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Abstract: Tuberculosis (TB) is a severe infectious disease caused by mycobacterium tuberculosis. Early and reli
able diagnosis of this disease is very important. In this study, proteomic profiling analysis was performed for serum 
samples from TB patients and healthy controls. The samples were analyzed by data-independent acquisition mass 
spectrometry coupled with high performance liquid chromatography (HPLC-DIA-MS) to identify candidate serum bio-
markers that could provide clues for TB diagnosis. A total of 647 serum proteins were identified using DIA acquisition 
strategy, and statistical analysis showed that 88 proteins were significantly dysregulated between TB and control 
groups. Furthermore, bioinformatic analysis was used to reveal TB relevant pathways and regulative networks for 
pathology study. As a result, a protein-protein interaction network was constructed to reveal the relationship be-
tween the 88 dysregulated proteins, and the pathway of complement and coagulation cascades and ECM-receptor 
interaction were significantly relevant to TB disease state. Finally, to further assess the validity of these findings, 
LRG1 was selected for subsequent ELISA assays, and the ELISA result validated the reliability of this proteomic 
analysis. In summary, our findings reveal several potential serum biomarkers for TB diagnosis, and the results of 
proteomic and bioinformatic analysis can also provide valuable information for TB pathology studies.
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Introduction

Proteomics is the collective study of all 
expressed proteins in given samples (cells, tis-
sues and serum, etc.) [1, 2]. The proteomic 
study can reveal information on not only the 
expressed proteins, but also the interaction 
and regulation pattern of protein complex and 
signaling networks. Nowadays, proteomic stud-
ies are mainly performed using liquid chroma-
tography coupled tandem mass spectrometers 
(LC-MS/MS) [3, 4]. These platforms can mea-
sure the abundance of thousands of proteins 
from complex biological samples simultane-
ously [5]. While isotopic labeling of proteins 
(iTRAQ, TMT and SILAC) can achieve more accu-
rate quantitative measurement [6-8], label-free 
quantitative proteomics is also a popular strat-
egy because it has simple sample preparation 
procedures which are easily accessible. For 
acquisition strategies used for LC-MS analysis, 

the data dependent acquisition (DDA) strategy 
is a common one.  But drawbacks of DDA strat-
egy exist, including less quantification accuracy 
and reproducibility. To solve this problem, data-
independent acquisition (DIA) strategy has 
been proposed and developed for proteomics 
[9]. In contrast to the traditional DDA strategy, 
DIA strategy can theoretically obtain all frag-
ment ions for all precursors simultaneously, 
thereby increasing the coverage of detected 
proteins and improving the analytical reliability 
[10, 11]. 

Bioinformatic analysis has proven to be power-
ful mathematical artifacts for studying complex 
systems such as the regulative networks of pro-
teins in biology [12]. It is a powerful tool for 
interpreting the complex proteomic results [13]. 
Bioinformatic analysis at the pathway level has 
become a common step when analyzing the 
proteomics data, for example, Tisoncik-Go et al. 
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studied the protein expression profiles in respi-
ratory compartments of ferrets infected with 
influenza viruses, and the integrative bioinfor-
matics analysis of the data uncovered relation-
ships between host responses and phenotypic 
outcomes of viral infection [14]. Deshmukh and 
colleagues used bioinformatic tools to analyze 
proteomic data which including the information 
of over 10,000 proteins, revealing that complex 
regulation of AMP-activated protein kinase and 
insulin signaling in muscle tissue at the level  
of enzyme isoforms [15]. The protein-protein 
interaction (PPI) network is one of the common-
ly used analytical strategies when performing 
bioinformatic analysis for proteomic results 
[16, 17]. For network construction, the differ-
ently dysregulated proteins (seed proteins) 
were used as queries firstly. Then the experi-
mentally supported hyperlinks from databases 
such as DIP, BIOGRID, HPRD, BIND, MINT and 
INTACT [18, 19] are retrieved and connected 
between the seed proteins, and finally the regu-
lative network is visualized in a proper style. 
Another analytical strategy is the gene ontology 
(GO) analysis [20], which can enrich the given 
proteins (or genes) in terms of biological pro-
cesses,  cellular component and molecular fun- 
ction, thus providing a comprehensive view of 
the given proteins’ roles in a cell.  

Tuberculosis (TB) results in an estimated 1.7 
million deaths each year and the global number 
of new cases continues to increase [21]. 
Biomarkers are indispensable to disease diag-
nosis and to the development of new TB thera-
peutics and vaccines [22]. In the present study, 
we performed untargeted proteomic profiling 
analysis to reveal candidate serum biomarkers 
for TB. Bioinformatic analysis was also per-
formed to retrieve TB relevant signaling path-
ways and regulative networks. Our study can 
provide not only several candidate biomarkers 
for diagnosis of TB disease state, but also clues 
for the pathology studies of TB.

Materials and methods

Materials

Ammonium bicarbonate, sodium deoxycholate, 
iodoacetamide, and dithiothreitol were pur-
chased from Sigma (St. Louis, MO, USA). Tris-
(2-carboxyethyl) phosphine was acquired from 
Thermo Scientific (Rockford, Il, USA). Modified 
sequencing-grade trypsin was obtained from 
Promega (Madison, WI, USA). All mobile phases 

and solutions were prepared with HPLC grade 
solvents (i.e. water, acetonitrile, methanol, and 
formic acid) from Sigma Aldrich. All other 
reagents were from commercial suppliers and 
of standard biochemical quality. 

Patients

From November 2014 to December 2015, 
patients from Beijing Chest Hospital, Beijing, 
China, who were confirmed by Mycobacterium 
culturing (Lowenstein-Jensen medium), were 
recruited in our study. This protocol was 
approved by the Ethics Committee at Beijing 
Chest Hospital and informed consent was 
obtained from each patient. One control group 
(n=12) was also established using healthy vol-
unteers, who were without latent tuberculosis 
infection (healthy volunteers received tubercu-
lin skin test (TST) and all the results of TST were 
negative). People in all the groups were well 
matched in age and gender. 

HAPs immunodepletion

The Seppro IgY14 Spin Column (Sigma, USA) 
was used to bind human serum HSA, IgG, fib- 
rinogen, transferrin, IgA, IgM, haptoglobin, 
alpha2-macroglobulin, alpha1-acid glycopro-
tein, alpha1-antitrypsin, Apo A-I HDL, Apo A-II 
HDL, complement C3 and LDL (ApoB). In accor-
dance with the manufacturer’s recommenda-
tions, 10 µl of a crude plasma sample was 
diluted with Tris-buffered saline (TBS, 10 mM 
Tris-HCl with 150 mM NaCl, pH 7.4) and inject-
ed into the spin column. Then the beads and 
the sample were completely mixed by inversion 
and shaking the column, and the mixture was 
incubated at room temperature for 15 minutes. 
The LAP was collected by centrifugation the col-
umn for 30 seconds at 2,000 rpm, followed by 
wash using 1 mL dilution buffer (TBS, 10 mM 
Tris-HCl with 150 mM NaCl, pH 7.4). Then the 
column was washed twice using stripping buf-
fer (0.1 M Glycine-HCl, pH 2.5), neutralization 
buffer (0.1 M Tris-HCl, pH 8.0), and finally bal-
anced by the dilution buffer. The proteins in the 
flow-through fraction (LAPs) were collected and 
concentrated with a 10 KD ultrafiltration tube 
(Millipore, USA). 

Protein digestion 

Protein samples were digested according to the 
manufacturer’s protocol for filter-aided sample 
preparation (FASP) [23]. In brief, protein con-
centrates in Vivacon 500 filtrate tube (Cat No. 
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VNO1HO2, Sartorius Stedim Biotech) were 
mixed with 100 μL of 8 M urea in 0.1 M Tris/ 
HCl (pH 8.5) and samples were centrifuged at 
14000 g at 20°C for 15 min. This step was per-
formed twice, after which 10 μL of 0.05 M Tris-
(2-carboxyethyl) phosphine (TCEP) in water was 
added to the filters, and samples were incubat-
ed at 37°C for 1 h. Then, 10 μL of 0.1 M iodo-
acetamide (IAA) was added to the filters, after 
which the samples were incubated in darkness 
for 30 min. Filters were washed twice with 200 
μL of 50 mM NH4HCO3. Finally, 4 μg of trypsin 
(Promega, Madison, WI) in 100 μL of 50 mM 
NH4HCO3 was added to each filter. The protein 
to enzyme ratio was 50:1. Samples were incu-
bated overnight at 37°C and released peptides 
were collected by centrifugation.

LC-MS analyses

One μg of the samples was analyzed on a C18 
column (75 um × 50 cm, 3 um) at 50°C, using 
an U3000 UHPLC connected to a Q Exactive 

Spectral library generation

For generation of the spectral libraries, 6 DDA 
measurements of the “profiling standard sam-
ple set” were performed. DDA raw data were 
searched against the UniProt human database 
(release 201304, 89601 entries) using the 
Sequest HT (Proteome Discoverer v2.3.2) local 
server. Precursor and product ion spectra were 
searched with an initial mass tolerance of 20 
ppm and 0.05 Da, respectively. Tryptic cleav-
age was selected, and up to two missed cleav-
ages were allowed. Carbamidomethylation on 
cysteine (57.02 Da) was set as a fixed modifica-
tion, and oxidation (15.99 Da) on methionine 
was set as a variable modification. The target-
decoy-based strategy was applied to control 
both peptide- and protein-level false discovery 
rates (FDRs) at lower than 5%. The searching 
result was exported as .msf file format contain-
ing the annotation of precursors and fragment 
ions, also exact retention times. The msf file 

Figure 1. The workflow of the present study. It can be divided into two main 
stages. First was the biomarker discovery stage consisted of serum sample 
preparation and protein expression analysis. The second stage was the data 
analysis stage consisted of statistical analysis and bioinformatic analysis 
(PPI, GO and KEGG).

mass spectrometer (Thermo 
Scientific). The peptides were 
separated by a 3 h linear gra-
dient of from 5 to 35% ACN 
with 0.1% formic acid at 300 
nl/min, followed by a linear 
increase to 98% ACN in 2  
min and 98% for 8 min. For  
DDA acquisition, the full scan  
was performed between 400-
1,000 m/z. The automatic 
gain control target for the  
MS/MS scan was set to 5e5. 
Normalized collision energy 
(NCE) was 27. 

For DIA acquisition, the meth-
od consisted of a full scan at 
35,000 resolution from 400 
to 1,000 m/z (automatic gain 
control target of 1*10E6 or 
100 ms injection time) fol-
lowed by 20 DIA windows 
acquired at 17,500 resolution 
(automatic gain control target 
3e6 and auto for injection 
time). NCE was 27. The spec-
tra were recorded in profile 
type. The MS/MS spectra 
were recorded from 200 to 
1800 m/z. 
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was then imported into Skyline software for the 
generation of spectral library used for DIA data 
analysis.

Protein identification and quantitation

The DIA data were analyzed with Skyline soft-
ware [10], a mass spectrometer vendor-inde-
pendent free software from DIA data analysis. 
Raw data were analyzed as the user guide of 
the software. The default settings were used 
for the protein identification and peak area cal-
culation. The dotp and idotp were set to 0.6 and 
0.7 for protein identification and quantification, 
separately. After peak extraction and area cal-
culation, the result was exported as table for-
mat for further quantification analysis using 
MSstats [24] package in R.

Bioinformatic analysis

For bioinformatic analysis, the 88 significantly 
dysregulated proteins were used as input, and 
the protein-protein interaction network con-
struction and KEGG [25] pathway enrichment 
analysis were performed using the STRING [26] 
web service (http://www.string-db.org/). The 
BiNGO [27] plugin in the Cytoscape [28] envi-
ronment was used to retrieve the Gene Onto- 
logy Consortium (GOC, http://geneontology.
org/) in terms of molecular function, biological 
process and cellular component. The statistical 
test used was Hypergeometric test, and the 

FDR associated with multiple testing was cor-
rected using the Benjamini-Hochberg method 
and an FDR-corrected p value <0.0001 was 
considered significant.

LRG1 quantification by ELISA

The concentration of LRG1 (Leucine-rich alpha-
2-glycoprotein) in TB and normal serum sam-
ples was validated by enzyme linked immune 
sorbent assay (ELISA). The analysis was per-
formed according to the manufacturer’s proto-
col. First, standard protein samples and serum 
samples were diluted as instruction, and 50 µl 
of each sample was added into wells. Both the 
standard samples and serum samples were 
analyzed in duplicates. Then 50 µl of HRP-
conjugate was added to the well, followed by 
incubation at 37°C for 1 hour. Then the wells 
were washed three times using 200 µl wash 
buffer, and 50 µl of substrate A and then 50 µl 
substrate B were added into wells followed by 
incubation at 37°C for 15 min. The reaction 
was stopped by adding 50 µl of stop solution to 
each well. Finally the optical density of each 
well was determined using a microplate reader 
set to 450 nm.

Statistical method

All statistical analyses were performed using 
MSstats package in R. For the discovery stage 

Figure 2. A. Scatter plots showing the proteome expression profile of the two groups with log2 fold change (X) and 
-log2 p-value (Y). B. Hierarchical clustering analysis for visualizing the 88 significantly dysregulated proteins.
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Table 1. Significantly dysregulated proteins revealed by DIA-MS

Gene Protein Ratio  
(TB/Healthy) p value

ADAMTS13 A disintegrin and metalloproteinase with thrombospondin motifs 13 0.256558 4.91E-05
CA1 Carbonic anhydrase 1 0.32165 0
PRDX2 Peroxiredoxin-2 0.326247 3.27E-13
PTPRG Receptor-type tyrosine-protein phosphatase gamma 0.35995 0.000107
AOC3 Membrane primary amine oxidase 0.370083 1.11E-15
MMP2 72 kDa type IV collagenase 0.450048 0
LUM Lumican 0.456737 0
TNXB Tenascin-X 0.459556 3.11E-15
BST1 ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 2 0.461728 0.000416
CDH13 Cadherin-13 0.46375 0
GP5 Platelet glycoprotein V 0.467554 8.55E-08
CRTAC1 Cartilage acidic protein 1 0.469944 7.47E-07
CNTN1 Contactin-1 0.477935 6.00E-15
PI16 Peptidase inhibitor 16 0.485333 6.22E-15
BTD Biotinidase 0.508859 0
NCAM2 Neural cell adhesion molecule 2 0.515418 1.28E-05
APOC3 Apolipoprotein C-III 0.518446 2.81E-07
APOA4 Apolipoprotein A-IV 0.522983 0
CLEC3B Tetranectin 0.531069 0
PGLYRP2 N-acetylmuramoyl-L-alanine amidase 0.537802 0
IGFBP3 Insulin-like growth factor-binding protein 3 0.53804 1.41E-07
HRG Histidine-rich glycoprotein 0.538058 0
PF4 Platelet factor 4 0.542909 4.26E-14
QSOX1 Sulfhydryl oxidase 1 0.547639 3.05E-11
GSN Gelsolin 0.550807 1.91E-05
FBLN1 Fibulin-1 0.558461 0.002058
TTR Transthyretin 0.57673 0
APOC2 Apolipoprotein C-II 0.585845 6.12E-06
PROC Vitamin K-dependent protein C 0.591517 1.68E-09
PLTP Phospholipid transfer protein 0.596306 1.19E-08
COL6A3 Collagen alpha-3(VI) chain 0.602074 0.001435
BCHE Cholinesterase 0.603639 0
APCS Serum amyloid P-component 0.604023 7.44E-13
RBP4 Retinol-binding protein 4 0.606792 0.003887
PCYOX1 Prenylcysteine oxidase 1 0.626526 1.35E-12
PROCR Endothelial protein C receptor 0.631349 0
APOC1 Apolipoprotein C-I 0.639662 0.000134
FN1 Fibronectin 0.641362 0
F12 Coagulation factor XII 0.646808 0
NRP1 Neuropilin-1 0.647115 1.05E-12
SERPINA4 Kallistatin 0.651668 0
TKT Transketolase 0.654369 0.015445
PON1 Serum paraoxonase/arylesterase 1 0.655649 0.03649
APOC4 Apolipoprotein C-IV 0.656042 8.03E-07
VASN Vasorin 0.658599 3.03E-07
DSG2 Desmoglein-2 0.660536 0.028025
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IGFALS Insulin-like growth factor-binding protein complex acid labile subunit 0.663146 0
HSPG2 Basement membrane-specific heparan sulfate proteoglycan core protein 0.664062 6.69E-05
IGHM Ig mu chain C region 1.500582 0.001428
HBA1 Hemoglobin subunit alpha 1.511206 0.000627
HSP90B1 Endoplasmin 1.55146 1.10E-06
ORM2 Alpha-1-acid glycoprotein 2 1.564364 5.46E-05
KPRP Keratinocyte proline-rich protein 1.574416 0.000498
SHBG Sex hormone-binding globulin 1.579125 4.14E-13
C3 Complement C3 1.579222 0
FETUB Fetuin-B 1.60203 0.000137
IGHD Ig delta chain C region 1.610876 5.29E-09
IGHG2 Ig gamma-2 chain C region 1.655489 2.22E-16
SERPING1 Plasma protease C1 inhibitor 1.676211 0.000252
IGHG4 Ig gamma-4 chain C region 1.679534 0.022049
F11 Coagulation factor XI 1.693972 2.25E-08
KRT9 Keratin, type I cytoskeletal 9 1.69511 2.75E-07
VWF von Willebrand factor 1.778956 0
LTA4H Leukotriene A-4 hydrolase 1.790134 0.030278
IGHA1 Ig alpha-1 chain C region 1.801613 4.44E-16
CP Ceruloplasmin 1.80245 0
FLG2 Filaggrin-2 1.829562 8.98E-11
MASP2 Mannan-binding lectin serine protease 2 1.854577 1.19E-06
CD14 Monocyte differentiation antigen CD14 1.91615 1.63E-13
KRT78 Keratin, type II cytoskeletal 78 1.933439 0.000153
LRG1 Leucine-rich alpha-2-glycoprotein 1.942374 0
KRT16 Keratin, type I cytoskeletal 16 1.946115 3.28E-06
DSP Desmoplakin 2.105781 4.39E-07
S100A9 Protein S100-A9 2.11752 0.003023

Ig kappa chain V-I region Mev 2.144999 9.77E-05
KRT17 Keratin, type I cytoskeletal 17 2.167084 4.14E-05
MMP9 Matrix metalloproteinase-9 2.231027 0
IGHG1 Ig gamma-1 chain C region 2.375023 2.04E-14
DSG1 Desmoglein-1 2.417389 4.62E-07
IGKV1-5 Immunoglobulin kappa variable 1-5 2.435325 6.46E-13
IGKC Ig kappa chain C region 2.456341 0
KRT10 Keratin, type I cytoskeletal 10 2.575969 0
KRT1 Keratin, type II cytoskeletal 1 2.693196 0
ORM1 Alpha-1-acid glycoprotein 1 2.810947 0
IGHG3 Ig gamma-3 chain C region 2.879384 0
KRT2 Keratin, type II cytoskeletal 2 epidermal 3.088219 0

Ig kappa chain V-I region Wes 3.274951 1.63E-07
C9 Complement component C9 3.310871 0
IGHV1-46 Immunoglobulin heavy variable 1-46 3.319458 2.38E-12
SERPINA1 Alpha-1-antitrypsin 3.891476 0
PZP Pregnancy zone protein 4.752089 0
 Ig kappa chain V-I region Scw 5.227445 9.90E-07
HP Haptoglobin 6.603465 0
SAA1 Serum amyloid A-1 protein 7.471562 1.74E-09
CRP C-reactive protein 24.27921 0
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a 1.5-fold change and the Student’s t-test p 
value of 0.05 were used as combined thresh-
olds to define biologically regulated proteins. 

Results

Study design and workflow flowchart

The workflow of the present study is shown in 
Figure 1. It can be divided into two main stag-
es. First was the biomarker discovery stage 
consisted of serum sample preparation and 
protein expression analysis. The second stage 

was the data analysis stage consisted of sta- 
tistical analysis and bioinformatic analysis (PPI, 
GO and KEGG). What’s more, we choose LRG1 
(Leucine-rich alpha-2-glycoprotein), which is 
one of the 88 significantly dysregulated pro-
teins, to be analyzed by ELISA to validate the 
reliability of our proteomic analysis.

Protein expression analysis

As a result, 647 serum proteins containing 
6435 peptides were identified using DIA work-
flow. 240 of them were quantified (more than 2 

Figure 3. The protein-protein interaction network constructed from the 88 dysregulated proteins. Each edge repre-
sents a type of interaction between the linked nodes.
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Table 2. Bioinformatic analysis of the proteomic results
Biological process    

    Pathway ID Pathway description Observed gene count False discovery rate Matching proteins in network 

        GO.0051239 Regulation of multicellular 
organismal process

32 5.60E-09 APCS, APOA4, APOC1, APOC2, APOC3, C3, 
CNTN1, CRP, DSG2, DSP, F11, F12, FBLN1, 
GP5, HRG, LRG1, LUM, MMP9, NRP1, ORM1, 
PF4, PGLYRP2, PI16, PROC, PROCR, PTPRG, 
RBP4, S100A9, SAA1, SERPING1, TFE3, VASN

        GO.0051241 Negative regulation of multicel-
lular organismal process

22 5.60E-09 APCS, APOC1, APOC2, APOC3, CRP, F11, F12, 
FBLN1, FN1, GP5, HRG, NRP1, ORM1, PF4, 
PGLYRP2, PI16, PROC, PROCR, PTPRG, RBP4, 
SERPING1, VASN

        GO.0006953 Acute-phase response 8 7.71E-09 APCS, CRP, FN1, HP, ORM1, ORM2, SAA1, 
SERPINA1

        GO.0072376 Protein activation cascade 9 7.71E-09 C3, C9, F11, F12, FBLN1, GP5, MASP2, SERP-
ING1, VWF

        GO.0002526 Acute inflammatory response 9 9.42E-09 APCS, CRP, F12, FN1, HP, ORM1, ORM2, SAA1, 
SERPINA1

        GO.0052547 Regulation of peptidase activity 14 2.07E-07 C3, CD14, COL6A3, FBLN1, FN1, GSN, HRG, 
MMP9, PI16, PZP, S100A9, SERPINA1, SER-
PINA4, SERPING1

Molecular function     

    Pathway ID Pathway description Observed gene count False discovery rate Matching proteins in your network (labels)

        GO.0005509 Calcium ion binding 17 1.04E-06 ADAMTS13, AOC3, APCS, CDH13, CLEC3B, 
CRP, CRTAC1, DSG1, DSG2, FBLN1, FLG2, 
GSN, HSP90B1, MASP2, PON1, PROC, S100A9

        GO.0061134 Peptidase regulator activity 10 5.59E-06 C3, COL6A3, FBLN1, FN1, HRG, PI16, PZP, 
SERPINA1, SERPINA4, SERPING1

        GO.0005515 Protein binding 39 5.97E-06 ADAMTS13, AOC3, APCS, APOA4, APOC2, 
APOC3, BCHE, C3, CDH13, CLEC3B, CP, CRP, 
DSG1, DSG2, DSP, F12, FBLN1, FN1, GSN, HP, 
HRG, HSP90B1, HSPG2, IGFALS, IGFBP3, LUM, 
MASP2, MMP9, NRP1, PF4, PON1, PTPRG, 
S100A9, SAA1, SERPINA1, TKT, TTR, VASN, 
VWF

        GO.0004857 Enzyme inhibitor activity 11 3.33E-05 APOC1, APOC2, APOC3, C3, COL6A3, HRG, 
PI16, PZP, SERPINA1, SERPINA4, SERPING1

        GO.0030414 Peptidase inhibitor activity 8 0.00014 C3, COL6A3, HRG, PI16, PZP, SERPINA1, SER-
PINA4, SERPING1

        GO.0030234 Enzyme regulator activity 15 0.000267 APOA4, APOC1, APOC2, APOC3, C3, COL6A3, 
FBLN1, FN1, HRG, IGFBP3, PI16, PZP, SER-
PINA1, SERPINA4, SERPING1

Cellular component     

    Pathway ID Pathway description Observed gene count False discovery rate Matching proteins in your network (labels)

        GO.0005615 Extracellular space 52 3.80E-43 ADAMTS13, APCS, APOA4, APOC1, APOC2, 
APOC3, APOC4, BCHE, BTD, C3, C9, CD14, 
CDH13, CLEC3B, COL6A3, CP, CRP, F11, F12, 
FBLN1, FETUB, FN1, GSN, HBA1, HP, HRG, 
HSPG2, IGFALS, IGFBP3, LRG1, LUM, MMP2, 
MMP9, NRP1, ORM1, ORM2, PCYOX1, PF4, 
PI16, PLTP, PON1, PROC, PZP, QSOX1, RBP4, 
S100A9, SAA1, SERPINA1, SERPINA4, SERP-
ING1, TTR, VASN

        GO.0070062 Extracellular exosome 64 1.42E-42 APCS, APOA4, APOC1, APOC2, APOC3, BST1, 
BTD, C3, C9, CA1, CD14, CDH13, CLEC3B, 
CNTN1, COL6A3, CP, CRP, CRTAC1, DSG1, 
DSG2, DSP, F11, F12, FBLN1, FETUB, FLG2, 
FN1, GP5, GSN, HBA1, HP, HRG, HSP90B1, 
HSPG2, IGFALS, IGFBP3, KPRP, LRG1, LTA4H, 
LUM, MASP2, MMP9, ORM1, ORM2, PCYOX1, 
PGLYRP2, PI16, PON1, PRDX2, PROCR, PTPRG, 
PZP, QSOX1, RBP4, S100A9, SAA1, SERPINA1, 
SERPINA4, SERPING1, SHBG, TKT, TTR, VASN, 
VWF
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        GO.0044421 Extracellular region part 67 9.59E-40 APCS, APOA4, APOC1, APOC2, APOC3, APOC4, 
BCHE, BST1, BTD, C3, C9, CA1, CD14, CDH13, 
CLEC3B, CNTN1, COL6A3, CP, CRP, CRTAC1, 
DSG1, DSG2, DSP, F11, F12, FLG2, FN1, 
GP5, GSN, HBA1, HP, HRG, HSP90B1, IGFALS, 
IGFBP3, KPRP, LRG1, LTA4H, LUM, MASP2, 
MMP2, MMP9, NRP1, ORM1, ORM2, PCYOX1, 
PF4, PGLYRP2, PLTP, PON1, PRDX2, PROC, 
PROCR, PTPRG, PZP, QSOX1, RBP4, S100A9, 
SAA1, SERPINA1, SERPINA4, SERPING1, 
SHBG, TKT, TTR, VASN, VWF

        GO.0031982 Vesicle 66 2.77E-39 APCS, APOA4, APOC1, APOC2, APOC3, BST1, 
BTD, C3, C9, CA1, CD14, CDH13, CLEC3B, 
CNTN1, COL6A3, CP, CRP, CRTAC1, DSG1, 
DSG2, DSP, F11, F12, FBLN1, FETUB, FLG2, 
FN1, GP5, GSN, HBA1, HP, HRG, HSP90B1, 
HSPG2, IGFALS, IGFBP3, KPRP, LRG1, LTA4H, 
LUM, MASP2, MMP9, NRP1, ORM1, ORM2, 
PCYOX1, PF4, PGLYRP2, PI16, PON1, PRDX2, 
PROCR, PTPRG, PZP, QSOX1, RBP4, S100A9, 
SAA1, SERPINA1, SERPINA4, SERPING1, 
SHBG, TKT, TTR, VASN, VWF

        GO.0031988 Membrane-bounded vesicle 65 1.13E-38 APCS, APOA4, APOC1, APOC2, APOC3, BST1, 
BTD, C3, C9, CA1, CD14, CDH13, CLEC3B, 
CNTN1, COL6A3, CP, CRP, CRTAC1, DSG1, 
DSG2, DSP, F11, F12, FBLN1, FETUB, FLG2, 
FN1, GP5, GSN, HBA1, HP, HRG, HSP90B1, 
HSPG2, IGFALS, IGFBP3, KPRP, LRG1, LTA4H, 
LUM, MASP2, MMP9, ORM1, ORM2, PCYOX1, 
PF4, PGLYRP2, PI16, PON1, PRDX2, PROCR, 
PTPRG, PZP, QSOX1, RBP4, S100A9, SAA1, 
SERPINA1, SERPINA4, SERPING1, SHBG, TKT, 
TTR, VASN, VWF

        GO.0005576 Extracellular region 66 1.25E-33 APCS, APOA4, APOC1, APOC2, APOC3, APOC4, 
BCHE, BST1, BTD, C3, C9, CA1, CD14, CDH13, 
CLEC3B, CNTN1, COL6A3, CP, CRP, CRTAC1, 
DSG1, DSG2, DSP, F11, F12, FLG2, FN1, 
GP5, GSN, HBA1, HP, HRG, HSP90B1, IGFALS, 
IGFBP3, KPRP, LRG1, LTA4H, LUM, MASP2, 
MMP2, MMP9, NRP1, ORM1, ORM2, PCYOX1, 
PF4, PGLYRP2, PLTP, PON1, PRDX2, PROCR, 
PTPRG, PZP, QSOX1, RBP4, S100A9, SAA1, 
SERPINA1, SERPINA4, SERPING1, SHBG, TKT, 
TTR, VASN, VWF

KEGG     

    Pathway ID Pathway description Observed gene count False discovery rate Matching proteins in your network (labels)

        4610 Complement and coagulation 
cascades

9 9.81E-10 C3, C9, F11, F12, MASP2, PROC, SERPINA1, 
SERPING1, VWF

        4512 ECM-receptor interaction 6 0.000107 COL6A3, FN1, GP5, HSPG2, TNXB, VWF

peptides were identified in all 6 replicates). 
Scatter plots with log2 fold change (X) and 
-log2 p-value (Y) shows the proteome expres-
sion profile of the two groups (Figure 2A). Using 
a 1.5-fold change and the Student’s t-test p 
value of 0.05 as cutoffs, we found a total of 88 
significantly dysregulated proteins, among 
which 40 were up-regulated and 48 were down-
regulated in TB group. As shown in Figure 2A, 
red dots represent proteins up-regulated in TB 
group while the green dots represents down-
regulated. Hierarchical clustering analysis was 
performed to visualize the 88 significantly dys-
regulated proteins (Figure 2B). The details of 

the 88 proteins, including protein ID (Uniprot), 
protein name, ratio TB/CTL, and -Log10 p-val-
ue, are listed in Table 1.

Bioinformatic analysis

The protein-protein interaction network was 
constructed for the 88 dysregulated proteins by 
retrieving the known interactions between each 
protein. As shown in Figure 3, a network con-
taining 76 nodes (proteins) and 152 edges was 
drawn. Each edge represents a type of interac-
tion between the linked nodes. The 88 signifi-
cantly dysregulated proteins were then interro-
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gated and mapped to KEGG pathways (Table 
2), ant the two significantly enriched pathways 
were complement and coagulation cascades 
and ECM-receptor interaction. To further extend 
our knowledge about the change of serum pro-
teins between disease and healthy groups, 
gene ontology (GO) analysis was performed to 
reveal the molecular function, biological pro-
cess and cellular component associated with 
the 88 significantly regulated proteins. As 
shown in Figure 4 and Table 2, the significantly 
regulated proteins are highly correlated with 
regulation of multicellular organismal process, 
acute-phase response and protein activation 
cascadeetc. in term of biological process 
(Figure 4A), participating the processes of  
calcium ion binding, protein binding and pepti-
dase regulator activity regulation etc. In term  
of molecular function (Figure 4B), and mainly 
exist at extracellular space and vesicle (Figure 
4C). Details of the GO analysis results are 
shown in Table 2.

Validation of LRG1 level by ELISA

Altogether 40 samples with 20 in each group 
were recruited for ELISA analysis to validate the 
serum level of LRG1. As shown in the grouped 
scatter plot in Figure 5, there was significant 
difference in the serum level of LRG1 between 

TB group and healthy controls (P=0.02). The 
quantification result showed that the LRG1 
level was significantly up-regulated in TB group, 
which is consisted with the quantification result 
in the proteomic analysis.

Discussion

Proteomics is analytical tool used to perform 
qualitative and quantitative analyses of a large 
number of proteins in a sample. It has been 
widely used to search for biomarkers and prov-
en to be a powerful tool [29]. The DDA strategy 
has been used in proteomic data acquisition 
for a long time, providing much information for 
biological and clinical studies [30, 31]. But due 
to the low reliability, the proteomic result reveal-
ing from DDA data often need additional valida-
tion by MRM or western blot. This drawback 
limits the wide application of DDA-based pro-
teomics study. For the recent years, the DIA 
acquisition strategy has been proposed and 
became more and more popular in proteomic 
studies [32]. Lambert et al. used DIA strategy 
to characterize changes in protein-protein inter-
actions imparted by the HSP90 inhibitor NVP-
AUY922 or melanoma-associated mutations in 
the human kinase CDK4, showing that DIA is a 
robust label-free approach to characterize such 
changes and a scalable pipeline for systems 
biology studies [33]. Bruderer et al. used DIA 
workflow to profile acetaminophen (APAP)-
treated three-dimensional human liver micro-
tissues. As a result, an early onset of relevant 
proteome changes was revealed at subtoxic 
doses of APAP, and their findings also implied 
that DIA should be the preferred method for 
quantitative protein profiling [34]. It can be 
seen that the DIA strategy is of more potential 
for achieving the ultimate goal of proteomics in 
the future. In our present study, a total of 647 
serum proteins were identified using DIA strat-
egy, 88 of them were significantly dysregulated 
between TB and healthy control group. The 
ELISA test of LRG1 showed consistent result as 
the proteomic analysis, proving the reliability of 
our LC-DIA-MS workflow. The 88 dysregulated 
serum proteins can be used as candidate bio-
markers for TB disease state in future clinical 
studies. Of course, for the preciseness and reli-

Figure 4. Gene ontology (GO) analysis performed for revealing the biological process (A) molecular function (B) and 
cellular component (C) associated with the 88 significantly regulated proteins. The darker color of the node repre-
sents a lower p value.

Figure 5. Grouped scatter plot showing the ELISA 
test result of the protein level of LRG1 in serum. Two 
groups (TB and healthy control) were included.
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ability, these candidate biomarkers should be 
validated in larger cohorts before application in 
clinical diagnosis. 

Biomarkers are indicators of the diseased or 
normal state of the body as well as drug effica-
cy [35]. Ideal biomarkers can be used for dis-
ease diagnosis and prognosis estimation as 
well as provide valuable information for the elu-
cidation of pathology. Over the past few 
decades, studies have been carried out to dis-
cover biomarkers for M. Tuberculosis and 
patient immune response. The candidate bio-
markers studied include M. Tuberculosis DNA 
and RNA and anti-phospholipid antibodies [36-
38]. However, correctly judging disease con- 
dition has been difficult to achieve with the 
above biomarkers, often yielding poor accura-
cy. Hence, the exploration for new TB biomark-
ers remains essential. In our proteomic analy-
sis, 88 serum proteins were significantly diff- 
erent between the two groups, as determined 
by statistical analysis. These metabolites are 
likely potential biomarkers, but further valida-
tion is needed for their progression to clinical 
practice.

The proteomic analysis can usually detect th- 
ousands of proteins and reveal hundreds of 
dysregulated proteins, and the systematic and 
comprehensive data analysis is important for 
fully extracting information from raw data. 
Bioinformatics is a useful mathematical tool for 
deep analysis of proteomics data [39]. In our 
result of functional network analyses (Figure 
3), the constructed network has significantly 
more interactions than expected. This means 
that these proteins have more interactions 
among themselves than what would be expect-
ed for a random set of proteins of similar size, 
drawn from the genome. Such an enrichment 
indicates that the proteins are at least partially 
biologically connected, as a group. The KEGG 
pathway enrichment result showed the TB path-
ological process may be highly correlated with 
pathways of complement and coagulation cas-
cades and ECM-receptor interaction (Table 2). 
From the results of gene ontology we can infer 
that the biological process influenced by TB 
infection include multicellular organismal pro-
cess, acute inflammatory and so on, and the 
molecular functions of some of these 88 dys-
regulated proteins belongs to enzyme or pepti-
dase inhibitor. In summary, our network analy-

ses and gene ontology results revealed much 
information about the biological processes that 
are involved in TB disease progression and the 
anti-infection response of the human body 
after TB infection.  

Conclusion

Serum serves as an important medium that 
interacts with cells, tissues and organs in the 
human body. It carries proteins secreted or 
leaked by different cells in response to patho-
logic progress. This study aimed to distinguish 
sera from TB and normal patients using LC-MS 
data in the context of metabolic profiling. Our 
approach demonstrated the importance of 
implementing multivariate statistical analysis 
and bioinformatics in determining the signifi-
cantly changed metabolites and candidate dis-
ease biomarkers. Our results showed the 
broad-spectrum metabolite variation in TB that 
can be used for the diagnosis of this disease. 
Moreover, our findings suggest that the chang-
es in serum glycerophospholipid levels serve as 
a potential molecular indicator for TB. However, 
this outcome must be further verified and vali-
dated in a larger number of clinical samples 
prior to application in the clinical setting. 
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