (Figure 5). Increased brain 
tTG induced by environmental factors such as 
brain trauma, inflammation and ischemic 
injury will lead to cross-linked proteins, such as 
α-synuclein [119, 120, 155], Aβ [124, 125] 
and tau [147, 148]. Increased production of 
Aβ due to trauma, inflammation and ischemia 
in sporadic AD or overproduction of Aβ in 
familial AD due to mutations in presenilin or 
APP will increase the stress in brain and 
further up-regulate tTG, causing a feed-forward 

Int J Clin Exp Pathol (2008) 1, 5-18 11 



Wang et al/Tissue Transglutaminase and AD 

response. Aggregated Aβ may serve as a long-
term chronic stimulant for tTG and perpetuate 
the pathogenic process [157]. During this 
chronic process, neuronal cells are gradually 
lost, which leads to progressive cognitive 
decline. Reversal or attenuation of this protein 
cross-linking and aggregation may help slow 
cognitive decline and neurodegeneration in 
AD. Future research is needed to establish the 
sequence of events after initiating factors are 
no longer present. In familial AD, the stress 
due to the excessive production of Aβ alone 
may be sufficient to increase brain tTG and 
initiate AD pathogenesis, with or without 
additional factors needed to initiate the 
pathogenic cascade in sporadic AD. 
 
Summary 
 
Extensive protein cross-linking and aggre-
gation involving a variety of proteins are 
commonly occurring molecular processes 
during the pathogenesis of AD [156]. The 
initiating factors are likely to be environmental 
insults (e.g., trauma, inflammation or ischemic 
damage) that lead to increased tTG activity 
and increased cross-linking for tau, Aβ and 
other molecules, which leads to functional 
impairment, structural lesions characteristic of 
AD (e.g., plaques and tangles) and eventually 
neuronal death. If the relationship between 
increased tTG and deleterious cross-linking of 
proteins such as α-synuclein, tau and Aβ are 
critical to AD pathogenesis, therapeutic 
measures should be developed to manipulate 
tTG protein and activity levels. 
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