
Int J Clin Exp Pathol 2017;10(3):2554-2567
www.ijcep.com /ISSN:1936-2625/IJCEP0046619

Original Article 
Oxidative stress pathways of flavonoid  
toxicity in human breast tumor cells

Maryam Taabodi1, Eric B May1, Kelly M Mack3, Katherine S Squibb2, Ali B Ishaque1

1Department of Natural Sciences, University of Maryland Eastern Shore, MD, USA; 2Department of Medicine, 
University of Maryland School of Medicine, MD, USA; 3Association of American Colleges and Universities, 1818 R 
Street, NW, Washington DC, USA

Received December 4, 2016; Accepted January 15, 2017; Epub March 1, 2017; Published March 15, 2017

Abstract: African-American women have a higher breast cancer mortality rate than Caucasian women. Harmful re-
active oxygen species (ROS) exert oxidative stress in cells of the human body and lead to several types of DNA dam-
age. Recent studies have shown that flavonoids may protect against cancer through inhibition of oxidative damage. 
Naringenin, a universal flavonoid, can also inhibit the proliferation of cancer cells. This project studied the oxidative 
stress (cell death) pathways of naringenin in ER-positive (MCF-7), ER-negative (MDA-MB-468), and non-tumorigenic 
human breast cell (MCF-10A) lines. Cellular levels of ROS, superoxide (O2

-), glutathione (GSH), and mitochondrial 
membrane potential (MMP) were assayed using the FACS Calibur flow cytometer and cell quest software for data 
collection. The results showed that naringenin induced oxidative stress that resulted in cell death in all cell lines. 
The highest production of ROS and O2

- was observed in ER-negative cells. Naringenin did not have any effect on GSH 
levels in ER-negative and ER-positive but a partial increase occurred in non-tumorigenic human breast cells. The 
results for MMP showed that naringenin significantly increased the loss of MMP in all breast cells. In conclusion, 
the oxidative stress that resulted in cell death from exposure to naringenin may contribute to the cancer-preventive 
effects associated with an increased dietary intake of fruits containing flavonoids. We have presented evidence 
that naringenin is able to induce cell death in both ER-positive and ER-negative breast cancer cells; however the 
magnitude of the effect of naringenin is quite different. This finding suggests naringenin may have potential as a 
treatment for ER-negative breast cancer.
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Introduction

African American women have lower incidence 
rates but higher mortality rates for breast can-
cer than Caucasian women [1] and are more 
likely to be diagnosed at the later stages of 
breast cancer [2-4]. The reason for mortality 
differences between racial groups may be cul-
tural but also due to a different hormone re- 
ceptor status [5-9]. It is increasingly recognized 
that breast cancer is a disease with distinct 
clinical behavioral and molecular properties. 
For example, estrogen receptor (ER) positive 
and negative cancers are the two most distinct 
breast cancer subtypes and predict the likeli-
hood of benefits from antiestrogen therapy [10, 
11]. Breast cancer tumors that are ER-positive 
and human epidermal growth factor receptor 2 
positive (ER+/HER2+) are much more likely to 

respond to endocrine therapy that blocks es- 
trogen’s effects in the body, than ER-negative 
(ER-/HER2+) tumors [5, 12]. According to the 
Surveillance, Epidemiology, and End Results 
[13], women with ER-positive tumors have bet-
ter prognosis and need less aggressive treat-
ment than women with ER-negative tumors. 

Cancer cells have higher levels of oxidative 
stress than normal cells [14, 15]. Increased lev-
els of oxidative stress result from an imbalance 
between the production of reactive oxygen spe-
cies (ROS) and reduction of glutathione (GSH) 
level in the cell and high levels of ROS are 
known to kill cancer cells [16-22]. GSH plays a 
vital role in maintaining redox homeostasis and 
it is the main non-enzymatic component of 
intracellular antioxidant defense mechanisms, 
acting as a small scavenger molecule in living 
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was used for non-tumorigenic cells. All cells 
were cultured in 175 cm2 flasks at 37°C in a 
humidified 95% air and 5% carbon dioxide (CO2) 
incubator. Cells were allowed to grow and form 
a monolayer in the flasks. Cells were grown to 
90-95% confluence, washed with phosphate 
buffered saline (PBS) and harvested by trypsin-
ization (0.05% (w/v) trypsin) once a week fol-
lowing manufacture’s protocol (ATCC cell cul-
ture). All media were purchased from Invitrogen 
(Grand Island, NY) and fetal bovine serum, 
penicillin, and streptomycin purchased from 
ATCC. 

Cell toxicity assay (cell death) by measuring of 
intracellular ROS, O2

-, GSH, and MMP 

All breast cells were grown in 6-well plates with 
Dulbecco’s Modified Eagle Medium (DMEM) 
supplemented with 10% fetal bovine serum 
(FBS) and 1% streptomycin and penicillin, at 
37°C in a 5% CO2 incubator. Cells were allowed 
to grow to 90% confluence. Naringenin (Sigma 
Aldrich, St. Louis, MO) at different concentra-
tions (0.0, 2.5, 10.0, or 50.0 µM) was added to 
the wells with 5.0 mL MEM without phenol red 
followed by incubation for 24 h. After 24 h of 
exposure to naringenin, 4.0 μL of the appropri-
ate fluorescent indicator was added to the 
cells. 2’,-7’-Dichlorodihydrofluorescein diace-
tate (H2DCFDA), dihydroethidium (DHE), 5-chlo-
romethylfluorescein diacetate (CMFDA) and 
rhodamine 123 (RHO) for detection of cell toxic-
ity (cell death) using ROS, O2

-, GSH and MMP, 
respectively using a FACS Calibur flow cytome-
ter instrument (Becton Dickenson, San Jose, 
CA).

Intracellular ROS were monitored by H2DCFDA 
dye, which is a cell permeable indicator for ROS 
[33, 45]. The superoxide radical (O2

-) was moni-
tored by DHE dye, which is cell permeable and 
reacts with O2

- to form ethidium that in turn 
intercalates in DNA and exhibits a red fluores-
cence [46]. The intracellular reduction of GSH 
level was monitored by CMFDA dye, which is a 
fluorescent chloromethyl derivative that freely 
spreads through the membranes of live cells 
and exhibits bright green fluorescence in the 
cytoplasm [47]. The mitochondrial membrane 
potential (MMP) was monitored by RHO dye, 
which is a cell permeable cationic dye that 
exhibits green fluorescence in mitochondria of 
living cells [48]. 

organisms [22-24]. GSH is able to scavenge 
single oxygen and hydroxyl radicals directly, 
detoxify lipid hydroperoxides and hydrogen  
peroxides by the activity of glutathione peroxi-
dase, and regenerate other antioxidant mole-
cules [25, 26]. An early stage of oxidative stress 
starts with disruption of mitochondria including 
changes in membrane and redox potential. 
DNA fragmentation is preceded by disruption  
of mitochondria, which results in a decrease in 
mitochondrial membrane potential (MMP) [27-
30]. This reduction in MMP is accompanied by 
the production of ROS contributing to cell death 
[17, 31-34]. There is growing awareness that 
oxidative stress plays an important role in vari-
ous health problems and that consumption of 
antioxidants can prevent and even reverse 
these effects [24, 35-37]. 

Numerous studies suggest that bioflavonoids 
have potential beneficial effects and exert pre-
ventive effects in carcinogenesis essentially 
due to their antioxidant, anti-inflammatory, and 
anti-proliferative activities [38-40]. Naringenin, 
a flavonoid found in grapefruit, can alter ROS 
metabolism by directly lowering the intracellu-
lar pool of GSH [14, 41-44]. It was the aim of 
this study was to better understand the cytotox-
icity of naringenin and its oxidative stress 
pathway(s) in human breast cancer cells and 
investigate the possible use of naringenin as  
an alternative treatment for estrogen receptor 
negative breast cancer.

Material and methods

Cell culture 

MCF-7 (ER-positive), MDA-MB-468 (ER-nega- 
tive) and MCF-10A (non-tumorigenic, control) 
cells were obtained from the American Type 
Culture Collection (ATCC, Rockville, MD, USA). 
For routine maintenance, Eagle’s Minimal 
Essential Medium (EMEM) with 2.0 mM 
L-glutamine, supplemented with 0.01 mg/ml 
bovine insulin, 10% fetal bovine serum, and 
0.5% penicillin and streptomycin was used for 
ER-positive cells; Leibovitz’s L-15 medium with 
2.0 mM L-glutamine supplemented with 10% 
fetal bovine serum, 0.5% penicillin and strepto-
mycin was used for ER-negative cells; and 
Mammary Epithelial Growth Medium (MEGM) 
supplemented with 100 ng/ml cholera toxin 
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Figure 1. Flow cytometric analysis of NT (MCF-10A Cells) naringenin concentration (µM). Flow cytometric analysis of NT (MCF-10A) following exposure to fluorescent 
dye for reactive oxygen species (ROS), superoxide radical (O2

-), glutathione (GSH) and determining of a change in mitochondrial membrane potential (MMP). Per-
cents indicate portion of dead cells reacting positive for each dye at 0.0 µM, 2.5 µM, 10.0 µM and 50.0 µM naringenin.
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Figure 2. Flow cytometric analysis of ER- (MDA-MB-468 Cells) naringenin concentration (µM). Flow cytometric analysis of ER- (MDA-MB-468) following exposure to 
fluorescent dye for reactive oxygen species (ROS), superoxide radical (O2

-), glutathione (GSH) and determining of a change in mitochondrial membrane potential 
(MMP). Percents indicate portion of dead cells reacting positive for each dye at 0.0 µM, 2.5 µM, 10.0 µM and 50.0 µM naringenin.
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differences (P<0.05) Figures 1-4; Table 1). The 
percent differences as compared to ER- were 
not high (NT = 7.6±0.63%, ER+ = 1.9±0.62%, at 
0.0 µM naringenin; NT = 6.4±0.24%, ER+ = 
12.6±0.79% at 2.5 µM naringenin; NT = 9.1± 
0.54%, ER+ = 18.3±0.55% at 10.0 µM narin-
genin and NT = 16±0.45%, ER+ = 22.2±2.23% 
at 50 µM naringenin). Between concentrations 
for ER- there was a very significant (P<0.05) dif-
ference between 0.0 µM and 2.5 µM naringenin 
with percents of 35.4±1.28% and 81.3±1.0% 
respectively. However, the differences in ROS 
for ER-, while significant (P<0.05) between 2.5 
µM, 10.0 µM and 50.0 µM naringenin, were not 
as great as between 0.0 µM and 2.5 µM with 
percents of 81.3±1.0%, 83.3±0.74%, and 
89.1±1.34%, respectively. For NT and ER+ 
there was no significant difference (P<0.05) 
between naringenin concentrations of 0.0 µM 
and 2.5 µM. However, between 2.5 µM and 
10.0 µM; and 10.0 µM and 50.0 µM naringenin 
significant (P<0.05) differences were seen with 
NT showing a change of 6.4±0.24% to 
9.1±0.54% between 2.5 µM and 10.0 µM and 
9.1±0.54% to 16±0.45% between 10.0 µM and 
50.0 µM naringenin. For ER+ a similar response 
occurred with a change in percent of 
12.6±0.79% to 18.3±0.55% between 2.5 µM 
and 10.0 µM and 18.3±0.55% to 22.2±2.28% 
between 10.0 µM and 50.0 µM naringenin.

Superoxide (O2
-)

For superoxide radicals (O2
-) the effect of na- 

ringenin on percent of dead cells exhibiting a 
positive reaction to DHE dye was again signifi-
cantly (P<0.05) correlated with cell type 
(Figures 1-3 and 5; Table 1). For ER- cells a 
strong and significant (P<0.05) response has 
seen at all concentrations of naringenin (0.0 
µM, 2.5 µM, 10.0 µM and 50.0 µM) with per-
cent dead cells reacting positive at 17.8± 
1.06%, 22.0±0.73%, 32.2±0.76% and 46.5± 
1.07%, respectively. For NT and ER+ cells dif-
ferences were significant (P<0.05) but to a less-
er in degree than ER- with NT at 5.4±0.70% and 
ER+ at 2.3±0.44%, NT at 4.3±0.35% and ER+ 
6.3±0.41%, NT at 6.1±0.49% and ER+ at 
9.6±0.65%, and NT at 7.9±0.59% and ER+ at 
22.2±2.23% at 0.0 µM, 2.5 µM, 10.0 µM and 
50.0 µM nareningenin, respectively. Between 
concentrations there was a significant (P< 
0.05) difference with ER- cells between 0.0 µM 

FACS calibur flow cytometer

After the breast cells were exposed to H2DCFDA, 
DHE, CMFDA and RHO dyes for four hours for 
detection of ROS, O2

-, GSH and MMP, respec-
tively; the cells were centrifuged, the superna-
tant fluid with the dyes was decanted, and the 
cells were suspended in 1 ml PBS. The fluores-
cence intensity for 10,000 events for each 
sample was determined using a FACS Calibur 
flow cytometer to sort and analyze the breast 
cells. Results for percent dead cells showing 
positive for the dye were calculated with Cell 
Quest software (Becton Dickenson, San Jose, 
CA). 

Statistical analysis

The effects of naringenin (0.0, 2.5, 10.0, and 
50.0 µM) and cell type (ER+, ER-, NT) and their 
interactions resulting in cell death due to oxida-
tive stress (ROS, O2

-, GSH, and MMP) was 
assessed by two-way ANOVA using a 4 by 3  
factorial design (version 6.0, Prism, GraphPad 
Software, San Diego, CA). Regardless of which 
oxidative stressor was assessed, cell death 
was always affected (P<0.05) by a naringenin 
by cell type interaction. To better understand 
these interactions, two means comparison 
tests were done. First, within a cell type, mean 
percent of dead cells reacting positive for given 
dye for 0.0 µM naringenin was compared to 
mean cell death for 2.5 µM, 10.0 µM, and 50.0 
µM naringenin using Dunnet’s multiple compar-
ison test at P<0.05. Second, within a dose of 
naringenin, mean cell death among cell types 
was compared using Dunnet’s multiple com-
parison test at P<0.05. 

Results

Reactive oxygen species (ROS)

The effect of naringenin on percent of dead 
cells exhibiting a positive reaction with the 
H2DCFDA dye (ROS) was significantly (P<0.05) 
correlated with cell type (NT, ER-, or ER+) and 
concentration of naringenin in the medium 
(Figures 1-4; Table 1). With respect to cell type 
ER- (MDA-MB-468) exhibited the strongest 
response (Figure 4; Table 1) with percent mor-
tality of 35.4±1.28%, 81.3±1.0%, 83.3±0.74%, 
and 89.1±1.34% for 0.0 µM, 2.5 µM, 10.0 µM, 
50.0 µM naringenin, respectively. While NT 
(MCF-10A) and ER+ (MCF-7) showed significant 



Flavonoid toxicity in breast tumor cells

2559 Int J Clin Exp Pathol 2017;10(3):2554-2567

Figure 3. Flow cytometric analysis of ER+ (MCF-7 Cells) naringenin concentration (µM). 



Flavonoid toxicity in breast tumor cells

2560 Int J Clin Exp Pathol 2017;10(3):2554-2567

Glutathione (GSH)

With respect to GSH response following addi-
tion of RHO to the cell medium the result was 
less clear. NT and ER+ cells were not signifi-
cantly (P<0.05) different at 0.0 µM naringenin 
(5.0±0.53% and 4.5±0.61%, respectively, but 
ER- was significantly (P<0.05) than both at  
0.74±0.19% (Figures 1-3 and 6; Table 1). At  
2.5 µM naringenin all 3 cell types were signifi-
cantly (P<0.05) different with NT = 5.3±0.50%, 
ER+ = 2.2±0.52% and ER- = 0.4±0.14%. The 
differences at 10.0 µM and 50 µM were again 
significant (P<0.05) with NT = 8.1±0.39% and 
7.9±0.59%, respectively; ER+ = 5.7±0.42% and 
6.0±0.78%, respectively; ER- = 1.3±0.36% and 
1.6±0.58%, respectively. Between concentra-
tions GSH for NT cells was not significantly 
(P>0.05) different between 0.0 µM and 2.5 µM 
naringenin with GSH positive reactions at 
5.0±0.53% and 5.3±0.50%, respectively. A sig-
nificant (P<0.05) difference was seen between 
2.5 µM and 10.0 µM naringenin with percents 
positive of 5.3±0.50% and 8.1±0.39%, respec-
tively. Between 10.0 µM and 50.0 µM narin-
genin no significant (P<0.05) difference was 
observed with percents positive of 8.1±0.39% 
and 7.9±0.59%, respectively. ER- cells did not 
show any significant (P>0.05) between concen-
trations with percent positives of 1.5±0.51% at 
0.0 µM; 0.9±0.52% at 2.5 µM; 1.3±0.36% at 
10.0 µM; and 1.6±0.58% at 50.0 µM narin-
genin. ER+ cells showed no significant (P<0.05) 
differences between 0.0 µM and 2.5 µM narin-
genin with percent positives of 2.2±0.52% and 
4.0±0.50%, respectively; but did show signifi-
cant (P<0.05) differences between 2.5 µM and 
10.0 µM naringenin with percent positives of 
4.0±0.50% and 5.7±0.42%, respectively. As 
with NT cells between 10.0 µM and 50 µM nar-
ingenin no significant (P<0.05) differences 
were seen with values at 8.1±0.39% and 
7.9±0.59%, respectively. 

and 2.5 µM, 2.5 µM and 10.0 µM, and 10.0 µM 
and 50.0 µM naringenin with percent differ- 
ences of 17.8±1.06% and 22.0±0.73%, 22.0± 
0.73% and 32.2±0.76%, 32.2±0.76% and 
46.5±1.07%, respectively. Lesser differences 
(P<0.05) were seen with NT and ER+ cells with 
no significant differences between 0.0 µM and 
2.5 µM naringenin (NT = 5.4±0.70% and 
4.3±0.35%, ER+ = 2.3±0.44% and 6.3±0.41%). 
Between 2.5 µM, 10.0 µM and 50.0 µM signifi-
cant (P<0.05) differences were seen but to a 
lesser degree than with ER- cells with NT cells 
exhibiting percents of  4.3±0.35%, 6.1±0.49%, 
7.9±0.28% and ER+ cells exhibiting percents  
of 6.3±0.41%, 9.6±0.65%, and 22.2±2.23% at  
2.5 µM, 10.0 µM and 50.0 µM naringenin, 
respectively. 

Table 1. Percent positive dead NT, ER- and ER+ cells for reactive oxygen species (ROS), superoxide radi-
cal (O2

-), glutathione (GSH), and change in mitochondrial membrane potential (MMP) at 0.0 µM, 2.5 µM, 
10.0 µM and 50 µM naringenin

0.0 µM 2.5 µM 10.0 µM 50.0 µM
ROS O2

- GSH MMP ROS O2
- GSH MMP ROS O2

- GSH MMP ROS O2
- GSH MMP

NT (MCF-10A) 7.6± 
0.63%

5.4± 
0.70%

5.0± 
0.53%

0.74± 
0.14%

6.4± 
0.24%

4.3± 
0.35%

5.3± 
0.50%

0.4± 
0.12%

9.1± 
0.54%

6.1± 
0.49%

8.1± 
0.39%

0.7± 
0.09%

16.0± 
0.45%

7.9± 
0.82%

7.9± 
0.59%

0.9± 
0.06%

ER+ (MCF-7) 1.9± 
0.62%

2.3± 
0.44%

4.5± 
0.61%

0.74± 
0.19%

12.6± 
0.79%

6.3± 
0.41%

4.0± 
0.50%

0.4± 
0.14%

18.3± 
0.55%

9.6± 
0.65%

5.7± 
0.42%

0.7± 
0.19%

22.2± 
2.23%

14.7± 
3.6%

6.0± 
0.78%

0.9± 
0.09%

ER- (MDA-MB-468) 35.4± 
1.28%

17.8± 
1.06%

1.5± 
0.51%

2.2± 
0.52%

81.3± 
1.0%

22.0± 
0.73%

0.9± 
0.52%

2.2± 
0.52%

83.3± 
0.74%

32.2± 
0.76%

1.3± 
0.36%

7.0± 
0.45%

89.1± 
1.34%

46.5± 
1.07%

1.6± 
0.58%

9.0± 
0.62%

Figure 4. Effect of naringenin on generation of re-
active oxygen species (ROS) and cell death in non-
tumorigenic (NT), estrogen receptor negative (ER-), 
and estrogen receptor positive (ER+) breast cancer 
cell lines. ROS reported as percent dead cells exhib-
iting a positive reaction with the H2DCFDA dye. Bars 
are means ±95% confidence intervals for six sam-
ples. Bars within a cell type with an asterisk differ 
(P<0.05) from the corresponding bar at 0 µM narin-
genin. Bars within a dose of naringenin with different 
superscripts differ at P<0.05.
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trations of naringenin (0.0 µM, 2.5 µM, 10.0 µM 
and 50.0 µM) NT and ER+ cells did not exhibit 
any significant (P<0.05) differences with NT 
cells showing percent positive dead cells of 
0.74±0.14% at 0.0 µM, 0.4±0.12% at 2.5 µM, 
0.7±0.09% at 10.0 µM and 0.9±0.06% at 50.0 
µM; and ER+ cells percents of 0.74±0.19% at 
0.0 µM, 0.4±0.14% at 2.5 µM, 0.7±0.19% at 
10.0 µM and 0.9±0.09% at 50.0 µM. ER- cells 
exhibited significant (P<0.05) differences at 
0.0 µM and 2.5 µM naringenin with percents  
of 2.2±0.52% and 2.2±0.52%; and a much 
more pronounced response at 10.0 µM and 
50.0 µM with percents of 7.0±0.45% and 
9.0±0.62%. Between concentrations of narin-
genin no significant (P<0.05) differences were 
seen in NT and ER+ cells with percents of 
0.74±0.14% and 0.74±0.19% for NT and ER+ at 
0.0 µM, 0.4±0.12% and 0.4±0.14% at 2.5 µM, 
0.7±0.09% and 0.7±0.19% at 10.0 µM and 
0.9±0.06% and 0.9±0.09% at 50.0 µM. The 
ER- cells did show significant (P<0.05) differ-
ences between all concentrations of naringenin 
with percents of 2.2±0.52% at 0.0 µM, 
2.2±0.52% at 2.5 µM, 7.0±0.45% at 10.0 µM 
and 9.0±0.62% at 50.0 µM. 

Discussion 

Much interest has been directed toward the 
use of natural products as preventive and 

Mitochondrial membrane potential (MMP)

Mitochondrial membrane potential (MMP) was 
clearly related to cell type for ER-, but not NT or 
ER+ (Figures 1-3 and 7; Table 1). At all concen-

Figure 5. Effect of naringenin on generation of super-
oxide radicals (O2

-) and cell death in non-tumorigenic 
(NT), estrogen receptor negative (ER-), and estrogen 
receptor positive (ER+) breast cancer cell lines. O2

- 
reported as percent dead cells exhibiting a positive 
reaction with the DHE dye. Bars are means ±95% 
confidence intervals for six samples. Bars within a 
cell type with an asterisk differ (P<0.05) from the 
corresponding bar at 0 µM naringenin. Bars within a 
dose of naringenin with different superscripts differ 
at P<0.05.

Figure 6. Effect of naringenin on generation of glu-
tathione (GSH) and cell death in non-tumorigenic 
(NT), estrogen receptor negative (ER-), and estrogen 
receptor positive (ER+) breast cancer cell lines. GSH 
reported as percent dead cells exhibiting a positive 
reaction with the CMFDA dye. Bars are means ±95% 
confidence intervals for six samples. Bars within a 
cell type with an asterisk differ (P<0.05) from the 
corresponding bar at 0 µM naringenin. Bars within a 
dose of naringenin with different superscripts differ 
at P<0.05.

Figure 7. Effect of naringenin on mitochondrial mem-
brane potential (MMP) and cell death in non-tumor-
igenic (NT), estrogen receptor negative (ER-), and 
estrogen receptor positive (ER+) breast cancer cell 
lines. MMP reported as percent dead cells exhibiting 
a positive reaction with the RHO dye. Bars are means 
±95% confidence intervals for six samples. Bars with-
in a cell type with an asterisk differ (P<0.05) from the 
corresponding bar at 0 µM naringenin. Bars within a 
dose of naringenin with different superscripts differ 
at P<0.05.
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ilar to O2
- percents with significant differences 

between 10.0 µM and 50.0 µM naringenin for 
NT and ER+ cells. These results support the 
assumption that bioflavonoid compounds can 
induce growth inhibition in breast tumor cells 
through increasing rates of apoptosis [69-71] 
and support the finding of McLean [72] where 
amino-flavones induce ROS formation and oxi-
dative DNA damage in ER- breast cell lines. In a 
review by Sac [53] there is substantial evidence 
that flavonoids through induction of oxidative 
stress inhibit tumor growth in ER- cells. The O2

- 
radical can rapidly change into other reactive 
oxygen species such as hydrogen peroxide and 
hydroxyl radicals [21, 73-76] thus it is clear that 
naringenin has significant effect in increase 
ROS and O2

- in estrogen negative breast tumor 
cell lines which is supported by other studies 
[70, 71, 73, 77]. 

Protective mechanisms such as GSH serve to 
break down free radicals and minimize oxida-
tive damage [19, 23]. In this study GSH 
response appeared to be minimal (Figure 6) 
with the highest percent of cells positive for 
GSH at 8.1±0.39% in NT cells. Significant 
increases in GSH did not occur until 10.0 µM 
naringenin was added to the medium for NT 
and ER+ cells. ER- cells did not respond to 
increasing naringenin; which when compared 
with ROS and O2

- responses showing similarly 
low percents confirming studies [26] that ROS, 
O2

- and GSH production are much lower in non-
malignant cell line [26, 78-80]. In general with 
GSH levels remaining low in spite of increase  
in ROS and O2

- as naringenin concentration 
were increased, it would appear that naringe- 
nin may, as suggested by others [12, 41, 78, 
81, 82] that flavonoids can cause GSH to be 
depleted and increase ROS. Whether this is 
due to GSH being converted to GSSH (Glu- 
tathione disulfide) at a rate that far exceeds 
regeneration or if some other mechanism is 
involved cannot be answered by this study. 
None the less, GSH is important in preventing 
cell death [20, 22, 23, 83, 84]. 

Cell death is usually proceeded by mitochon-
drial degeneration [28] which was determined 
in this study by the uptake of the RHO dye by 
mitochondria in dead cells indicating a change 
in the MMP [28, 30, 31, 37, 85-87]. In this 
study MMP did not show any significant change 
in percent cell positive in ER- cells between 0.0 

remedial treatments for a variety of diseases, 
specifically as anticancer treatment [44, 
49-51]. Thousands of flavonoids are known to 
occur in nature and are one of the largest 
groups of natural products [52]. As potential 
anticancer drugs flavonoids have been studied 
on a variety of cancer cell lines [44, 50, 53-56]. 
Examining different pathways to determine 
mode of action [41, 42, 44, 57-61]. The poten-
tial beneficial effects of flavonoids on carcino-
genesis use in their antioxidative, anti-inflam-
mative, and antiproliferation activities [36, 62, 
63]. Naringenin, a flavonoid found in high con-
centrations in grapefruit and other citrus fruits 
[63, 64-66], has been shown to exhibit antipro-
liferative effects and was able to cause death 
in various cancer cell lines [14, 49, 56, 67]. The 
study reported here applied flow cytometry and 
specific fluorescent dyes (H2DCFDA, DHE, 
CMFDA and RHO) to evaluate intracellular ROS, 
O2

-, GSH and MMP responses in NT, ER- and 
ER+ human breast cell lines. It is known that 
oxidative damage to mitochondrial membranes 
from ROS and O2

- is involved in many diseases 
such as Alzheimer’s disease [56] and cancer 
[68, 69]. In order to better understand the 
intracellular process involved in inducing cell 
death due to naringenin we determined the 
ROS and O2

- responses to varying concentra-
tions of naringenin and corresponding changes 
in GSH and MMP. 

In examining the intracellular production of 
ROS and O2

- at varying concentrations of narin-
genin in the media ROS showed a significant 
increase in ER- cells between 0.0 µM and 2.5 
µM naringenin and while not significant 
between 2.5 µM and 10.0 µM, and 10.0 µM 
and 50.0 µM ROS response remained high at 
all three naringenin concentrations (Figure 4). 
This corresponds to O2

- values (Figure 5) where 
there was a direct coordination with recent 
dead cells showing positive increasing as narin-
genin concentrations increased. This suggests 
that both ROS and O2

- in ER- cells are profound-
ly affected by naringenin. However, this was not 
the case with NT and ER+ cells where ROS per-
cents (Figure 4) remained the same between 
0.0 µM and 2.5 µM naringenin and between 
2.5 µM and 10.0 µM, and 10.0 µM and 50.0 µM 
naringenin showing significance for both NT 
and ER+ cells between 2.5 µM and 10.0 µM 
naringenin but not significant between 10.0 µM 
and 50.0 µM naringenin. These results are sim-
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