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Abstract: Tumor metastasis is the main cause of death in patients with oral squamous cell carcinoma (OSCC). 
Epithelial-to-mesenchymal transition (EMT) is potentially associated with metastasis and histological grading in 
OSCC. Therefore, the discovery of new strategies to inhibit EMT is potentially valuable for the development of thera-
pies for OSCC. In our previous study, we found that miR-222, which is up-regulated in OSCC, regulates the biological 
behavior of OSCC cells by targeting the p53-upregulated modulator of apoptosis (PUMA); however, the effect of 
miR-222 on TGF-β1-induced EMT in OSCC cells is unclear. In this study, OSCC cell lines CAL-27 and Tca-8113 were 
incubated with 5 ng/ml of TGF-β1 to inhibit the expression of E-cadherin, promote the expression of N-cadherin, 
vimentin, and α-SMA and stimulate achange in cell shape convert from a “cuboidal” epithelial structure into an 
elongated mesenchymal shape. We found that the expression of miR-222 was up-regulated during TGF-β1-induced 
EMT in OSCC cells. In addition, miR-222 knockdown reversed TGF-β1-induced EMT by targeting PUMA. Our findings 
indicate that miR-222 plays an important role in OSCC, potentially serving as a novel therapeutic target for the treat-
ment of OSCC.
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Introduction

Oral cancer, a type of head and neck cancer of 
the oral cavity, is one of the most common can-
cers worldwide [1] and is recognized as a global 
public health threat. Smoking, alcohol use, and 
human papillomavirus (HPV) infection are the 
major risk factors for oral cancer, with smoking 
and alcohol consumption exerting synergistic 
effects [2]. In china, betel quid chewing contrib-
utes significantly to the risk of oral cancer [3]. 
Oral squamous cell carcinoma (OSCC), which 
represents more than 90% of oral cancers, is 
the most frequent of all cancers of the oral cav-
ity [4]. Although local OSCC maybe effectively 
controlled by surgical excision and radiothera-
py, once metastasis has occurred, no effective 
treatment is available and the mortality rate is 
significantly elevated [5]. Tumor metastasis is 
the main cause of death in patients with oral 
cancer. The invasion of tumor cells is a com-
plex, multistage process. 

Epithelial-mesenchymal transition (EMT) is a 
crucial event required for the dissemination of 
cells from epithelial tumors: in malignant epi-
thelial cancers, epithelial cells lose their polari-
ty and acquire a mesenchymal phenotype; this 
is followed by detachment from the basement 
membrane, which facilitates migration [6, 7]. 
Multiple pleiotropic cytokines and several sig-
naling pathways are involved in this process. In 
addition, the expression of epithelial markers 
E-cadherin is down-regulated and the expres-
sion of mesenchymal markers V-cadherin, vi- 
mentin, and α-SMAis up-regulated during EMT. 
EMT is potentially associated with metastasis 
and histological grading in OSCC [8]. The inhibi-
tion of EMT by over-expressing miR-204 and 
P120 ctn has been shown tosuppress the 
migration and invasion of cancer cells in OSCC 
[9, 10]. Therefore, the development of strate-
gies targeting EMT is necessary for successful-
ly treating OSCC.
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MicroRNAs (miRNAs) aresmall non-coding RNA 
molecules, containing approximately 22 nucle-
otides, that suppress gene expression bybind-
ing directly to the mRNA 3’-UTR [11, 12]. Pr- 
evious studies have shown that miRNAs regu-
late the expression of various oncogenes and 
tumor suppressors that play important roles in 
metastasis and tumor progression in OSCC 
[13, 14]. Recent research has shown that miR-
221/222 promotes EMT in breast cancer and-
non-small cell lung cancer [15, 16]. In our previ-
ous study, we found that miR-222, which was 
up-regulated in OSCC, regulates the migration 
and invasion of OSCC cells by targeting p53- 
upregulated modulator of apoptosis (PUMA)
[17]; however, the effect of miR-222 on EMT in 
OSCC cells is unclear. In this study, we aimed to 
clarify the effect of miR-222 on TGF-β1-induced 
EMT in OSCC cells, and to elucidate the under-
lying molecular mechanism.

Materials and methods

Cell culture and stimulation

The OSCC cell lines CAL-27 and Tca-8113 were 
cultured in DMEM supplemented with 10% 
FBS, penicillin (100 U/ml), and streptomycin 
(100 μg/ml) (Gibco, Carlsbad, CA, USA). All cells 
were maintained at 37°C in a humidified incu-
bator with 5% CO2 atmosphere. For experi-

mRNA levels of E-cadherin, N-cadherin, vi- 
mentin, α-SMA, PUMA, and phosphatase and 
tensin homolog (PTEN), RT-PCR was perform- 
ed using the PrimeScript RT Reagent Kit with 
cDNA Eraser (Takara, Dalian, China) and qPCR 
was performed using SYBR Premix Ex Taq 
(Ta-kara, Dalian, China), with 18s rRNA as an 
internal control. The primer sequences used for 
qRT-PCR are shown in Table 1. Gene expres-
sion was analyzed using the Applied Biosystems 
7500 system (Applied Biosystems, Warrington, 
UK), measured in triplicate, quantified using the 
2-ΔΔCT method, and normalized to that of a 
control.

Western blot

The protein levels of E-cadherin, N-cadherin, 
vimentin, α-SMA, PUMA, and PTEN were deter-
mined by western blot. Protein extracted from 
Tca-8113 and CAL-27 cells was centrifuged at 
14,000 g for 20 min at 4°C. The protein con-
centration was determined using a Pierce BCA 
protein assay kit (Thermo Scientific, Rockford, 
IL, USA). Proteins were resolved by SDS-PAGE 
on a 10% gel and transferred to a PVDF mem-
brane. Membranes were blocked with 5% non-
fat milk in TBS for 3 hours and incubated with a 
1:1,000 dilution of anti-E-cadherin, anti-N-cad-
herin, anti-vimentin, anti-α-SMA, anti-PUMA, 
and anti-PTEN (all obtained from Cell Signaling 

Table 1. Primer sequences for qRT-PCR
Primer Primer sequence (5’-3’)
E-cadherin Forward CCCACCACGTACAAGGGTC
E-cadherin Reverse CTGGGGTATTGGGGGCATC
N-cadherin Forward CTAATGGTCGGCGTATCTACT
N-cadherin Reverse CGTAAGATGGAGGAACATCA
Vimentin Forward CGCCAGATGCGTGAAATGG
Vimentin Reverse ACCAGAGGGAGTGAATCCAGA
α-SMA Forward GTGAAGCAGCTCCAGCTATG
α-SMA Reverse CGTCCCAGTTGGTGATGATG
18s rRNA Forward CCTGGATACCGCAGCTAGGA
18s rRNA Reverse GCGGCGCAATACGAATGCCCC
hsa-miR-222 Reverse Transcription CTCAACTGGTGTCGTGGAGTCG-

GCAATTCAGTTGAGACCCAGTA
hsa-miR-222 Forward ACACTCCAGCTGGGAGCTA-

CATCTGGCTACTG
hsa-miR-222 Reverse CTCAACTGGTGTCGTGGA
U6-Reverse Transcription AACGCTTCACGAATTTGCGT
U6 Forward CTCGCTTCGGCAGCACA
U6 Reverse AACGCTTCACGAATTTGCGT

ments, CAL-27 and Tca-8113 cells 
were cultured in serum-free media 
containing 0.1% bovine serum albu-
min for 24 h before treated with 5 
ng/ml TGF-β1 (PeproTech, Rocky Hill, 
NJ, USA).

RNA isolation and quantitative real-
time (qRT-PCR)

Tca-8113 and CAL-27 cells were har-
vested and lysed using Trizol reagent 
(Invitrogen, CA, USA). In order toana-
lyze miR-222 expression, reverse 
transcription PCR (RT-PCR) was per-
formed using specific stem-loop 
reverse transcription primers; miR-
222 first strand synthesis was per-
formed using a First Strand Synthesis 
Kit (Takara, Dalian, China), and qPCR 
was performed using a Mir-X™ miR-
NAqRT-PCR SYBR® Kit (Takara, Da- 
lian, China). U6 was used as an inter-
nal control. In order to quantify 
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Technology, Beverly, MA, USA) at 4°C overnight, 
followed by incubation for 40 min with a 
1:20,000 dilution of secondary antibody (BO- 
STER, Wuhan, Hubei, China). Proteins were 
visualized using ECL (Thermo Scientific Pierce 
ECL Plus, Thermo Scientific, Rockford, IL, USA). 
GAPDH was used as a loading control for com-
parison between samples.

Plasmid construction and transfection

A control (miR-NC) and miR-222 inhibitor were 
purchased from Jima Biotech (Suzhou, China).
Cells were plated at 50% confluence and trans-
fected with 300 nM miR-NC, or miR-222 inhibi-
torusing Lipofectamine™ RNAiMAX (Invitrogen, 
Carlsbad, CA, USA) according to the recom-
mended protocol. After transfection,cells were 
stimulated with 5 ng/ml TGF-β1 and used for 
subsequent analysis.

Migration and invasion assay

Cell migration and invasion were assessed 
using a transwell migration assay. For migra-
tion assay, CAL-27 and Tca-8113 cells were 
harvested and 5×104 cells, in 200 µL of 0.1% 
serum medium, were placed into the upper 
chamber of an insert (pore size, 8 µm) (BD- 
Biosciences, San Diego, CA, USA). The lower 
chamber was filled with 10% FBS medium (600 

µL). For invasion assays, 5×104 cells were seed-
ed into anupper chamber pre-coated with 
Matrigel (BD Biosciences, San Diego, CA, USA), 
and the lower chamber was filled with 10% FBS 
medium (600 µL). Cells were incubated for 24 h 
and then removed from the upper chamber 
with a cotton swab. Next, the cells in the lower 
chamber were fixed with 4% paraformaldehyde 
and stained with 0.1% crystal violet solution in 
20% ethanol. Migrationand invasion of cells 
were observed using a LEICA microscope at 
200× magnification, in five independent fields 
for each well, and the average counts were ca- 
lculated.

Statistical analysis

All statistical analyses were performed using 
SPSS 19.0 software (IBM Inc., USA). Continuous 
variables are presented as means ± standard 
deviation (SD). A t-test was used to compare 
the differences between groups; P<0.05 were 
considered to represent statistically significant 
differences.

Results

TGF-β1-induces EMT in OSCC cells

OSCC cells CAL-27 and Tca-8113 were incubat-
ed with 5 ng/ml of TGF-β1 to examine wh- 

Figure 1. Alternations of cell shape during TGF-β1-induced EMT in CAL-27 and Tca-8133 cells after stimulated with 
TGF-β1. Cell shape was monitored by phase contrast microscope during EMT, which was induced by treatment of 5 
ng/ml TGF-β1 in OSCC cell lines CAL-27 and Tca-8113 (200×).
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ether TGF-β1 stimulates EMT. Stimulation by 
TGF-β1 resulted in a change of cell shape from 
a “cuboidal” epithelial structure into an elon-
gated mesenchymal shape, as time progressed 
(Figure 1). EMT was a developmental process 
in which epithelial cells acquire migratory char-
acteristics. qRT-PCR and Western blot results 
(Figure 2) showed that TGF-β1 stimulation do- 
wn-regulated the expression of epithelial ma- 
rkers E-cadherin and up-regulated the expres-
sion of mesenchymal markers N-cadherin, vi- 
mentin, and α-SMA significantly (P<0.05). TGF-

β1-induced EMT ina time-dependent manner in 
OSCC cell lines.

TGF-β1 promotes miR-222 expression and 
inhibits PUMA expression

Emerging evidence revealed that miR-222 
played critical regulatory roles in cell metasta-
sis and development; therefore, we studied the 
expression levels of miR-222 during TGF-β1-
induced EMT in OSCC cells using qRT-PCR. The 
results showed that TGF-β1 stimulation result-

Figure 2. Expressions of the EMT-associated proteins in Tca-8113 and CAL-27 OSCC cell exposed to TGF-β1 treat-
ment. A: After stimulated with TGF-β1 for 24 h, the expression of E-cadherin, N-cadherin, vimentin, and α-SMA were 
analyzed by qRT-PCR. The results are presented as means ± SD. *P<0.05. B: After stimulated with TGF-β1 for 24 h, 
the expressions of E-cadherin, N-cadherin, vimentin, α-SMA and GAPDH were detected by western blot.
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Figure 3. The expressions of miR-222, PUMA and PTEN in Tca-8113 and CAL-27 exposed to TGF-β1 treatment. A: 
After stimulated with TGF-β1 for 24 h, the expression of miR-222, PUMA, and PTEN was studied by qRT-PCR; the 
results are presented as means ± SD; *P<0.05. B: After stimulated with TGF-β1 for 48 h, the expression of PUMA 
and PTEN was detected by western blot.
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Figure 4. miR-222 inhibitor inhibited PUMA expression and EMT in Tca-8113 and CAL-27 exposed to TGF-β1 treat-
ment. A: After transfection, Tca-8113 and CAL-27 cells were stimulated with 5 ng/ml TGF-β1 for 24 h and the 
expression of miR-222 and PUMA was detected using qRT-PCR. Results were presented as means ± SD. *P<0.05 
vs control group. B: After transfection, Tca-8113 and CAL-27 cells were stimulated with 5 ng/ml TGF-β1 for 48 h 
and the expression of PUMA was studied using western blot. C: After transfection, Tca-8113 and CAL-27 cells were 
stimulated with 5 ng/ml TGF-β1 for 48 h and the expression of E-cadherin, N-cadherin, vimentin, and α-SMA was 
detected by western blot. D: After transfection, Tca-8113 and CAL-27 cells were stimulated with 5 ng/ml TGF-β1 for 
24 h and cell shape was analyzed in Tca8113 and CAL-27 cells (200×). 

Figure 5. miR-222 inhibitor inhibited migration and invasion of Tca-8113 and CAL-27 cellsexposed to TGF-β1 treat-
ment. A: After transfection, Tca-8113 cells were stimulated with 5 ng/ml TGF-β1 for 48 h and were examined migra-
tion and invasion. miR-222 inhibitor inhibited the migration and invasion of Tca-8113. B: After transfection, CAL-27 
cells were stimulated with 5 ng/ml TGF-β1 for 48 h and were examined migration and invasion. miR-222 inhibitor 
inhibited the migration and invasion of CAL-27. Results were presented as means ± SD. *P<0.05 vs control group.
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ed in asignificantincrease in the expression of 
miR-222 in CAL-27 and Tca-8113 cells (P<0.05), 
and the effect was found to be time-dependent 
(Figure 3A). PUMA and PTEN represent poten-
tial targets of miR-222 in OSCC cells; accord-
ingly, we determined the expression levels of 
the respective genes and encoded proteinsin 
CAL-27 and Tca-8113 cell lines by qRT-PCR and 
Western blot (Figure 3A and 3B). The results 
showed that the expression level of PUMA was 
significantly decreased in CAL-27 and Tca-8113 
cells (P<0.05); however, no differences in the 
expression level of PTEN were observed. The 
results showed that, during TGF-β1-induced 
EMT, miR-222 expression was significantly up-
regulated and PUMA expression was signifi-
cantly down-regulated.

miR-222 inhibitor reverses TGF-β1-induced 
EMT by targeting PUMA

In order to elucidate the role of miR-222 during 
TGF-β1-induced EMT, CAL-27 and Tca-8113 
cells were transfected with miR-222 inhibitor 
and stimulated with TGF-β1. The transfected 
miR-222 inhibitor was found to effectively de- 
crease the expression of miR-222 (P<0.05, 
Figure 4A) and increase PUMA expression 
(P<0.05, Figure 4A and 4B). The results showed 
that miR-222 maybe negatively correlated with 
PUMA expression in OSCC cell lines and in- 
dicated that the transfection of miR-222 inhibi-
tor effectively increased the expression of 
E-cadherin and decreased the expression of 
N-cadherin, vimentin, and α-SMA (P<0.05, 
Figure 4C). Stimulation with TGF-β1 resulted  
in a change of cell shape from a “cuboidal” epi-
thelial structure into an elongated mesenchy-
mal shape. However, with the transfection of 
miR-222 inhibitor, the change of cell shape was 
effectively suppressed (Figure 4D). 

miR-222 inhibitor inhibits the migration and 
invasion of OSCC cells

After transfection, CAL-27 and Tca-8113 cells 
were stimulated with 5 ng/ml TGF-β1 for 48 h 
and were examined migration and invasion of 
cells. The transwell assay showed that the 
migration and invasion of cells were significant-
ly inhibited in miR-222 inhibitor transfected 
cells compared with the control group (P<0.05) 
(Figure 5). 

Discussion

In this study, we found that OSCC cells incubat-
ed with 5 ng/ml of TGF-β1 could down-regulate 

the expression of epithelial markers E-cadherin 
and up-regulate the expression of mesenchy-
mal markers N-cadherin, vimentin, and α-SMA 
significantly. We also found that stimulation by 
TGF-β1 resulted in a change of cell shape from 
a “cuboidal” epithelial structure into an elon-
gated mesenchymal shape, and induced EMT 
in OSCC cells. The TGF-β signaling pathway reg-
ulated various target genes to govern multiple 
biological processes during tumor progression.
TGF-β activates both Smad-dependent and 
Smad-independent pathways to function as a 
potent extracellular inducer of EMT [18, 19]. In 
OSCC, TGF-β1-induces EMT and promotes 
metastasis and bone invasion [20, 21], which 
were similar to those of our study.

Recent research has shown that miR-222 pro-
motes EMT in cancer cells [15]. The expression 
of miR-222 is elevated in gastric cancer and 
prostate cancer, as well as in other types of 
cancer [22, 23]. High expression of miR-222 is 
correlated with shorter metastasis-free surviv-
al, lower 5-year survival rates, and lower overall 
survival [22]. The knockdown of miR-222 inhib-
its cell growth and invasion, and increases 
radiosensitivity [24]. In previous study, we 
found that the expression of miR-222 is elevat-
ed in OSCC tissues [17]. In this study, we 
detected that the expression of miR-222 is up-
regulate during TGF-β1-induced EMT in OSCC 
cells. The present findings, which were similar 
to those of our previous study, indicate that 
miR-222 may play an important role in TGF-β1-
induced EMT in OSCC cells.

miR-222 plays an important role in the occur-
rence and development cancers by directly 
binding to its target mRNA 3’-UTR to regulate 
gene expression. Numerous target genes of 
miR-222, such as PTEN (in gastric cancer and 
prostate cancer) [23, 24], p27 (in breast can-
cer) [25], and ARID1A (in cervical cancer) [26] 
have been identified. miR-222 overexpression 
enhances proliferation and invasion, decreases 
apoptosis, and reduces sensitiz ation to cispla-
tin by targeting PUMA in OSCC [17, 27]. We 
additionally studied the expression of PTEN 
and PUMA, both of which were target genes of 
miR-222 in OSCC. The tumor suppressor PTEN 
regulates cell proliferation, migration, and an- 
giogenesis via phosphatidylinositol phospha-
tase, which in turn regulates the activation of 
AKT via PI3K [28]. PUMA was newly discovered 
as a target for activation by p53 to promote cell 
apoptosis through binding to and neutralizing 
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pro-survival members of the Bcl-2 family [29]. 
In this study, we found that TGF-β1-induced  
EMT in OSCC cells was accompanied by the 
down-regulation ofthe expression of PUMA; 
however, that of PTEN was not found to change. 
When miR-222 expression was inhibited dur- 
ing TGF-β1-induced EMT, the expression of 
PUMA was up-regulated. These results show 
miR-222 might target PUMA during TGF-β1-
induced EMT and the present findings were 
similar to those ofour previous study In addi-
tion, we found that the inhibition of miR-222 
resulted in significant down-regulation of the 
expression of N-cadherin, vimentin, and α-SMA 
and up-regulation of the expression of E-cad- 
herin, preventing the change of cell shape from 
a “cuboidal” epithelial structure into an elon-
gated mesenchymal shape, reversing TGF-β1-
induced EMT, and inhibit the migration and 
invasion of OSCC cells.

In conclusion, miR-222 knockdown suppress- 
es TGF-β1-induced EMT andour findings strong-
ly indicated that miR-222 plays an important 
role in OSCC, and may serve as a novel thera-
peutic target for the treatment of this cancer.
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