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Abstract: Hypoperfusion is one of the common causes of ischemic stroke. In this study, decreased blood perfusion 
and neurological damage were confirmed in ischemic rats. Further, the effect of different perfusion was researched 
in vivo. We found that hypoperfusion promoted the apoptosis of rats brain microvascular endothelial cells, and the 
more serious of hypoperfusion, the more obvious of apoptosis. At the same time, this process was related to Tie-
2 receptor on cell membranes and Caspase-3 apoptotic pathways. Hemodynamics was one factors affecting the 
cerebral infarction.
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Introduction

As an important organ of the body, brain has 
almost no energy reserves, and completely 
depends on the blood circulation [1], Stability of 
blood flow is essential for cerebral oxygen and 
glucose supply. Because of vascular obstruc-
tion by thrombus or embolus in stroke, brain 
hypoperfusion with the decrease of cerebral 
flow velocity and the increase of blood viscosity 
is obvious [2], resulting in the metabolic or 
nutritional deficiency for permanent neurologi-
cal tissues deficits [3, 4]. 

Hypoperfusion is one of the commonest causes 
of ischemic stroke [3, 5]. The blood residual 
supply determines the volume of cerebral 
infarction and the prognosis of ischemia [6]. 
According to the relevant reports, cerebral 
infarction with complete blood occlusion was 
heavier than that with partially preserved tis-
sue perfusion, and this phenomenon was asso-
ciated with the neuroprotection of blood perfu-
sion [7]. Hypoperfusion caused brain ischemia 
and hypoxia, and subsequently a series of brain 
injuries including early neuronal death [8], glial 
or astrocytic activation [8, 9], synaptic changes 

[10], oxidative stress [9, 11], blood-brain barrier 
damage [12].

Middle cerebral artery occlusion (MCAO) is now 
the most common used animal model for isch-
emic stroke. Our previous studies [13, 14] 
found that the artery was incomplete obstruc-
tion in MCAO model: blood flow was significantly 
decreased in the beginning of ischemia and at 
a low stable level during a follow-up period [14]. 
For no good methods to control and detect the 
perfusion volume in body, hypoperfusion has 
not been quantified in vivo and that’s why the 
study of hemodynamics is mainly focused on 
vitro studies [15, 16]. Laminar shear stress (LS) 
is the transverse pressure on vessels produced 
by blood flow. As a mechanical parameters 
which is proportional to the perfusion [17, 18], 
LS is often used to represent the intensity of 
flow.

Brain microvascular endothelial cells (BMECs), 
as the inner layer of the blood vessels, are the 
great majority of victims in the hypoperfusion 
injury [14]. It had been proved that LS force of 
blood flow in the venous system was 1-6 dynes/
cm2, and 10-70 dynes/cm2 in the arterial sys-
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tem [18]. LS force of microvascular blood flow 
must be smaller than that of the venous sys-
tem, which is less than 1 dynes/cm2 under nor-
mal condition. Equally, LS is much lower than 1 
dynes/cm2 for ischemic stroke with hypoperfu-
sion. In this study, we used perfusion of 0.1 
dynes/cm2, 0.3 dynes/cm2, 0.5 dynes/cm2 and 
0.7 dynes/cm2 in grades for 6 hours to study 
the apoptotic effects of the rats BMECs 
(rBMECs) under different degrees of hypoperfu-
sion. We hoped to be able to enrich the mecha-
nism of brain hypoperfusion injury from the per-
spective of hemodynamics.

Materials and methods

Establishment of middle cerebral artery occlu-
sion (MCAO) model in rats

Adult male Sprague-Dawley rats (250-280 g, 
about 10 weeks old, Shanghai SLAC Laboratory 
Animal Co. Ltd., Shanghai, China) were our 
experiment models. They were randomly divid-
ed into one of two groups: control group (n = 
10), ischemic group (n = 10). All experimental 
protocols and animal handling procedures were 
performed in accordance with the National 
Institutes of Health (NIH, USA) guidelines. Right 
MCAO was adopted to simulate ischemia in rats 
according to the method of Longa et al [19]. 
After the rats were anesthetized, an intralumi-
nal nylon monofilament entered the middle 
cerebral artery following the external carotid 
artery and internal carotid artery. The middle 
cerebral artery was stuffed and cerebral infarc-
tion was induced simultaneously.

Detection of cerebral blood flow during MCAO

Laser Doppler flowmetry probe (PriFlux System 
5000, PerimedAB company) was focused on 
the surface of the motor cortex of the rats [20]. 
The cerebral blood flow was measured with this 
equipment before and after MCAO. Firstly, the 
normal blood flow levels were observed before 
operation. Then, MCAO was given and the nylon 
monofilament was inserted into the middle 
cerebral artery, the blood flow value was record-
ed again.

Determination of hemiplegia in rats

The severity of hemiplegia induced by MCAO 
was assessed by Rogers method [21]. This 
scale divided the score into 0-7 points: 0 point 

stands for no hemiplegia. The higher the score, 
the more severe the hemiplegia. Each rat was 
evaluated before and after MCAO.

Observation of infarction volume with 2, 3, 
5-triphenyltetrazolium chloride (TTC)

Rat brain was stained with 2% TTC perfusion 
[22] after hemiplegia assessment. 2 mm thick 
coronal slices (6 slices each brain) were cut and 
stained: normal area without infarction is bright 
red, while the infarct area is white.

Culture of rBMECs 

rBMECs were cultured referring to the reports 
[23, 24]. The brain of newborn SD rats (3-5 
days) was cut from the skull, sheared to small 
tissues and filtered with mesh screen. Cells 
were separated from these tissues with  
collagenase digestion and then cultured in high 
glucose DMEM medium of 20% FBS. All experi-
ments were performed in a sterile environ- 
ment.

Immunocytochemistry for von Willebrand fac-
tor (vWF) [24]

rBMECs processed with 4% paraformaldehyde, 
3% H2O2, 0.2% Triton X-100, and 5% BSA, suc-
cessively. Then, cells were incubated with vWF 
antibody and biotinylated secondary antibody. 
After Strept-Avidin-Biotin Complex and DAB 
staining, hematoxylin stained nuclei, vWF were 
visualized by microscopy. Negative controls 
were performed by omitting the first antibody.

OGD and LS intervention

OGD model was used for cell ischemia in vitro 
[25]. rBMECs were cultured in the parallel-plate 
flow chamber in a sterile environment [26]. The 
sugar-free culture DMEM medium liquid with 
5% CO2 and 95% N2 mixed gas was selected to 
provide cells LS in OGD environment for 6 
hours. In addition to motionless cells culture 
medium group (no perfusion), the other groups 
were medium hypoperfusion with shear stress 
of 0.1 dynes/cm2, 0.3 dynes/cm2, 0.5 dynes/
cm2, 0.7 dynes/cm2. The computer of parallel-
plate flow chamber provided medium dynamic 
control and regulation.

Annexin V-FITC/PI apoptosis analysis [27]

The cells were resuspended and stained with 
Annexin V-FITC for 15 min without light at room 
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temperature following the instructions of the 
product. The cells were washed 3 times with 
PBS and stained with PI, and were then detect-
ed immediately with flow cytometry.

Hoechst 33258 apoptosis analysis [28]

Cultured cells taken out from parallel-plate flow 
chamber were stained with Hoechst 33258 
without light at 4°C for 30 min, and were 
observed with the fluorescence microscope.

Western blot

Total protein was extracted with RIPA, under-
went protein electrophoresis and transferred to 
PVDF membrane. The membranes were incu-
bated in primary antibody overnight at 4°C, 
washed 3 times for 10 min and incubated in 
second antibody on an orbital incubator for 2 
hours. They were photographed with ECL imag-
ing agent in Bio-Rad system. 

Statistical analysis

Data was analyzed with a SPSS 22.0 statistical 
package. ANOVA method was adopted to deter-
mine distinguished differences among groups 
in Annexin V-FITC/PI apoptosis analysis, Hoe- 
chst 33258 apoptosis analysis and Western 
Blot. P<0.05 was considered statistically sig-
nificant. P<0.01 was proved to be obvious 
difference.

Results

Changes of cerebral blood flow during MCAO 
in rats 

Laser Doppler flowmetry was used to record 
the blood flow before and after MCAO. When 
the rat’s middle cerebral artery was blocked, 
the blood flow of cerebral cortex fallen sharply 
at the original level of about 10%-20% (Figure 
1A). This part of the experiment certificated the 
decreased blood flow during ischemic stroke. 

Pathological and behavioral effects of MCAO 
in rats

Cerebral hypoperfusion can cause severe brain 
injury, mainly including two aspects: anatomical 
and behavioral aspects. The pathological 
infarction volume was detected by TTC staining 
method [22]. As indicated in Figure 1B and 1D, 
The rats in the sham control group exhibited all 
normal areas. In contrast, there was a signifi-
cant infarct volume in ischemia group. At the 
same time, Rogers scores was used to evaluate 
the behavioral lack [21]. Results showed that 
the score of the rats was 0 who had no action 
defects before MCAO, But there was a signifi-
cant hemiplegia after MCAO and the score was 
statistical increased (P<0.01). This part of the 
experiment showed that cerebral hypoperfu-
sion resulted in cerebral infarction.

Figure 1. Cerebral hypoperfusion injury. A: Cerebral blood flow during MCAO in rats by laser doppler flowmetry. The 
normal blood flow displayed from the 1 point to the 2 point before MCAO. The blood flow fallen sharply from the 2 
point to the 3 point when MCAO modeling. B, C: The brain pathology after MCAO. Infarct volume between the sham 
group and the ischemia group showed. Red was the normal tissue, white was infarcted tissue (**P<0.01). D, E: 
Neurobehavioral scores described. Rats with different scores were counted in groups. The higher the score, the 
worse the neural function deficient status (**P<0.01).
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rBMECs characterization 

The cultured cells were identified as endotheli-
al cell through morphological observation and 
immunostaining. rBMECs under microscope 
were polygonal or fusiform shape which the 
characteristics are consistent with previous 
reports (Figure 2A). vWF is one of the most reli-
able endothelial expressed protein marker [24], 
rBMECs were positively immunostained (Figure 
2B) than the control group (Figure 2C).

Effects of cerebral hypoperfusion on rBMECs 
apoptosis

OGD model was adopted for cells ischemia in 
vitro. For rBMECs, exposure to OGD condition 
for 6h was appropriate to show significant 
apoptosis (the relative apoptotic rate was 25%-
30%), and the expression of self-regulated pro-
teins was provoked strongly. Different degrees 
of hypoperfusion about 0.1 dynes/cm2, 0.3 
dynes/cm2, 0.5 dynes/cm2, 0.7 dynes/cm2 (the 
amplitude fluctuation was not more than 0.05 
dynes/cm2) were used during OGD intervention 
for a total of 6 hours. Apoptosis was detected 
by AnnexinV/7-AAD flow cytometry and Hoechst 
33342 staining. As shown in Figures 3 and 4 
compared with control group (shear stress = 0 
dynes/cm2), the intervention of LS reduced 
cells apoptosis. The apoptosis rate was gradu-
ally decreased correspondingly with the LS gra-
dient of 0.1, 0.3, 0.5, 0.7 dynes/cm2. It was 
proved that the hemodynamics played a role 
against cerebral hypoperfusion injury. The 
greater the shear stress, the less the apoptosis 
rate. 

Effects of cerebral hypoperfusion on cell pro-
tein expression

Expression of protein Tie-2 and caspase-3 were 
detected while measured the cells apoptotic 

rates. As shown in Figure 5, Tie-2 increased 
and Caspase-3 decreased accompanied with 
the increase of LS. Tie-2 in cells membrane 
could be influenced by the hemodynamics  
and affected Caspase-3 expression in apop-
totic pathway. We speculated that the up-regu-
lation of Tie-2 induced some mechanisms,  
and ultimately interfered Caspase-3 for anti- 
apoptosis.

Discussion

Activity of the brain needs adequate cerebral 
perfusion to maintain the supply of oxygen and 
nutrition [1]. Hypoperfusion is a risk factor for 
cerebral infarction [3, 4]. Through this study, we 
found that hypoperfusion promoted the apop-
tosis of rBMECs, and the lower the perfusion, 
the greater the number of apoptotic cells. At 
the same time, this process might be related to 
Tie-2 receptor on cell membranes and 
Caspase-3 apoptotic pathways.

Cerebral hypoperfusion results in cerebral 
infarction [5, 6]. Mild hypoperfusion, such as 
transient ischemic attack (TIA) or syncope epi-
sodes [29, 30], induced by intracranial vascular 
atherosclerosis for slight or even reversible 
blood flow decreases, was almost no clinical 
symptoms. While severe hypoperfusion, such 
as typical cerebral parenchyma infarction or 
watershed infarction, induced by different 
degrees of vascular occlusion due to thrombus, 
will cause blood flow reduction or interruption 
and severe clinical neurological symptoms [31]. 
Hypoperfusion causes brain damage, not only 
in oxygen and nutrients lack, but also in micro-
emboli formation with the reduction of cerebral 
blood flow [32, 33]. Found in studies, it is easy 
to form microemboli under the condition of  
low perfusion, hemodynamic changes or vul-
nerable lesions in the blood vessel [32, 34]. 

Figure 2. Culture and identification of rBMECs. Cells morphology under inverted microscope in (A) (200×). Cells were 
positively immunostained of vWF (B) than the control group (C) (400×).



Endothelial apoptotic characteristics with hypoperfusion

11364 Int J Clin Exp Pathol 2017;10(11):11360-11368

Figure 3. Effects of cerebral hypoperfusion on rBMECs apoptosis by Annexin V-FITC/PI flow cytometry. The value of the two quadrants on the right represented the 
percentage of apoptosis. The slower the fluid rate, the lower the shear stress force, the more apoptosis and the most obvious apoptosis was in static state of flow 
(*P<0.05, **P<0.01).
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Increasing the blood volume could attenuate 
the formation or enhance the scavenging ability 
of microemboli [32]. Thus, hypoperfusion can 
considered to be an important risk factor for 
cerebral infarction. 

endothelial cells [18, 36, 37]. In this study, the 
smaller the LS force was, the less the residual 
blood was, and the more obvious the apoptosis 
of endothelial cells was. To reduce the obstruc-
tion of the vascular cavity and increase the 

Figure 4. Effects of cerebral hypoperfusion on rBMECs apoptosis by Hoechst 33258 staining. This method was for 
the nucleus staining, the apoptotic cells were light dyeing and normal cells were dark dyeing. The results were con-
sistent with the previous Annexin V-FITC/PI flow cytometry (*P<0.05, **P<0.01).

Figure 5. Effects of cerebral hypoperfusion on cell protein expression of Tie-2 
and caspase-3. Compared with the protein expression in LS0 group, with the 
increase of LS, the expression of caspase-3 protein decreased, and the ex-
pression of Tie-2 protein increased gradually (*P<0.05, **P<0.01).

BMECs, a major component 
of the inner lining of the ves-
sels, contact with blood flow 
directly and be sensitive to 
the effects of perfusion [35]. 
LS force is produced by the 
blood flow and is one of the 
main components of the 
mechanical flow force [17, 
18]. The dynamic transmis-
sion mechanism of hemody-
namics has been extensively 
studied. These studies indi-
cated that receptors on 
endothelial membrane could 
directly feel the changes of 
LS, and through the changes 
of the membrane structure, 
the mechanical signal would 
be transformed into biologi-
cal signals to cause a series 
of biochemical changes in 
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blood flow as much as possible was one mea-
sure to reduce brain damage.

Tie-2, a tyrosine kinase receptor, mainly ex- 
presses in the vascular endothelial cells and 
has extensive homology with immune globulin 
and epithelial growth factor (EGF) receptor [38]. 
Tie-2 can support vascular integrity, promote 
angiogenesis and maintain the stability of vas-
cular structure [39]. Caspases is a group of 
structurally related cysteine proteases in the 
cytosol. Through cascade activation of different 
subtypes of Caspases, the degradation of DNA 
is initiated [40] for the completion of apoptosis. 
This process is involved in the execution of 
apoptosis, in which caspase-3 is considered to 
be one of the key enzymes [41]. There were 
reports that one of the most important ways for 
endothelial protection by Tie-2 receptors was 
caspase-3 pathway [40]. Therefore, we believed 
that down-regulation of Tie-2 receptor and up-
regulation of Caspase-3 expression was related 
to apoptosis induced by hypoperfusion in this 
study.

Due to the technical limitations, it is not possi-
ble to give accurate and precise control of cere-
bral perfusion in vivo and that’s why we had to 
do this experiment in vitro. However, we still 
proved the rudimentary effect of blood perfu-
sion in this experiment.
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