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Abstract: Giant cell tumor of bone (GCTB) is a benign but locally aggressive bone tumor of young adults. It typically 
presents as a large lytic mass at the end of the epiphysis of long bones. Grossly it is comprised of cystic and 
hemorrhagic areas with little or no periosteal reaction. Microscopically areas of frank hemorrhage, numerous 
multinucleated giant cells and spindly stromal cells are present. Telomeric fusions, increased telomerase activity 
and karyotypic aberrations have been advanced as a proof of its neoplastic nature. However such findings are not 
universal and can be seen in rapidly proliferating normal cells as well as in several osseous lesions of 
developmental and/or reactive nature, and the true neoplastic nature of GCTB remains controversial. The 
ancillary studies have generally not reached to the point where these alone can be taken as sole diagnostic and 
discriminatory criteria. While giant cells and stromal cells have been extensively studied, little attention has been 
paid to the overwhelming hemorrhagic component. If examined carefully intact and partially degenerated red 
blood cells are almost invariably seen in many giant cells as well as in the stroma. While hemorrhage in many 
patients may be resolved without leaving any trace over time, in some it gives rise to giant cell formation, and in 
others it may lead to proliferation of fibroblasts and histiocytes. At times one sees xanthomatous cells due to 
intracytoplasmic cholesterol deposits and sharp cholesterol clefts. Individual genetic makeup, local tissue factors 
as well as the amount of hemorrhage may play a key role in the final effects and outcome. Malignancy usually 
does not occur in GCTB and when discover, it usually represents primary bone sarcomas missed at original 
diagnosis. Embolization therapy to curtail hemorrhage and insertion of cement substance to support matrix are 
helpful in reducing recurrences. Aneurysmal bone cyst (ABC) shares many features with GCTB. There had been 
unique karyotypic changes in some aneurysmal bone cysts making it distinct from GCTB. However these changes 
may be in the endothelial cells which are quite different from stromal or giant cells. It had been concluded that 
the poor matrix support to the vessels may lead to frequent and profuse intraosseous hemorrhage attracting 
blood-derived monocytes with active conversion into osteoclasts, resulting in GCTB formation. On the other hand, 
dilatation of the thin-walled blood vessels results in formation of ABCs. If hemorrhagic foci are replaced by 
proliferation of fibroblasts and histiocytes, then a picture of fibrous histiocytic lesion is emerged. Enhanced 
telomerase activity and karyotypic aberrations may be necessary for rapid division of the nuclei of the giant cells 
in order to be able to deal with significant in situ intraosseous hemorrhage. 
Key Words: Giant cell tumor, bone, osteoclastoma, aneurysmal bone cyst, osteoclast, hemorrhage, bone matrix, 
telomerase 
 
 
Introduction 
 
The giant cell tumor of bone (GCTB) is a benign 
but locally aggressive bone tumor of young 
adults of 20-40 years of age. It constitutes 
about 4-5% of all bone tumors and about 18% 
of all benign bone tumors. It is slightly more 
common in females. Chinese have a slightly 
higher incidence of GCTB, up to 20% of all 
benign tumors of bone. The tumor presents as 
a large lytic mass of the epiphysis of long 
bones, particularly lower femur, upper tibia 

and lower radius (Figure 1).  
 
GCTB is generally considered a true neoplastic 
condition with well-defined clinical, radiological 
and histopathological features [1, 2]. 
Radiologically, it is usually lytic and expansile 
without prominent peripheral sclerosis and 
periosteal reaction [3]. Some pathologists 
consider it a low grade or potentially malignant 
neoplasm [4-6]. The tumor is locally aggressive 
and destructive, and it tends to recur after 
simple curetting. In addition to its 
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Figure 1 A lytic expansile lesion with multiple septae 
involving the first metacarpal bone. The tumor was 
histologically proven GCTB. 
 
 
frequent association with aneurysmal bone 
cyst (Figure 2) and slightly higher incidence in 
Paget’s disease of bone, many lesions closely 
mimic GCTB. These include brown tumor in 
hyperparathyroidism, expansile metastasis 
from renal cell carcinoma and thyroid 
carcinoma, hemophilic pseudotumor with 
hemorrhage, Infestation of bone by a hydatid 
cyst and telangiectatic osteosarcoma. 
 
The histopathology of GCTB is characterized by 
frank and marked hemorrhage, numerous 
giant cells and stromal cells [2, 7]. The 
hemorrhage gives rise to the characteristic 
grossly lytic picture. Many workers have totally 
ignored this component and did not 
emphasize the role of multinucleated giant 
cells in the removal of hemorrhage although 
such is observed in different pathological 
lesions such as adenomatous goiter, brown 
tumor of hyperparathyroidism and giant cells 
in reparative granulomas. The giant cells are 
considered reactive while stromal cells are 
considered “true” neoplastic cells with little or 
any justification. There had been a lot of 
debate about the origin of both types of cells. 
There is now agreement that giant cells are 
circulating monocytes in origin which have 
converted into osteoclasts after acquiring 
some unique features and gene expressions in 
osseous environment. These conclusions are 
based on various light, ultrastructural and 
immunological markers [8-12]. On the other

  
 
Figure 2 Tibia showing a lytic expansile lesion with 
septae consistent with aneurysmal bone cyst. 
 
 
hand, the stromal cells are generally regarded 
as fibroblasts secreting type I and III collagen 
and having parathormone receptors [13-18]. 
 
Giant cells have the characteristic features of 
several mycobacterial, fungal and parasitic 
diseases as well as sarcoidosis and foreign 
bodies. Several non-infectious and non- 
granulomatous pathological lesions other than 
GCTB also contain large number of giant cells; 
most if not all of these are considered reactive 
rather than neoplastic. 
 
In this article we will briefly review various 
concepts and proposals about the origin of 
GCTB, giant cells and stromal cells in GCTB. 
Based on these as well as on our own 
experience and observations, we consider 
GCTB a non- neoplastic albeit aggressive 
reactive “tumor” which most likely originates 
on the basis of hemorrhage resulting from 
weak local vasculature, which in turn could be 
due to local defect in the supporting matrix. In 
this regard aneurysmal bone cyst (ABC) and 
some fibrous histiocytic growths share the 
same etiopathogenesis with dominance of 
different morphological components, i.e., giant 
cells in GTCB, markedly dilated vessels in ABC 
and prominent fibroblasts and histiocytes in
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  Table 1 Etiological, gross and microscopic comparison of various giant cell-rich lesions 
Lesion  Cause  Gross features  Microscopic features Comments  
GCTB Matrix and / vessel 

collagen defect 
leading to poor 
support to the vessels 
and hemorrhage  

Large lytic and 
destructive  
lesion in the 
epiphysis  

Predominantly 
multinucleated giant cells 
each containing red cells 
and their components. Foci 
of hemorrhage and 
activated stromal cells 

Not a true neoplastic 
tumor. Reactive tumor 
due to hemorrhage, 
large number of giant 
cells and reactive 
stromal cells 

ABC Matrix and / vessel 
collagen defect 
leading to poor 
support to the vessels 
and predominantly 
markedly dilated 
vessels and some 
hemorrhage 

Markedly 
ballooned 
vessels giving 
rise to a “cyst” 
appearance  

Large thin-walled, markedly 
dilated vessels and 
evidence of hemorrhage 
and few giant cells.  

Not a true neoplastic 
tumor. Reactive 
condition due to thin- 
walled dilated vessels 
which in turn are 
mostly due to poor 
support of the matrix 
suggesting a primary 
matrix defect in 
epiphyseal area 

Fibro-
histiocytic 
lesion  

Predominantly stromal 
cell response to foci of 
hemorrhage  

Local osseous 
density  

Proliferation of active 
fibroblasts and histiocytes. 

Not a true neoplastic 
tumor. Reactive 
condition due to 
excessive fibro-
histiocytic stimulation 
and proliferation  

 
 

 
 

fibrous histiocytic lesions. 
 
Hormonally-induced hyper-dynamic metabolic 
events may also lead to hemorrhages giving 
rise to lesions similar to GCTB notwithstanding 
in more widespread and diffuse patterns. 
Excessive parathormone thus causes osteitis 
fibrosa cystica and brown tumor very closely 
resembling GCTB microscopically. Likewise 
reparative granuloma of head and neck region 
may have similar pathogenesis. Thyroid gland 
under iodine deficiency stress and rebound 
stimulation undergoes hypervascularity which 
on palpation gives rise to hemorrhage and 
hemosiderin-containing giant cells in 
adenomatous goiter. If the process is not 
reversed in time, exuded red cells and plasma 
leads to fibrosis converting diffuse goiter into 
multi-nodular goiter. 
 
Origin of Giant Cells and Stromal Cells 
 
Except for true neoplastic and dysplastically 
malformed giant cells, almost all other giant 
cells are of macrophage lineage (Table 1). 
With repetitive nuclear divisions 
unaccompanied by cytoplasmic division, 
multinucleated giant cells are formed. This 
process may require heightened telomerase 
activity and some gene rearrangement. 
Exposure to certain infectious agents and 
endogenous or exogenous foreign substances 
bring about several conformational and 

enzymatic changes in macrophages. 
Exogenous foreign bodies and released 
endogenous unexposed substances are 
frequent causes of giant cell transformation of 
macrophages. These include hemorrhages 
(red cells and plasma), cholesterol, keratin, 
hair, milk secretion, sperms and mucin etc. 
Sometimes the inciting agent of giant cell 
transformation of the macrophages is not 
clearly identified, e.g. sarcoidosis. A cell may 
enlarge due to enzyme deficiency leading to 
unprocessable excessive accumulation of 
endogenous substances e.g. Gaucher's [19] 
and Neimann-Pick cells containing 
glucocerebroside and sphingomyelin due to 
corresponding deficiency of 
glucocerebrosidase and sphingomylinase, 
respectively. At times congenital 
malformations and hamartomas may contain 
large "dysplastic" (malformed) cells, e.g., 
cortical heterotopias. Tumors, both benign and 
malignant may contain tumor giant cells, e.g., 
pheochromocytoma, large cell anaplastic 
carcinoma of thyroid [20, 21] and Hodgkin 
lymphoma; the last may be due to viral 
induction [22]. 
 
The giant cells in GCTB appear to be 
transformed circulating monocytes, many if 
not all of which have converted into active 
osteoclasts (see below). The stromal cells in 
GCTB appear to be activated fibroblasts.  Like 
giant cells, stromal cells may become 
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Figure 3 Hemorrhage in GCTB giving rise to myriads of pathological lesions (Reproduced with permission from 
International Journal of Pathology). 
 
 
activated from hemorrhage-induced release of 
red cells and plasma proteins into the matrix. 
As there is increased telomerase activity in 
rapidly proliferating normal tissue, e.g. 
epidermis, endometrium and lymphocytes, 
increased telomerase activity and prevention 
of shortening of the telomeres is 
understandable in rapidly proliferating giant 
cells and may not necessarily indicate a true 
neoplastic nature.  
 
Hemorrhage 
 
Hemorrhage in different tissues may give rise 
to various manifestations [23-27]. These 
include edema, fibroblast activation and 
fibrosis if hemorrhage persisted, macrophage 
and multinucleated giant cells with ingested 
red blood cells, hemosiderin and cholesterol 
clefts, xanthomatous cells, and tissue 
destruction such as necrosis, cystic formation, 
dystrophic calcification and ossification. To 
various degrees, these pathological changes 
can be seen in the different pathological 

conditions, such as adenomatous goiter, 
brown tumor in hyperparathyroidism and GCTB 
(Figure 3). 
 
Intact, fragmented and degenerated red cells, 
hemoglobin, hemosiderin and cholesterol 
derived from hemorrhage are invariably seen 
in the cytoplasm of the giant cells of the GCTB 
(Figure 4A). The giant cells are particularly 
prominent around the areas of hemorrhage as 
if they are sipping and siphoning blood from 
these areas (Figure 4B). Adjacent to the foci of 
hemorrhage, dilated vessels (Figure 4B) and 
markedly edematous stroma are frequently 
encountered. As the hemorrhage usually 
causes tissue damage and necrosis, it is 
conceivable that some trabecular bone matrix 
is exposed to the giant cells (Figures 4C and 
4D). This may induce changes of physical 
conformation, gene expression and enzymatic 
activities in giant cells transforming them into 
osteoclasts (Figures 4E and 4F). Significant 
configuration modulation and modification and 
new gene expression perhaps occur. Rapid, 
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Figure 4 A. GCTB showing the three important components, i.e., multinucleated giant cells, stromal cells and large 
foci of hemorrhages (H&E x 100). B. Many multinucleated giant cells sipping blood at a hemorrhagic bay in a 
GCTB (H&E x 100). C. Small aneurysmally dilated vessels with areas of hemorrhages and scattered 
multinucleated giant cells around in a GCTB (H&E x 100). D. Red cells ingested by the giant cells in a GCTB (H&E x 
400). E. Interaction between hemorrhage and giant cells (H&E x 400). F. Fine needle aspiration cytology of a 
GCTB. Multinucleated giant cells with engulfed red blood cells. Also note several single nucleated giant cells 
(monocytes) (H&E x 400). 
 
 
sustained and significant division of the nuclei 
may require enhanced telomerase activity.  
 
From Giant Cells to Osteoclasts 
 
There are many morphological and 
cytochemical similarities between giant cells of 
GCTB and osteoclasts [28]. These include 

abundant calcitonin receptors [29], response 
to calcitonin with a rise in cyclic adenosine 
monophosphate [30], capability of forming 
resorption pits on bone slices in a manner 
identical to that of osteoclasts [31], ruffled 

borders and clear zones, ultrastructural 
features that are characteristic of the 
osteoclast, have been seen on these giant 
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cells forming resorption lacunae [32] and 
positive for tartrate-resistant acid phosphatase 
[33]. In addition, the giant cells of GCTB 
express the same macrophage-associated 
antigen profile as the osteoclasts [34, 35], a 
feature particularly useful in distinguishing the 
giant cells of GCTB from giant cells in other 
giant-cell-rich tumors and tumor-like lesions of 
bone, such as non-ossifying fibroma and 
aneurysmal bone cyst [36]. The only other 
tumor in which giant cells have been reported 
to show an identical osteoclast-like phenotype 
is giant-cell granuloma of the jaw [37]. The 
commonly employed technique of cell culture 
on bone slices to determine evidence of 
lacunar resorption was first carried out with 

se of cells isolated from a giant-cell tumor of 

t

nerally accepted that 

u
bone [38].  
 
Based on he above facts and several 
experiments in contrary to the previous beliefs 
[39], it is now ge
osteoclasts are formed by circulating 
monocytes [40-50].   
 
Parathormone in GCTB 
 
Parathormone plays a significant role in the 
differentiation of immature precursors to 
mature osteoclasts as well as their conversion 
to multinucleated cells [51-56].  Prostaglandin 
E2 also has been reported to be involved in the 
timulatory effects of other hormones and s

cytokines [46, 54, 57-60].   
 

Parathormone has several known effects on 
osteoclasts. These include proliferation of 
osteoclast, formation of osteoclast precursors 
from monocytes as well as differentiation of 
osteoclast precursors to functional osteoclasts 
[61, 62].  However these studies do not 
explain the effect of frequent hemorrhage. In 
fact, many cytokines and other active chemical 
mediators are plasma and/or red cell-derived. 
The hemorrhages may result in 
neovascularization to support increased 
osteoclastic activity. The newly laid vessels 

asily rupture and bleed being too fragile and 
adenomatous goiter.  

interleukin-8 [63, 64], which could further 
recruit more monocytes into the tumor, which 

e
weak as seen in 
 
Stromal Cells  
 
It has been proposed that the stromal cells of 
GCTB release chemokines such as 
macrophage chemo-attractant protein 1 and 

then can transform into mature osteoclasts.  
 
It seems quite likely that the hemorrhage may 
stimulate and activate the stromal cells to 
secrete these chemokines. On the other hand 
it is also possible that some of the chemokines 
attributed to stromal cells might have derived 
from plasma itself. Within GCTB samples, 
expression of high levels of mRNA encoding 
osteoclast differentiation and activation factor 
(ODF) and its receptor RANK, as well as tumor 
necrosis factor-related apoptosis-inducing 
ligand (TRAIL) was found. In a small series of 
tumors, a relationship between expression of 
the relative levels of ODF and TRAIL, in terms 
of the corresponding level of osteoprotegerin 
(OPG), with the degree of bone lysis by these 
tumors in vivo has been observed. The 
synthesis of interleukin-6 and interleukin-11, 
both products of stromal cells and osteoblasts, 
is stimulated by parathormone, 1, 25-
dihydroxyvitamin D3, and parathormone- 
related peptide [65].  
 
Local Environment 
 
Localized abnormal resorption of bone may 
result from a variety of causes including 
neoplasm, inflammatory lesion, parathormone-
induced changes, abnormal collagen matrix, 
dilated vessels and hemorrhage. 
  
Neoplastic and inflammatory cells release 
numerous cytokines, prostaglandins, and 
other local factors that enhance the bone-
resorptive activity of mature osteoclasts [66-
68]. This effect is mediated indirectly by 

osteoblasts. They also release proteases that 
degrade organic matrix covering osseous 
surfaces, expose mineralized matrix, and thus 
activate osteoclastic bone resorption [69, 70]. 
The release of prostaglandins, cytokines, and 
growth factors by inflammatory and tumor 
cells may also act on osteoblasts and stromal 
cells to regulate the formation of osteoclasts 
from monocytes.   
 
Macrophages are a major component of the 
host cellular response to neoplastic and 
inflammatory lesions in bone [71-74]. Tumor-
associated macrophages derived from primary 

carcinomas of the lung in humans and of the 
breast in mice [35, 75, 76], as well as 
inflammatory foreign-body macrophages 
derived from granulomas induced by the wear 
particles of implanted biomaterials [77, 78], 
have all been shown to be capable of 
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Figure 5 Proposed mechanism of conversion of monocytes into active osteoclasts in GCTB.  

 
 
osteoclastic differentiation. The tissue 
macrophages are heterogeneous in terms of 

their morphology, function, immunophenotype, 
and enzyme histochemistry [79]. This 
heterogeneity is also reflected in their 
proliferative potential; approximately 5% of 
tissue macrophages are capable of further 
division [80]. Rapid extensive osteolysis is 
seen in association with a pronounced foreign-
body macrophage response to the formation of 
numerous wear particles from implanted 
biomaterials [81, 82]. Inflammatory 
granulomas are known to contain an 
increased number of such phagocytes with 
proliferative potential [83].  
 
Vascular Factor 
 
Several workers have suspected angiogenic 
nature of the tumor which had prompted some 
workers to try calcitonin [84, 85] because this 
hormone inhibits bony resorption and there is 
a presumption that the osteoclast plays a role 
in this tumor. Similarly, Interferon alfa-2a is an 
angiogenesis inhibitor. It slows endothelial 
migration [86] and inhibits angiogenesis in 
vivo [87]. Interferon is known to inhibit mRNA 
and protein production of the two known 
angiogenic factors, β-FGF and interleukin-8 

[88]. There are reports of using interferon to 
control giant cell tumors of the long bones [89, 
90]. VEGF and MMP-9 expression in osteolytic 
lesions of bone correlates well with the extent 
of bone destruction and local recurrence [91]. 
 
The questions had been asked that how 
stromal cells of GCTB recruit osteoclast 
precursors. It is suggested that stromal 
derived factor-1 (SDF-1) is one of the 
significant chemoattractant factors involved in 
the recruitment of hematopoietic osteoclast 
precursor cells (monocytes) during tumor-
induced osteoclastogenesis [12]. Our proposal 
is that hemorrhage provides fresh monocytes 
as well as plasma proteins. The plasma 
proteins stimulate both homed monocytes and 
stromal cells. The activated stromal cells in 
turn may facilitate conversion of giant cells 
into active osteoclasts (Figure 5).   
 
Genetic Abnormalities  
 
The lack of telomere shortening, increased 
telomerase activity and karyotypic aberrations 
are generally considered “proof” of neoplastic 
nature of a neoplasm. In one study, telomeric 
fusion was the most striking random 
chromosomal abnormality detected in 6 of 20 

Int J Clin Exp Pathol (2008) 1, 489-501 495



Haque and Moatasim/Giant Cell Tumor of Bone 
 

GCTB cases which raised the possibility of 
being useful in predicting the biologic behavior 
of these neoplasms [92]. In another study, the 
activity varied and was less than that observed 
in HeLa [93]. One study concluded that 
microsatellite instability does not appear to 
play a role in the tumorigenesis of GCTB [94]. 
Even normal rapidly proliferating tissue, e.g. 
endometrium, epidermis and lymphocytes 
have been shown to contain heightened 
telomerase activity. On the other hand, several 
non-neoplastic bone conditions, e.g. ABC, 
fibrous histiocytic reaction and osteo-
chondroma (exostosis) have been shown to 
contain high telomerase activity. The giant 
cells are known for their rapid proliferation and 
multiplication of nuclei and hence increased 
telomerase activity and fusion of telomere will 
be rather expected in these conditions and do 
not necessarily indicate neoplastic nature of 
the GCTB. Telomere length reduction was 
observed in 69% of the GCTB [95]. In one 
study, 3 of the 5 cases showed telomeric 
fusions of 11pter. These findings support the 
concept that telomeric instability is 
responsible for a large degree of intratumor 
heterogeneity and serves as a precursor lesion 
to subsequent clonal structural aberrations of 
chromosome 11 in GCTB [96]. Other studies 
also presented similar findings [97, 98]. 
 
GCTB and ABC: Are They Related?  
 
ABC is considered a non-neoplastic expansile 
lesion consisting of blood-filled spaces 
separated by connective tissue septa 
containing bone or osteoid and osteoclast 
giant cells. It arises in 1/3rd cases of 
preexisting bone tumor, suggesting that the 
lesion arises in abnormal osseous matrix. It 
may arise in GCTB, chondroblastoma, 
chondromyxoid fibroma, osteoblastoma, or 
fibrous dysplasia. Less often it may arise from 
osteosarcoma, chondrosarcoma, and 
hemangioendothelioma [99, 100]. Recently 
various studies have claimed that 
chromosomes 16q22 and 17p11-13 are 
nonrandomly involved in at least some ABCs. 
This was not found in any of 17 secondary ABC 
associated with GCTB, chondroblastoma, 
osteoblastoma and fibrous dysplasia [101]. 
Similarly, among 38 patients with ABC, clonal 
chromosomal abnormalities were seen in 12 
specimens. Karyotypic anomalies of 17p, 
including a complex translocation and 
inversion, were identified in eight of these 12 
specimens [102]. The crucial question is 

whether these aberrations can be taken as a 
substantial proof for the true neoplasm nature 
of ABC or these can be seen in reactive rapid 
proliferation of various cells particularly 
endothelial cells and mesenchymal cells. It 
would be rather unwise to separate ABCs into 
primary versus secondary as it will be very 
hard to draw the lines.  
 
The exact etiology of ABC is unknown. In one 
case series, antibody to factor 8 stained the 
edge of ABC cavities in almost all cases, and 
antibodies to VEGF-C, GLUT-1, and smooth 
muscle actin stained the edge of the cavities 
in approximately half the cases. Antibodies to 
D2-40 and CD34 also stained the edge of the 
cavities in some cases. These results suggest 
that the cavities in ABCs are related to 
vasculature and support the theory that 
vascular injury may be important in the 
pathogenesis of ABC [103].   
 
Microcysts and blood-filled spaces, similar to 
those seen in aneurysmal bone cysts can be 
seen in central giant cell granulomas, fibrous 
dysplasia, ossifying and cementifying fibromas, 
Paget's disease of bone, osteosarcomas and 
rarely in fibrosarcoma. It is postulated that the 
initiating process of the aneurysmal bone cyst 
is the microcyst, which forms as a result of 
intercellular edema in a primary lesion with 
loose, unsupported stroma. Rupture of vessels 
into the microcysts introduces blood under 
haemodynamic pressure. With little resistance 
provided by the stroma, the blood spaces 
resorb the surrounding bone and lift the 
periosteum, which produces a thin shell of 
new bone [104].  
 
We believe that ABCs are formed due to direct 
or indirect (e.g. poor matrix support) vascular 
weakness. This could be due to direct 
endothelial damage or could be indirectly due 
to defective collagen matrix of vessels or 
surrounding parenchyma or both. Lack of 
sufficient support always leads to aneurysmal 
dilatation as seen in adult polycystic kidney 
where vessels in addition to tubules are 
dilated giving rise to frequent cyst formation, 
hemorrhage and loose yet pressurizing matrix. 
Similar telengiectatic vessels can be seen in 
prolonged steroid treatment in skin biopsies. 
Vitamin C deficiency-induced vascular collagen 
weakness leads to frequent sub-periosteal 
hemorrhage. The thin-walled vessels are 
markedly dilated over time and may give rise 
to balloon-like swellings in the bone, i.e. 
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aneurysmal bone cysts. These fragile vessels 
are easy to rupture. The extravasated RBCs 
and plasma stimulate fibroblast proliferation. 
Some of the monocytes start engulfing large 
number of red blood cells. These can be seen 
in the pictures of the most of the reported 
cases of GCTB. We have seen several cases of 
GCTB and never failed to see the intact, 
fragmented and partially dissolved red blood 
cells ingested by the giant cells. As some of 
these monocytes convert into active 
osteoclasts, bone resorption ensues. Hence a 
classical GCTB may emerge. With passing 
time, it may be difficult to identify thin-walled 
blood vessels. However, a diligent search will 
not fail in finding some dilated thin-walled 
vessels. Depending upon the relative quantity 
of giant cells, aneurysmally dilated vessels and 
fibrohistiocytes, the tumor may appear as 
GCTB, ABC or fibrous histiocytoma of bone, 
respectively (Figure 3)  
 
Many times the histopathological findings may 
be a mixture of all components and the 
differential diagnosis of GCTB not surprisingly 
would include central giant cell granuloma, 
ABC and osteitis fibrosa cystica (brown tumor) 
[105].  As very few GCTBs are malignant, i.e. 
the malignant tumor with giant cells reaction, 
multiple fine needle aspiration cytology (FNAC) 
from different areas would rule out such 
possibility. FNAC brings out a large number of 
giant cells as well as stromal cells. The 
malignant cells from osseous lesions are 
easily and readily picked up by FNAC [106-
110]. FNAC thus may play an important role in 
conservative management of this lesion. 
 
Malignant GCTB?  
 
Although GCTB had been divided into benign, 
border line and malignant, we believe that the 
malignant lesions represent other malignant 
tumors, e.g. osteogenic sarcoma from the very 
beginning with prominent areas of hemorrhage 
and giant cell formation. In almost all these 
instances, the original malignant tumor is 
overshadowed by the giant cell reaction and 
missed by the pathologist. We agree with 
Rosai [7] that the presence of giant cells 
should prompt a diligent search for atypical 
cells in order not to miss the malignant lesion, 
e.g. osteogenic sarcoma if present.   
 
Conclusion 
 
Based on review of the literature and our own 

observations, GCTB is not a true neoplastic 
lesion. Like many other giant cell-containing 
conditions, these appear to be a local reactive 
condition i.e. non-neoplastic tumor secondary 
to hemorrhage. The hemorrhage could be in 
turn due to defective collagen in the matrix 
and/or in the vessel wall. Defective vessels 
and hemorrhage in other conditions e.g. 
parathormone induced brown tumors could 
have similar microscopic appearance. 
Defective collagen also may cause aneurysmal 
dilatation of the vessels leading to ABC. 
Fibrosis is a natural general sequel of long 
standing edema and hemorrhage; hence some 
hemorrhagic foci may lead to fibrohistiocytic 
foci. Hemorrhagic foci through hormonal and 
other chemical influence give rise to similar 
lesions, e.g. brown tumor of hyper-
parathyroidism.  We conclude that GTCB is a 
non-neoplastic reactive condition based 
primarily on significant intraosseous 
hemorrhage which in turn could be due to poor 
local osseous matrix support to the vessels. 
Various karyotypic and telomerase related 
findings could be a reflection of physiological 
proliferation of giant cells and nuclei within 
giant cells as well various matrix cells under 
influence of exuded plasma. A genetic 
predisposition obviously at different levels i.e. 
osseous matrix and tendency to form copious 
giant cells can not be ruled out. As defective 
vessels and hemorrhage can be controlled by 
newer modalities such as laser and hormone 
therapies, further studies are requires for a 
conservative management of these lesions. 
 
Please address all correspondences to Professor 
Anwar Ul Haque, Head, Department of Pathology, 
Pakistan Institute of Medical Sciences (PIMS) G 
8/3, Islamabad 44000, Pakistan. Tel: 2294099; 
Email: haque_8888@hotmail.com  
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