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Abstract: The potential function of single nucleotide polymorphisms (SNPs) in methylenetetrahydrofolate reductase 
(MTHFR) gene was predicted to be associated with the risk of type 2 diabetes mellitus (T2DM). The aim of our study 
was to evaluate the relationship between MTHFR tagging SNPs and the risk of T2DM. A hospital-based case-control 
study was conducted. Five hundred and two cases with T2DM and 782 controls were recruited. The SNPscan meth-
od was used to determine the genotypes. When we used the MTHFR rs4845882 GG homozygote genotype as the 
reference group, the AA genotype significantly increased the risk of T2DM (AA versus GG: OR = 1.73, 95% CI = 1.02-
2.93, P = 0.041). When adjusted for age, sex, smoking, drinking status and BMI, the AA genotype still significantly 
increased risk of T2DM (AA versus GG: adjusted OR = 1.73, 95% CI = 1.02-2.95, P = 0.044). In the recessive model, 
when the MTHFR rs4845882 GG/GA genotype was used as the reference group, the AA homozygote genotype was 
also associated with a significantly increased risk of T2DM (OR = 1.85, 95% CI = 1.10-3.12, P = 0.020). Similarly 
when adjusted for age, sex, smoking, drinking status and BMI, the AA genotype still significantly increased risk of 
T2DM (adjusted OR = 1.84, 95% CI = 1.09-3.11, P = 0.024). Our study indicates that the AA genotype of the MTHFR 
rs4845882 G>A polymorphism significantly increased risk of T2DM in a Chinese Han population.
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Introduction

Diabetes is a chronic disease occurring when 
the body cannot efficaciously take advantage 
of the insulin, or alternatively, when the pancre-
ases do not produce enough insulin [1]. The lat-
est data of International Diabetes Federation 
(IDF) showed that 1 in 11 adults had diabetes 
globally. Meanwhile, 46.5% of adults with dia-
betes were undiagnosed. By 2040, 1 adult in 
10 will be diagnosed. Three quarters of people 
with diabetes live in low and middle income 
countries and every 6 seconds a person dies 
from diabetes. By the end of 2015, diabetes 
has caused 5.0 million deaths [2]. Diabetes is 
the main factor contributing to non-traumatic 
amputations, blindness, and renal failure; the 

association between diabetes with weakened 
metabolic control and the high mortality due to 
coronary heart disease, neuropathies, retinop-
athy, and nephropathies has been well-estab-
lished [3-5].

There are three main types of diabetes includ-
ing type 1 diabetes mellitus, type 2 diabetes 
mellitus (T2DM), and gestational diabetes. 
T2DM is the most common type of diabetes. It 
usually occurs in adults, but is increasingly 
diagnosed in children and adolescents. In 
T2DM, the body can produce insulin but 
becomes insulin resistant so that the insulin is 
relatively ineffective. Over time, insulin level 
may subsequently become insufficient. Both 
insulin resistance (IR) and insulin deficiency 
result in high blood glucose level. Patients with 
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T2DM are well known to have a 2-4 fold higher 
risk of cardiovascular events contrasted with 
individuals without diabetes [6-8]. A recent 
meta-analysis concluded that the plasma 
homocysteine (HCY) level in subjects with 
T2DM was obviously higher than that in control 
subjects [9]. HCY is one of the sulfur-containing 
amino acids formed through the methionine 
demethylation. It exists in plasma in four differ-
ent forms: 20-30% combines with itself or other 
thiols to form dimer HCY, about 1% circulates 
as free thiol, and 70-80% remains disulphide-
combined to plasma proteins, especially albu-
min [10]. It is a neotype risk factor for cardio-
vascular disease and diabetic nephropathy that 
has gradually caused the interest of studies 
[11]. Several effects resulted from HCY on vas-
cular endothelial cells have been determined, 
such as decrease of nitric oxide (NO) release 
from platelets [12] and endothelial cells [13], 
increase of arachidonic acid mobilization, more 
thromboxane A2 and reactive oxygen species 
(ROS) production in human platelets [14], stim-
ulation of smooth muscle cells proliferation 
[15] and potentiation of low-density lipopro-
teins oxidation [16]. The mechanism that HCY 
lowers NO content and promotes ROS genera-
tion leads to endothelial cell injury in vitro. Then 
it weakens NO-mediated inhibition of platelet 
aggregation [17] and modifies the vascular 
response to L-arginine [18] and the adhesion 
characteristic of endothelial cells [19]. The HCY 
level increased in diabetes patients [20]. 
Previous studies indicated that hyperhomocys- indicated that hyperhomocys-indicated that hyperhomocys-
teinemia (Hhcy) was associated with the 
increased oxidative stress in T2DM subjects 
[21]. ROS contribute to β-cell dysfunction, IR, 
and both the macrovascular and microvascular 
long-term complications of diabetes [22-25].

Familial Hhcy aggregation is consistent to the 
concept that this disorder may possess a ge- 
netic predisposition. An enzyme that has drawn 
particular attention in Hhcy is methylenetetra-
hydrofolate reductase (MTHFR), which catalyz-
es HCY methylation into methionine. The chem-
ical reaction is the final segment in the sulfur-
recycling pathway. The MTHFR gene has been 
suggested to be one of the genetic determi-
nants of Hhcy [26]. The MTHFR gene is situated 
in 1p36.3 and includes 11 exons with a length 
of 1980 bp. In humans, the MTHFR enzyme 
exists in the form of dimers and each monomer 
has an N-terminal catalytic domain and a C-ter- 
minal regulatory domain [27]. Common muta-

tions of this gene produce thermolabile vari-
ants of MTHFR which decreases the enzymatic 
activity and in turn results in higher total HCY 
concentrations in plasma [28].

The MTHFR gene contains more than 20 sin- 
gle nucleotide polymorphisms (SNPs) [29]. In 
the view of the MTHFR biological and patho- 
logic importance, functional MTHFR genetic 
SNPs may contribute to risk of T2DM. In order 
to explore the association between risk of 
T2DM and MTHFR SNPs, we performed a hos-
pital-based case-control study to evaluate  
the association between five MTHFR tagging 
SNPs (rs3753584 A>G, rs9651118 T>C, rs18- 
01133 C>T, rs4846048 A>G and rs484588- 
2 G>A) and susceptibility to T2DM in a Chinese 
Han population.

Materials and methods

Subjects

In our study, all participants, including 502 
T2DM cases and 782 controls, were Chinese 
Han populations. All of them provided written 
informed consents. This study was approved  
by the Institutional Review Board of Fujian 
Medical University (Fuzhou, China) and Jiangsu 
University (Zhenjiang, China). All cases were 
recruited consecutively from Affiliated People’s 
Hospital of Jiangsu University (Zhenjiang City, 
China) and Affiliated Union Medical College of 
Fujian Medical University (Fuzhou, China) from 
October 2014 through May 2016. A case of 
T2DM was diagnosed if the subject’s reported 
glucose level conformed to the well-establish- 
ed T2DM diagnostic criteria recommended by 
international diabetes federation (IDF) [30]. All 
controls were free of diabetes and impaired 
glucose tolerance (IGT) determined by clinical 
examination or medical history and recruited 
from health check centers in two hospitals 
mentioned above. All of control individuals were 
matched to the cases for sex and age (±5 
years).

Clinical data collection

Demographic variables, including age, gender, 
history of smoking, drinking, were collected 
through a standardized interview. Weight and 
height were measured and used to calculate 
the body mass index (BMI) [BMI = weight/hei- 
ght2 (kg/m2)]. Blood samples were extracted to 
detect the total cholesterol (TC), fasting blood 



MTHFR polymorphism and type 2 diabetes

2112 Int J Clin Exp Pathol 2017;10(2):2110-2118

(Promega, Madison, USA). DNA concentration 
was measured using the NanoDrop 2000 spec-
trophotometer. All sample concentration was 
standardized to the detectable level of 10 ng/
μL.

SNP selection

Tagging SNPs were selected by retrieving 
Chinese Han population data from the Hap- 
Map project (http://www.hapmap.org/) and 
Haploview 4.2 software described previously 
[31, 32]. The following criteria were adopted to 
identify the candidate tagging SNPs: (1) SNPs 
located in the gene or within the 2-kb region 
flanking the gene, (2) a minor allele frequency 
(MAF) ≥0.05, and (3) other unselected SNPs 

glucose (FBG), high-density lipoprotein choles-
terol (HDL-C), triglyceride (TG), and low-density 
lipoprotein cholesterol (LDL-C). We also collect-
ed the data of systolic pressure and diasto- 
lic pressure of two group subjects but not 
hypertension history. All biochemical parame-
ters were measured in the laboratory of Affi- 
liated People’s Hospital of Jiangsu University 
and Affiliated Union Medical College of Fujian 
Medical University.

DNA extraction

Venous blood sample from each subject was 
collected and stored in EDTA-containing tubes 
at -20°C. Genomic DNA was extracted from 
white blood cells using DNA Blood Mini Kit 

Table 1. Distribution of selected demographic variables and risk factors in type 2 diabetes cases and 
controls

Variable
Cases (n = 502) Controls (n = 782)

Pa

n % n %
Age (years) 65.20±9.51 64.67±9.80 0.347
Age (years) 0.113
    <65 227 45.22 389 49.74
    ≥65 275 54.78 393 50.26
Gender 0.819
    Male 332 66.14 522 66.75
    Female 170 33.86 260 33.25
Tobacco use 0.264
    Never 333 66.33 542 69.31
    Ever 169 33.67 240 30.69
Alcohol use 0.263
    Never 453 90.24 690 88.24
    Ever 49 9.76 92 11.76
Height (m) 1.68±0.08 1.66±0.07 0.015
Weight (kg) 67.63±11.42 64.62±9.96 <0.001
BMI (kg/m2) 24.95±3.64 23.51±2.94 <0.001
BMI (kg/m2) <0.001
    <24 210 436
    ≥24 292 346
Systolic pressure (mmHg) 135.08±17.83 134.02±17.71 0.297
Diastolic pressure (mmHg) 79.79±10.35 80.06±10.02 0.649
Fasting blood glucose (mmol/L) 8.08±2.76 5.13±0.49 <0.001
Total cholesterol (mmol/L) 4.61±1.24 4.88±1.02 <0.001
Triglyceride (mmol/L) 1.74±1.14 1.55±0.96 0.001
HDL-C (mmol/L) 1.13±0.37 1.30±0.37 <0.001
LDL-C (mmol/L) 3.00±1.07 3.14±0.82 0.010
LDL-C/HDL-C 2.90±1.66 2.59±1.01 <0.001
aTwo-sided χ2 test and student t test; Bold values are statistically significant (P<0.05). BMI, Body mass index; HDL-C, High-
density lipoprotein cholesterol; LDL-C, Low-density lipoprotein cholesterol.
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could be gained through one of the tagging 
SNPs with a linkage disequilibrium (LD) of r2≥ 
0.08. As a result, a total of 5 tagging SNPs  
were identified.

Polymorphism genotyping

Genotyping was performed utilizing SNPscan 
method by a custom-by-design 2×48-Plex 
SNPscan™ Kit (Genesky Biotechnologies Inc., 
Shanghai, China) [33]. The SNPscan technique 
was exploited according to proprietary tech- 
nology of SNP genotyping by Genesky Biotech- 
nologies Inc., who provides a cost-saving and 
high-throughput SNP genotyping method based 
on multiplex fluorescence PCR and double liga-
tion as previously described [34]. For quality 
control repeated tests were conducted by ran-
domly selecting 4% total samples. This con-
firmed an accuracy rate of 100%.

Statistical analysis

The measurement data (age, height, weight, 
BMI, systolic pressure, diastolic pressure, fast-
ing glucose, total cholesterol, triglyceride, HDL-
C, LDL-C and LDL-C/HDL-C) were compared by 
the t-test. Differences in the demographic char-
acteristics and genotype between T2DM cases 
and controls were calculated by the chi-squared 
(χ2) test. We tested the Hardy-Weinberg equilib-
rium (HWE) in controls by an internet-based 
HWE calculator (website at http://ihg.gsf.de/
cgi-bin/hw/hwa1.pl) [29]. In order to evaluate 
the association between five MTHFR genotypes 
and susceptibility to T2DM, unconditional logis-
tic regression analysis was performed to com-
pute the odds ratios (ORs, crude or adjusted 
appropriately) and their 95% confidence inter-
vals (CIs). All statistical analyses were perform- 
ed with the SAS software (version 9.4, SAS 

Institute, Cary, NC). P<0.05 was defined statis-
tically significant; with two-sided probabilities.

Results

Characteristics of the study population

The clinical and demographic characteristics  
of all subjects were summarized in Table 1. The 
cases and the controls were matched even- 
ly for age (P = 0.347) and gender (P = 0.819). 
Tobacco and alcohol use were not significantly 
different between the cases and the controls  
(P = 0.264, P = 0.263, respectively). Meanwhile, 
systolic and diastolic pressure did not show  
significantly different between the cases and 
the controls (P = 0.297, P = 0.649, respec- 
tively). But diabetes-related indexes and tradi-
tional risk factors, such as BMI (P<0.001),  
FBG (P<0.001), TC (P<0.001), TG (P = 0.001), 
HDL-C (P<0.001), LDL-C (P = 0.010) and LDL- 
C/HDL-C (P<0.001) were significantly different 
between the cases and the controls.

Primary information of MTHFR SNPs

The primary information of MTHFR tagging 
SNPs was shown in Table 2. The molecular 
markers that we used consisted of rs37535- 
84 A>G, rs9651118 T>C, rs1801133 C>T, rs- 
4846048 A>G and rs4845882 G>A polymor-
phisms. These markers relatively randomly lo- 
cate in introns, except rs1801133 C>T (mis-
sense). The minor allele frequencies (MAF) of 
five SNPs in our control range from 0.107 to 
0.470 (according to the NCBI database). Ge- 
notyping was performed using SNPscan meth-
od. With exception rs9651118 T>C (P = 0.021), 
these SNPs genotype distribution in the con-
trols accorded to the HWE (P>0.05). All of the 
genotyping values of five SNPs were 99.61% in 
all 1284 samples.

Table 2. Primary information for MTHFR rs1801133 C>T, rs3753584 A>G, rs4845882 G>A, 
rs4846048 A>G and rs9651118 T>C polymorphisms

Chromosome Function
Chr Pos 

(Genome 
Build 36.3)

MAFa for 
Chinese in 
database

MAF in our 
controls  

(n = 782)

P value for 
HWEb test in 
our controls

Genotyping 
method

% genotyping 
value

rs1801133 C>T 1 Missense 11778965 0.439 0.349 0.498 SNPscan 99.61%
rs3753584 A>G 1 NearGene-5 11787173 0.093 0.107 0.703 SNPscan 99.61%
rs4845882 G>A 1 Intron 11765754 0.198 0.259 0.112 SNPscan 99.61%
rs4846048 A>G 1 Intron 11768839 0.105 0.121 0.785 SNPscan 99.61%
rs9651118 T>C 1 Intron 11784801 0.382 0.470 0.021 SNPscan 99.61%
aMAF: Minor allele frequency; bHWE: Hardy-Weinberg equilibrium.
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in controls (Table 3). When we used the MTHFR 
rs4845882 GG homozygote genotype as the 
reference group, the AA genotype significantly 
increased risk of T2DM (AA versus GG: OR = 
1.73, 95% CI = 1.02-2.93, P = 0.041). When ad- 
justed for age, sex, smoking, drinking status 
and BMI, the AA genotype still significantly in- 

Associations between MTHFR polymorphisms 
and the risk of T2DM

The genotype frequencies of the MTHFR rs48- 
45882 G>A polymorphism were 62.37% (GG), 
31.19% (GA) and 6.44% (AA) in T2DM patients, 
and 61.00% (GG), 35.42% (GA) and 3.58% (AA) 

Table 3. SNPscan analyses of association between MTHFR polymorphisms and risk of type 2 diabetes

Genotype
Cases (n = 502) Controls (n = 782) Crude OR  

(95% CI) P Adjusted ORa 
(95% CI) P

n % n %
MTHFR rs1801133 G>A
    GG 228 45.88 327 41.82 1.00 1.00
    GA 215 43.26 364 46.55 0.83 (0.65-1.05) 0.122 0.82 (0.65-1.05) 0.118
    AA 54 10.87 91 11.64 0.83 (0.57-1.21) 0.341 0.80 (0.55-1.17) 0.247
    GA+AA 269 54.13 455 58.19 0.85 (0.68-1.06) 0.154 0.84 (0.66-1.05) 0.129
    GG+GA 443 89.14 691 88.37 1.00 1.00
    AA 54 10.87 91 11.64 0.93 (0.65-1.32) 0.671 0.89 (0.62-1.28) 0.528
    A allele 323 32.49 546 34.91
MTHFR rs3753584 T>C
    TT 378 76.06 622 79.54 1.00 1.00
    CT 117 23.54 152 19.44 1.25 (0.95-1.64) 0.109 1.23 (0.93-1.62) 0.143
    CC 2 0.40 8 1.02 0.41 (0.09-1.92) 0.256 0.43 (0.09-2.07) 0.295
    CT+CC 119 23.94 160 20.46 1.22 (0.94-1.60) 0.142 1.21 (0.92-1.59) 0.177
    TT+CT 495 99.60 774 98.98 1.00 1.00
    CC 2 0.40 8 1.02 0.39 (0.08-1.85) 0.236 0.42 (0.09-1.99) 0.273
    C allele 121 12.17 168 10.74
MTHFR rs4845882 G>A
    GG 310 62.37 477 61.00 1.00 1.00
    GA 155 31.19 277 35.42 0.85 (0.67-1.08) 0.181 0.87 (0.68-1.11) 0.247
    AA 32 6.44 28 3.58 1.73 (1.02-2.93) 0.041 1.73 (1.02-2.95) 0.044
    GA+AA 187 37.63 305 39.00 0.94 (0.75-1.18) 0.622 0.96 (0.76-1.21) 0.736
    GG+GA 465 93.56 754 96.42 1.00 1.00
    AA 32 6.44 28 3.58 1.85 (1.10-3.12) 0.020 1.84 (1.09-3.11) 0.024
    A allele 219 22.03 333 25.93
MTHFR rs4846048 A>G
    AA 410 82.49 634 81.07 1.00 1.00
    AG 78 15.69 141 18.03 0.85 (0.62-1.14) 0.276 0.89 (0.65-1.21) 0.447
    GG 9 1.81 7 0.90 1.96 (0.73-5.32) 0.184 1.93 (0.70-5.30) 0.202
    AG+GG 87 17.50 148 18.93 0.91 (0.68-1.22) 0.523 0.95 (0.71-1.28) 0.735
    AA+AG 488 98.18 775 99.10 1.00 1.00
    GG 9 1.81 7 0.90 2.04 (0.76-5.52) 0.159 1.99 (0.73-5.46) 0.182
    G allele 96 9.66 155 12.07
MTHFR rs9651118 T>C
    TT 184 37.02 280 35.81 1.00 1.00
    TC 241 48.49 401 51.28 0.89 (0.70-1.14) 0.351 0.91 (0.71-1.16) 0.445
    CC 72 14.49 101 12.92 1.06 (0.74-1.51) 0.763 1.04 (0.72-1.48) 0.852
    TC+CC 313 62.98 502 64.20 0.95 (0.75-1.20) 0.659 0.96 (0.76-1.22) 0.732
    TT+TC 425 85.51 681 87.09 1.00 1.00
    CC 72 14.49 101 12.92 1.14 (0.83-1.58) 0.423 1.11 (0.80-1.54) 0.549
    C allele 385 38.73 603 46.96
aAdjusted for age, sex, smoking, drinking status and body mass index; Bold values are statistically significant (P<0.05).
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creased risk of T2DM (AA versus GG: adjust- 
ed OR = 1.73, 95% CI = 1.02-2.95, P = 0.044). 
In the recessive model, when the MTHFR rs- 
4845882 GG/GA genotype was used as the 
reference group, the AA homozygote genotype 
was also associated with a significantly incre- 
ased risk of T2DM (OR = 1.85, 95% CI = 1.10-
3.12, P = 0.020). Similarly when adjusted for 
age, sex, smoking, drinking status and BMI,  
the AA genotype still significantly increased  
risk of T2DM (adjusted OR = 1.84, 95% CI = 
1.09-3.11, P = 0.024, Table 3).

None of the MTHFR rs3753584 A>G, rs9651- 
118 T>C, rs1801133 C>T and rs4846048 A>G 
polymorphisms had a significantly different dis-
tribution between T2DM cases and controls. 
Logistic regression analyses also revealed that 
these polymorphisms were not associated with 
the susceptibility of T2DM (Table 3).

Discussion

In our study, we experimented on the associa-
tion between MTHFR rs3753584 A>G, rs965-
1118 T>C, rs1801133 C>T, rs4846048 A>G 
and rs4845882 G>A polymorphisms and the 
risk of T2DM in a Chinese Han populations. We 
found that the homozygote genotype AA of 
MTHFR rs4845882 G>A polymorphism may 
increase the risk of T2DM in the homozygote 
and recessive models. However, the rs3753- 
584 A>G, rs9651118 T>C, rs1801133 C>T and 
rs4846048 A>G polymorphisms were not as- 
sociated with the risk of T2DM.

As the most prevalent metabolic disorder, dia-
betes mellitus is characterized by chronic 
hyperglycemia due to resistance against insulin 
action or defect of insulin secretion by beta 
cells of pancreas islets [35]. T2DM includes 
90-95% of patients with diabetes. Patients with 
T2DM may be asymptomatic for a long time. 
Vascular complications such as cardiovascular 
disease, neuropathy, nephropathy and retinop-
athy may develop in these patients. The effect 
of genetic factors appears to be greater in 
T2DM compared to T1DM [36, 37]. The rising 
incidence of T2DM and the necessity of early 
detection and management have urged many 
investigators to investigate environmental and 
genetic risk factors for T2DM.

MTHFR gene codes a crucial enzyme (flavo- 
protein) in the metabolism of folate and HCY 
and is involved in methylation, DNA synthesis 

and nucleotide repair [38]. MTHFR is the en- 
zyme that catalyzes the transformation of HCY 
to methionine via the re-methylation pathway 
[39]. The accumulation of HCY in the plasma  
is associated with metabolic syndrome, includ-
ing T2DM [40]. Elevatory plasma levels of HCY, 
a condition defined as HCY, have been related 
to such T2DM characteristics as insulin resis-
tance [41, 42], endothelial dysfunction and 
arterial stiffness [43], hypercoagulability and 
prothrombotic inflammation [44], nephropathy 
[45, 46] and macroangiopathy [41, 47]. Hhcy 
has also linked with coronary heart disease 
[48], atherosclerosis [49] and sudden death 
[50] among individuals with T2DM.

Genetic polymorphisms often vary between dif-
ferent ethnic groups. The MAF of the rs4845- 
882 G>A polymorphism was 0.259 in 782 con-
trols in our study, similar to MAF for Chinese  
in database (0.198). So far there were not  
any experimental research about the associa-
tion between the rs4845882 G>A polymor-
phism and the risk of T2DM. And the studies 
about the rs4845882 G>A polymorphism were 
also rare. Tang W et al. did the first study about 
this polymorphism in the role of esophageal 
squamous cell carcinoma (ESCC) risk and con-
cluded that it was associated with the decre- 
ased risk of ESCC [31]. Hereafter, we conduct-
ed the study about this polymorphism in the 
role of gastric cardia adenocarcinoma (GCA) 
but we found no association about them [29]. 
These results implied that the rs4845882 G> 
A polymorphism might have different functions 
in different diseases.

In 1977, the discovery of intronsbrought the 
molecular biology world a big surprise [51]. In 
eukaryotes, intronsare also called as spliceoso-
malintrons which are discovered in the nuclear 
genomes [52]. They have quasi-random sequ- 
ences and generally lack open reading frames 
(ORFs), but they have been shown or proposed 
to carry out many functions. In nonsense-medi-
ated decay (NMD), the transcript is targeted for 
degradation if a transcriptional error causes to 
a stop codon upstream of an adjacent intron-
exon boundary [53]. Some studies have indi-
cated that many introns involved in exon shuf-
fling [54-56]. And the introns in genes increase 
the recombination rate between parts of the 
codingregion, leading to the creation of new 
products and enhancing the efficiency of se- 
lection [57-60]. The rs4845882 G>A polymor-
phism is situated in the intron of the MTHFR 
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