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Abstract: The tumor microenvironment, which is composed of tumor cells and non-malignant cells, plays a crucial 
role in malignant transformation, local invasion, distant metastasis and drug resistance. Reconstructing the tumor 
microenvironment in vitro has been used as an indispensable strategy to elucidate the mechanism of tumorigen-
esis, provide an early diagnosis and screen drugs. In the past few decades, several simulation platforms have been 
developed, including spontaneous cell aggregation, cellular scaffolding, the multicellular tumor spheroid model 
(MCTS), the rotary cell culture system (RCCS), and microfluidic devices. Using these systems, researchers have 
made significant progress in understanding the regulatory mechanisms of the tumor microenvironment and also in 
clinical research. These platforms can increase research efficiency, can help achieve individualized diagnoses and 
treatments and allow for high-throughput drug screening. In this review, we will introduce the current status of tumor 
microenvironment simulation platforms and their advantages and disadvantages. In addition, we further discuss 
their applications in their early clinical diagnosis and high-throughput screening of drugs, and their challenges and 
prospects in the future will be addressed.

Keywords: Tumor microenvironment, tumor microenvironment simulation platform, individualized treatment, drug 
screening

Introduction

The development and occurrence of tumors are 
not only associated with genetic alterations but 
also with the environment around the tumor [1]. 
This tumor microenvironment, which is com-
posed of tumor cells and non-malignant cells, 
plays a crucial role in malignant transforma-
tion, local invasion, distant metastasis and 
drug resistance [2-4] via a so-called “seed (can-
cer)” and “soil (microenvironment)” relationship 
[5]. Through various biological processes, 
tumor cells can alter and maintain their own 
survival conditions to promote their growth and 
development [6]. Tumor stroma provides con-
tinuous support to carcinoma cells throughout 
different pathophysiological processes in 
response to molecular signals derived from car-
cinoma cells and other host cell types. 
Moreover, the structural architecture, which is 
called the extracellular matrix (ECM) and con-

tains collagen, elastin and laminin, provides tis-
sues with their mechanical properties and pro-
motes communication between the tissue and 
cells [7]. 

In vitro mimicking of the tumor microenviron-
ment is an indispensable methodology in both 
basic research and clinical studies. Over the 
past few decades, experts from different fields 
have designed various cancer models to recon-
struct the tumor microenvironment [8, 9], rang-
ing from two-dimensional (2D) cell culture sys-
tems to 3D cell culture systems, including spon-
taneous cell aggregation, cellular scaffolding, a 
multicellular tumor spheroid model (MCTS), a 
rotary cell culture system (RCCS), and microflu-
idic devices. Conventional monolayer systems 
cannot mimic actual tumor microenvironments 
and have various limitations in discovering new 
anticancer drugs and preventative treatments 
[9, 10]. The promising 3D cell culture systems 
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are commonly used as in vitro cell culture mod-
els and were developed to study tumor progres-
sion in vitro [11-13]. However, due to the limits 
of technology, there are still advantages and 
disadvantages to these systems. In this review, 
we discuss the simulation platform and its 
application in early clinical diagnosis and high-
throughput screening drugs. In addition, chal-
lenges and future prospects are discussed.

The importance of the tumor microenviron-
ment in cancer research

The tumor microenvironment plays an impor-
tant role in tumorigenesis via mechanical or 
chemical actions. It is a complicated and 
dynamic system that involves in interactions 
among cancer cells; non-malignant cells; a 
number of stromal cell groups, including fibro-
blasts, immune and inflammatory cells, and 
endothelial cells (ECs); blood vessel cells; and 
networks of cytokines and growth factors [14, 
15]. These interactions provide tumor cells with 
biochemical and biophysical cues [4]. The 
tumor microenvironment exhibits heterogene-
ity, with differing signals based on the types of 

tissues, differentiation stage, and pathological 
conditions [16, 17]. The crosstalk between the 
cancer cells and the tumor stroma is re- 
sponsible for tumor progression and meta- 
stasis via a pyramid-like mechanism. Through 
autocrine, paracrine and hormonal signaling, 
tumor cells can alter and maintain their own 
survival conditions to promote their growth and 
development [6]. 

In the microenvironment, fibroblasts interact 
with cancer cells and are activated into hetero-
geneous cancer-associated fibroblasts (CAFs) 
or myofibroblasts [18] (Figure 1). CAFs remo- 
del components of the ECM by increasing the 
production of ECM proteins and proteases. 
Additionally, they suppress the immune res- 
ponse by recruiting inflammatory cells (such as 
monocytes and macrophages) and modifying 
immune cell function to create a suitable envi-
ronment for tumor growth [19, 20]. CAFs stimu-
late tumor proliferation, angiogenesis and 
metastasis through growth factors and cyto-
kines, including vascular endothelial growth 
factor (VEGF), transforming growth factor-β 
(TGF-β), hepatocyte growth factor (HGF), plate-

Figure 1. The model of tumor cell-microenvironment interactions. In the tumor environment, tumor cells maintain 
close contact with the activated cancer-associated fibroblasts and inflammatory cells through various growth fac-
tors and cytokines; at the same time, tumor cells enter the lymphatic system and blood circulation system to form 
circulating tumor cells (CTC). In the center of the tumor, regions of hypoxia form.
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let derived growth factor (PDGF), SDF-1, cyclo-
oxygenase 2 (COX-2), and several interleukins 
(IL-1β, IL-6, IL-8) [21, 22]. VEGF secretion pro-
motes multiple processes involved in angiogen-
esis, which facilitates cancer pathogenesis by 
supplying nutrients to enhance tumor growth 
[23]. In addition, pericytes, classical hallmarks 
of cancer, directly or indirectly contribute to 
tumor growth, metastatic spread, and thera-
peutic resistance [1].

The tumor microenvironment plays an impor-
tant role in tumor metastasis and invasion. 
Tumor cells invade the surrounding ECM and 
assemble ECs to form new blood vessels or a 
similar new reticular structure of blood vessels 
called tumor vasculogenic mimicry, which is 
closely associated with the occurrence, devel-
opment and metastasis of tumors and poor 
prognosis [24, 25]. Then, tumor cells enter the 
lymphatic system and blood circulation to form 
circulating tumor cells (CTC) [26]. In this pro-
cess, cancer growth and vascularization are 
tightly regulated by hypoxia [27], cytokines [23] 
and a multitude of cell phenotypes and ECM 
components within the tumor microenviron- 
ment.

The importance of simulating the tumor mi-
croenvironment

Because the tumor microenvironment is a high-
ly complicated system, further elucidation of 
the tumor microenvironment will increase our 
understanding of tumorigenesis and growth-
promoting signaling pathways. Therefore, simu-
lating the tumor microenvironment and devel-
oping appropriate model systems are indis-
pensable method to study the physiology and 
biochemistry of tumor cells and address many 
questions. By simulating the tumor microenvi-
ronment, we can assess how a malignant state 
develops from a healthy tissue environment 
[28], qualify the role of the microenvironment in 
tumor migration, invasion and metastasis [29], 
gain insight into the expression of proteins 
under the regulation of microenvironment [30], 
and discover the spatial and temporal mecha-
nisms of tumor angiogenesis and migration 
across the vascular system [31]. 

Constructing the tumor-resident environment 
to develop antitumor therapy is a useful meth-
od. Elucidating the metabolic pathways 
between cancer cells and antitumor immune 

cells could help guide cancer immunotherapy 
[32]. A better understanding of the relationship 
between epidermal growth factor (EGF) and the 
EGF-receptor could be used to inhibit the migra-
tion of breast cancer cells. Additionally, study-
ing how tumor stroma affects tumor cell biologi-
cal behavior could help design targeted thera-
peutic strategies [19]. Researching the rela-
tionship between the tumor and vascular com-
partments may facilitate prediction of patient 
prognosis.

Elucidating tumor metastasis mechanisms by 
reconstructing the tumor microenvironment will 
not only identify meaningful therapeutic tar-
gets [32] but will also be an important tool for 
predicting drug metabolism and toxicity in vitro. 
Presently, several cell-based models have been 
used to predict drug metabolism and toxicity to 
obtain more accurate parameters of treatment 
responses [33].

Approaches for simulating the microenviron-
ment

Since Carl Jensen designed the earliest tumor 
model [34], in which he transplanted mouse 
sarcomas into healthy mice and measured 
tumor growth to estimate the vitality of the 
transplanted cancer, a large variety of tumor 
cell culture models have emerged, including 
the conventional monolayer technique, sponta-
neous cell aggregation, cellular scaffolding, the 
MCTS, the RCCS, and microfluidic devices. 
Although each model has its own set of advan-
tages and disadvantages, the best choice is 
often a model that is simple and has clinical 
relevance for human patients [35].

Conventional monolayer technique

Two-dimensional cell culture techniques, such 
as 2D Petri dishes, 2D multi-well plates or 2D 
glass slides, have the advantages of conve-
nience, operability, low cost, widespread appli-
cation and ease of culturing a single cell. These 
in vitro method are commonly used to study 
malignant tumors and analyze antitumor drugs 
[36-38]. Cells cultured in these systems could 
be exposed directly to nutrients, oxygen or spe-
cific environments [39]. Two-dimensional cell 
culture systems could closely mimic in vivo 
physiological conditions [8]. In addition, differ-
ent generations of cells can be preserved over 
long durations. Thus, we can not only study the 
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response of the same generation under differ-
ent conditions but also observe dynamic chang-
es in different generations. In the past decades, 
cancer biologists, biomedical researchers, and 
oncologists have used 2D Petri dishes to study 
the complicated tumorigenic mechanisms of 
angiogenesis, invasion, and metastasis [40]. 
These models offer significant advantages for 
preclinical cancer drug discovery efforts given 
their simplicity and low cost.

The disadvantages of the 2D monolayer cul-
tures used as in vitro models were uncovered 
gradually. In conventional 2D conditions, ECM 
components and the cell-to-cell and cell-to-
matrix interactions, which are important for dif-
ferentiation, proliferation and cellular functions 
in vivo, are lost [41]. Due to the lack of the ECM 
components as a structural architecture that 
supports and connects the cells and alters the 
organization and cell physiological activities, 
specific signaling between tumor cells and the 
molecular gradient, which is an important fac-
tor for cellular activities, are unavailable [9, 39]. 
Tumor cells grow in an adherent monolayer and 
lack a true 3D environment. The activities of 

these cells are limited. In addition, trials with 
these models did not provide information on 
the chemotherapeutic response mechanism. It 
is difficult to predict the effect of drugs in the 
body and study the effect of restriction by 
numerous extracellular barriers in the body 
that could otherwise lead to significant reduc-
tions in the infiltration capacity [9, 10]. However, 
these models have thus far been inadequate 
for discovering definitive cancer treatments. In 
addition, these models are unable to accurately 
simulate the true tumor microenvironment. 

Spontaneous cell aggregation

A deeper understanding of the mechanism and 
development of clinical treatments for tumors 
have been hindered by using a traditional 
monolayer technique [42]. Since Bissell dem-
onstrated the different behaviors of cancerous 
breast cells grown in 3D culture, 3D systems 
have served as the major in vitro cell culture 
model for studying tumor progression [11-13]. 
Early application of the cells in a 3D cell culture 
model is spontaneous cell aggregation [9]. In 
this method, tumor cells grow into spheroids or 

Table 1. Comparison between different materials
Material Advantages Disadvantages
Silk fibroin Good biocompatibility [48] Low hydrophilic property [49] 

Good biological adhesive [50] Slow degradation [50]
High tensile strength

Collagen High elasticity [51] Lack of flexibility [51, 52]
Low tensile strength [52, 53]

Fibrin glue Small antigen [54] Rapid degradation [54]
Low immunogenicity Poor mechanical strength [54]

Good biocompatibility
Chitosan Easy processing [56] Low solubility [55, 56]  

Inexpensive
Good biocompatibility [55]

Alginate Strong adsorption [57] Instability [57]
Porous Resists degradation

Agarose High hydrophilic property [58] Cannot resist high
Inert Temperature [59]

Stable
Poly glycolic acid Good biocompatibility Low hydrophilic property [60]

Mechanical strength [60] Poor biological adhesive
Polyethylene glycol Good biocompatibility Cannot be degraded

High mechanical [61]
Poly (lactic-co-glycolic acid) Good biocompatibility [63] Poor biological adhesive [64]

Mechanical strength
Controllability [62]
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other 3D forms spontaneously or upon induc-
tion by artificial substrates that induce cellular 
differentiation and maintain cellular function. 
Compared with 2D cell culture techniques, this 
system closely mimics the complex structures 
and organization of tissues in the body [43] 
where tumor cells reside histologically as multi-
cellular tumor spheroids (MCTS) and provide 
biochemical as well as physical cues between 
the ECM and the basement membrane (BM) 
[44, 45]. This system could be used to co-cul-
ture different cell types, facilitating cell-cell 
interactions and the exchange of growth fac-
tors and other biological effectors; thus, these 
strategies expand research on the molecular 
mechanisms of adhesion, migration and inva-
sion [9, 10]. Unfortunately, this method is limit-
ed to specific cell types and the cell interac-
tions and group sizes cannot be controlled.

Cellular scaffolds

To closely simulate a 3D environment, biolo-
gists have employed engineered scaffolds to 
reconstruct the ECM and provide physical/
structural support. An ideal cellular scaffold 
possesses the following traits: (1) good biocom-
patibility and does not cause inflammation and 
abnormal reactions in the body; (2) made of 
appropriate biodegradable material; (3) lacks 
immunogenicity and toxicity; (4) maintains cell 
morphology and phenotype, promotes cell 
adhesion and proliferation, and induces tissue 
regeneration; (5) conducive to the diffusion of 
nutrients. However, in fact, each material has 
its advantages and disadvantages [46, 47] as 
noted in Table 1.  

MCTS

MCTS systems using in vitro tissue culture 
methods allow tumor cells to grow into 3D mul-
ticellular spherical structures by implanting 
tumor cells into a specific scaffold, such as a 
collagen scaffold [65], semi-solid medium (agar 
or agarose) [66], and liquid media [67], and cul-
turing the cells to resemble the dimensional 
effects of the in vivo tumor microenvironment. 
The tumor cells within spheroids are in close 
contact or communicate with each other, and 
this strategy was proposed as a promising 
method for the maintenance of differentiated 
functions. Therefore, these systems can bridge 
the gap between 2D tissue culture models and 
animal cell culture systems in the field of study-

ing tumor biology, interactions and drug 
responses. The major methods of preparing 
multicellular tumor spheres include the rotating 
culture method [68] and static culture method 
[67]. AccBased on their material properties, the 
systems can be divided into two primary groups: 
scaffold-based systems, a platform that can be 
used to investigate the effect of primary exter-
nal physical factors on microspheroid growth 
and signaling [69], and non-adherent, liquid-
based systems that allow for the exchange of 
medium to a certain degree [70].

Given their inherent properties, such as closely 
arranged cells, hypoxia, and heterogeneity [71, 
72], these models have been viewed as ideal 
tools to provide new insight into phenotypic and 
cellular heterogeneity and micro-environmental 
aspects of in vivo tumor growth [70, 73]. These 
models have also been used to study microen-
vironment interactions, particularly intracellu-
lar signaling and other functional or cellular 
processes between exogenous ECM molecules 
and tumor cell receptors [74-76]. MCTS models 
can not only be used for elucidation of various 
mechanisms but have also produced important 
advances in response to radiation injury, can-
cer drug screening and drug discovery [65, 73]. 
Because the tumor sphere is similar to normal 
tumor tissues, it can be used to determine spe-
cific tumor tissue sensitivity to chemotherapy 
and radiotherapy, which can help identify new 
anti-cancer drugs and reduce side effects or 
drug resistance [65]. In addition, multicellular 
tumor spheres act as pathological cancer cells 
in the in vitro immersion attack model, which is 
useful for analysis of multiple factors [77].

Although these models provide significant 
advances in the simulation of the tumor micro-
environment, some innate limitations still exist. 
The diffusion of oxygen and nutrients are limit-
ed by the spheroid model, which restricts the 
size of the spheroid [78]. 

RCCS

Many tumor cells fail to retain their specialized 
features and dedifferentiate when cultured 
under traditional 2D static cell culture condi-
tions. To optimally induce shear force and tur-
bulence, which are known to cause cell dam-
age in cell culture, researchers attempted to 
maintain cells in suspension with various types 
of bioreactors [79]. However, all of these sys-
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tems have disadvantages. National Aeronautics 
and Space Administration (NASA) first devel-
oped rotary cell culture systems to simulate 
microgravity, in which cells are cultured in a 
dynamic fluid suspension in liquid media mixed 
by minimal hydrodynamic forces [9]. RCCS have 
become a large-scale expansion of the cell cul-
ture system.  

Compared with traditional methods, RCCS 
exhibit three distinct characteristics: (1) Tumor 
cells, gases and nutrients are evenly distribut-
ed. In a static training system, tumor cells often 
are limited to the bottom of the system, and the 
interior lacks a sufficient number of cells. 
Moreover, gas, nutrients and metabolic wastes 
are unevenly distributed, resulting in the accu-
mulation of waste products and alterations in 
local pH. These changes may inhibit the normal 
tumor microenvironment and prevent the cells 
from obtaining sufficient nutrients, leading to 
slow growth or even stagnation [80, 81]. 
However, RCCS are dynamic systems that pro-
mote diffusion of oxygen and nutrients, dis-
charge more metabolic waste, promote cell 
growth and have a uniform distribution of the 
tumor cells. (2) Centrifugation and stir are con-
ventional methods to suspended cells in the 
Petri dishes. However, these generate shear 
force to damage cells. Thus, cells and tissues 
spend a considerable amount of time on repair, 
and tissue differentiation is hindered. However, 
RCCS use gravity-free, low-shear-force cell cul-
tivation [82]. (3) In 3D cell cultures with inert 
material scaffolds, cells tend to attach to one 
another on the microcarriers to form complex 
3D structures [82]. The following limitations are 
present: a complicated operation process, high 
cost and a lack of integration. 

Microfluidic devices

Microfluidic devices, a breakthrough in simulat-
ing the tumor microenvironment, have pro-
foundly affected our understanding of the 
tumor microenvironment and provided guid-
ance for clinical treatment. These approaches 
were developed based on advances in micro-
mechanics, microelectronics, biotechnology 
and nanotechnology. These approaches allow 
sample collection, reaction, separation and 
detection to occur in a basic operation unit at 
the submillimeter scale and to automatically 
complete the whole process analysis. Com- 
pared with traditional experimental technology, 

microfluidic devices have the following impor-
tant characteristics: (1) These devices accu-
rately simulate the microenvironment. Micro- 
fluidic devices create a 3D environment that 
more accurately reflects the human body using 
multiple cell types co-cultured with cytokines. 
Using new materials, we can even recreate the 
tumor microenvironment under hypoxic condi-
tions [83, 84]. In addition, multiple types of 
cells can be co-cultured on the microfluidic 
devices. Thus, the signaling pathway or sequen-
tial changes between cells in vitro can be 
assessed [85]. (2) This technique allows bio-
medical research to be conducted in real-time 
and under controllable conditions. We can 
observe changes in various processes and 
obtain valid data in real time. In addition, we 
can combine required instruments into a micro-
fluidic chip [86]. (3) This method requires a 
small amount of sample, which is indispens-
able for clinical research. Thus, we can diag-
nose diseases with small samples and reduce 
the cost of drug screening [87]. (4) This tech-
nique is flexible and portable, offering concen-
tration of molecules in space and time [88, 89]. 
Therefore, this system may be useful for per-
sonalized diagnoses and personalized medi-
cine based on drug toxicity screening and dis-
ease modeling for drug target discovery. These 
characteristics satisfy the demand of research-
ers for biochemical experiments, given that the 
characteristics of this methodology (i.e., a small 
amount of liquid, high-throughput, automation 
and particularly controllability) are lacking in 
gene and protein devices [87]. 

However, a multitude of challenges still exist: 
(1) Poor reusability, i.e., once polluted, the sam-
ple cannot be continually used in the study; (2) 
Failure to realize full automation; (3) Low 
throughput because the adsorption of antigen 
and antibody cannot be controlled under the 
high flow velocity; thus, we should limit the 
velocity of the fluid; (4) Lack of popularization, 
as this system is exclusively used in the labora-
tory and not currently used for clinical 
purposes.

Application of simulation platforms

What can these simulation platforms be used 
for? In recent decades, the diagnosis and treat-
ment of tumors, drug research and tissue engi-
neering have benefited from these platforms 
and a series of auxiliary equipment, including 
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fluorescent dyes, Western blot analysis, and 
polymerase chain reaction (PCR) assays. Based 
on the results from these platforms, personal-
ized treatment and precision medical diagno-
ses were realized. Complex pharmaceutical 
processes have become simple and high-
throughput with high content.

Cancer is a major cause of mortality. However, 
the leading cause of death in patients with 
tumors is CTCs [90-93]. Microfluidic devices 
can be used to detect and isolate the CTCs [94, 
95], allowing for early diagnoses, individualized 
treatments and evaluations of prognosis [96]. 
In addition, microfluidic devices, which are 
inherently rapid and sensitive, have been used 
for point of care testing (POCT), referring to a 
portable mini test system outside the central 
laboratory that is close to the test object and 
offers timely results [97-100]. At present, the 
development of a personalized means of analy-
sis is one of the important directions of micro-
fluidic chip POCT research for illness monitoring 
and early diagnosis [101].

Although conventional in vitro platforms have 
made substantial contributions to screening 
drugs, these methods still have different limita-
tions. Because 2D cell culture models are stat-
ic states, as time progresses, these models 
cannot generate the mechanical or chemical 
stimuli (signaling molecules) that are normally 
present and simulate the complex internal envi-
ronment in the body or the true extracellular 
mechanical environment [3, 102]. Currently in 
preclinical stages, 3D cell culture models have 
been proposed as promising in vitro methods 
to evaluate and predict tumor responses to 
chemotherapeutic agents [103-105]. 

The current trends in drug discovery screening 
require both high-throughput and high content. 
Thus, 3D cell culture technologies are naturally 
indispensable tool [106]. MCTS systems are 
employed for predicting dynamics, screening 
drugs and reducing the toxicity and side effects 
to normal tissues [107]. Microfluidic devices 
not only mimic complicated internal environ-
ment in vitro but also generate concentration 
gradients required for physiological activities 
[108] and high-throughput drug screening [109, 
110]. This device would be a simple and conve-
nient but high-efficiency tool to identify drug 
targets, study drug metabolism mechanisms 
and drug response, and assess drug genotoxic-
ity and cytotoxicity for anti-cancer drug/agent 
discovery. Using microfluidic devices to study 

the major factors that affect the efficacy of the 
anticancer drugs has been previously reported 
[111, 112].  

Conclusion

In this review, the role of the tumor microenvi-
ronment has been elucidated with various plat-
forms. However, our current knowledge is just 
the tip of the iceberg. Many detailed mecha-
nisms are uncharacterized. For example, how 
does the microenvironment affect tumorigene-
sis specifically? What are the key factors influ-
encing the formation of tumors? Significant 
steps forward have been made over the past 
few years in basic research and clinical applica-
tion. Two-dimensional cell culture techniques 
have allowed us to recognize the microscopic 
world of the tumor. Three-dimensional in vitro 
tissue culture models enrich or broaden our 
horizons. Clearly, the development and applica-
tion of 3D tissue culture technology will be the 
hot spots in the future, especially in terms of 
miniaturization, integration and automation. 
However, complex production processes and 
high-throughput features are a major stumbling 
block to the use of these devices. Our hope is 
that with interdisciplinary collaboration, we will 
be able to design high-throughput equipment 
using 3D printing technology to simplify the pro-
duction process.
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