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Abstract: Selenium (Se) is an essential trace element and micronutrient primarily discovered in selenoproteins, 
and involves in the regulation of redox and antioxidant cytoprotection through the glutathione- and the thioredoxin-
dependent redox, and therefore this study aims to elucidate the prevention of Se on the cisplatin induced podocyte 
damage, and further explores its potential mechanism. To address it, murine podocyte cells-5 was selected and 
treated with gradient cisplatin, including 7.5 μg/ml, 15 μg/ml and 30 μg/ml, and the cell proliferation activity, the 
expression level of methane dicarboxylic aldehyde (MDA), glutathione peroxidase (GSH-Px) and glutathione (GSH), 
the cell apoptosis level was determined to validate the optimal concentration. Based on it, after Se treatment, the 
cell proliferation activity, the expression level of MDA, GSH-Px and GSH, and the protein expression level of apoptosis 
associated proteins, including B-cell lymphoma-2 (Bcl-2), Bcl-2 Associated X (Bax) and Caspase-3 was examined. 
As expected, when different dosages of cisplatin were added, both cell survival rate and GSH expression level were 
significantly decreased, and the expression level of MDA and GSH-Px and the cell apoptosis level were significantly 
increased, the results also showed that 15 μg/ml of cisplatin was the optimal concentration. However, after Se 
treatment, both cell survival rate and GSH expression level were significantly increased when compared to that of 
cisplatin-treated group, and the expression level of MDA, GSH-Px and the cell apoptosis were significantly decreased 
when compared to that of cisplatin-treated group. In addition, the level of protein expression of BCL-2 was signifi-
cantly decreased after cisplatin treatment, but was significantly increased after Se treatment, similarly, that of BAX 
and Caspase-3 was significantly increased after cisplatin treatment, and was significantly decreased after Se treat-
ment, these indicated that cisplatin had a significant cytotoxicity, and Se could reduce the cytotoxicity of cisplatin 
via the decrease of oxidative stress and cell apoptosis level, these exhibited a significant application value in clinic.
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Introduction

Cisplatin is one of the most important platinum-
containing anti-cancer chemotherapy drugs in 
clinic, and is widely used for treatment of a 
broad spectrum of malignancies, including sar-
coma, small cell lung cancer, germ cell tumors, 
lymphoma, ovarian cancer, bladder cancer, and 
cervical cancer, etc [1-4]. It is an alkylating-like 
drug that can bind to DNA in the body, and then 
cause DNA strands to crosslink, and ultimately 
induce apoptosis or systemic cell death [5-7]. 
In clinic, cisplatin is often administered intrave-
nously, and is frequently given as part of a com-
bination chemotherapy regimen with other 
drugs [8-10]. With the wide using of cisplatin in 
clinic, its side effects have aroused extensive 

attention, such as nephrotoxicity [5, 11], neuro-
toxicity [12, 13], nausea [14, 15], vomiting [14, 
15], ototoxicity [16, 17], electrolyte disturbance 
[18, 19] and hemolytic anemia [20, 21], espe-
cially nephrotoxicity.

Nephrotoxicity is a major side effect of cisplat-
in, and recognized since its introduction over 
25 years ago [12, 13]. In clinic, approximately 
20%-30% of patients treated with cisplatin 
experience a reversible decline in renal func-
tion after the first course of therapy [5, 22, 23]. 
Despite being the focus of intense investigation 
in recent years, the underlying mechanism of 
cisplatin-induced nephrotoxicity is not under-
stood in detail, and may be associated with 
renal cell apoptosis, inflammation, necrosis, 
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in a CO2-incubator with 5% CO2 at 37°C for 4 
hrs. Then, a total of 150 μL dimethyl sulfoxide 
(DMSO) was added to each well, and incubated 
for 10 min with shaking. Subsequently, the opti-
cal density (OD) at 490 nm was recorded with a 
microplate reader (Bio-Rad, USA), and the cell 
survival rate was calculated.

Measurement of the expression level of MDA, 
GSH-pX, and GSH by enzyme linked immuno-
sorbent assay (ELISA)

The above-collected MPC-5 cells were rapidly 
frozen by liquid nitrogen, and homogenized with 
a grinder, and centrifuged at 12,000 rpm at 
4°C for 15 min, and the supernatant was col-
lected, and the MDA, GSH-pX, and GSH expres-
sion level was detected by mouse MDA ELISA 
kit (ZKP-1604011, ZEKEBIO, Jiangsu, China), 
mouse GSH-pX ELISA kit (ZKP-1604013, 
ZEKEBIO, Jiangsu, China), and mouse GSH 
ELISA kit (ZKP-1604015, ZEKEBIO, Jiangsu, 
China) according to the manufacturer’s instruc-
tions. After detection, data was recorded at 
450 nm using a microplate reader during 15 
min, and analyzed by SPSS software (version 
21.0, http://spss.en.softonic.com/; Chicago, IL, 
USA), and histogram analysis was performed 
using Origin 9.5 software (http://www.originlab.
com/).

Cell apoptosis assay by flow cytometry

Cell apoptosis was examined using Biouniquer 
apoptosis kit according to the manufacturer’s 

and oxidative stress etc [5, 24]. Wherein, tubu-
lar cell apoptosis is a characteristic feature of 
cisplatin nephrotoxicity that results in the loss 
of renal endothelial cells and renal dysfunction 
[25-27]. After cisplatin administration, p53 is 
rapidly up-regulated and induces apoptosis in 
tubular cells [28-30], and however, cell apopto-
sis level of podocytes of which is a significant 
type of kidney cells locating in the Bowman’s 
capsule of kidney has no reported so far, and 
therefore it may be also damaged as wehypoth-
esis, and were selected in this study. So far, 
although several therapeutic strategies have 
been proposed to prevent cisplatin-induced 
nephrotoxicity, such as intensive hydration [31, 
32] and cisplatin analogs [33] etc and still no 
effective strategy and therefore identifying an 
effective approach to prevent cisplatin-induced 
nephrotoxicity is a critical issue recently. In this 
study, sodium selenite (SS) is selected to pro-
vide selenium (Se), and expects a preventive 
measure on the cisplatin-induced damage of 
podocyte.  

Materials and methods

Cell culture and treatment

Murine podocyte cells-5 (MPC-5) was resur-
rected from liquid nitrogen using Dulbecco’s 
modified eagle medium (DMEM) with 10% fetal 
bovine serum, and cultured to the logarithmic 
phase in a CO2-incubator with 5% CO2 at 37°C. 
After digestion with 0.25% Trypsin, it was dilut-
ed and incubated to a 6-well plate (3×105 cells/

Figure 1. Cell proliferation assay of podocyte 
after gradient cisplatin treatment by MTT. The 
image indicated that the cell survival rate was 
significantly decreased with the gradient concen-
tration of cisplatin, (*: P < 0.05; **: P < 0.01). 

well) followed by culturing in a 
CO2-incubator with 5% CO2 at 
37°C. When the cell conflu-
ence was close to 80%-90%, 
gradient cisplatin, including 0 
μg/ml, 7.5 μg/ml, 15 μg/ml, 
and 30 μg/ml, was added to 
each well, and incubated in a 
CO2-incubator with 5% CO2 at 
37°C for 48 hrs.

Cell proliferation activity 
assay by 3-(4, 5-dimethyl-
2-thiazolyl)-2, 5-diphenyl-2-H-
tetrazolium bromide (MTT)

The above-treated MPC-5 cells 
were transferred to a total of 
80 μL no serum medium with 
20 μL MTT (finally concentra-
tion: 5 mg/ml), and cultured 
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fractionated by electrophoresis through 12% 
polyacrylamide gels, and transferred to a poly-
vinylidene difluoride membrane following the 
manufacturers’ instructions. The membrane 
was probed with the first antibody, Rabbit-
derived anti-BCL-2 antibody (BA0412, 1:200; 
Wuhan Boster Biological Engineering Co., LTD, 
Wuhan, China), Rabbit-derived anti-BAX (BA03- 
15, 1:200; Wuhan Boster Biological Engineer- 
ing Co., LTD, Wuhan, China), and Rabbit-derived 
anti-Caspase-3 antibody (BA3968, 1:200; Wu- 
han Boster Biological Engineering Co., LTD, 
Wuhan, China) for 1.5 hrs at room temperature. 
Afterward, the membrane was incubated with 
horseradish peroxidase-conjugated goat anti-
mouse secondary antibody (1:5,000 in TBST; 
Beijing Golden Bridge Biotechnology Company 
Ltd, China) at room temperature for 1 hrs. The 
chemiluminescence luminol reagent (ZKP-
C150044-1, Suzhou Zeke biotech Co., LTD, 
Jiangsu, China) were used to develop the 
immune-labeled bands on X-ray film, and the 
optical density of the bands was quantified 
using the ImageJ 1.46 software (http://rsb.info.
nih.gov/ij/download.html), and a histogram 
was generated using the Origin 9.5 software 
(http://www.originlab.com/).

instructions. After digestion with 0.25% trypsin, 
MPC-5 cells were washed with PBS for twice 
times, and centrifuged at 2,000 rpm for 5 min. 
Added 500 μl Annexin V Binding Buffer to sus-
pend, and then added 5 μl Annexin-FITC to mix 
followed by adding of 5 μl PI, and reacted at RT 
for 10 min (keep in dark). Subsequently, the cell 
apoptosis rate was examined by flow cytome- 
try (Ex=488 nm, Em=530 nm), and analysis  
by Origin 9.5 software (http://www.originlab.
com/).

Treatment of MPC-5 cells with sodium selenite 
(SS)

After treatment of MPC-5 cells with the optimal 
cisplatin for 48 hrs, 5 mM SS was added, and 
incubated at in a CO2-incubator with 5% CO2 at 
37°C for 48 hrs, and cells were collected to 
examine the cell proliferation activity, the 
expression level of MDA, GSH-Px and GSH, and 
the cell apoptosis level as the above-mentioned 
methods.

Western blot assay

The above-collected MPC-5 cells were pre-
pared, and about 35 μg of total proteins was 

Figure 2. The MDA, GSH-pX and GSH expression 
assay by ELISA. A. The MDA expression level assay 
by ELISA. B. The GSH-pX expression level assay by 
ELISA. C. The GSH expression level assay by ELISA. 
The image indicated that after gradient cisplatin 
treatment, the MDA and GSH-pX expression level 
was significantly increased, and that of GSH was 
significantly decreased (*: P < 0.05, **: P < 0.01).
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Figure 3. The apoptosis assay of podocyte after gradient cisplatin treatment by flow cytometry and histogram analysis. A. The apoptosis level assay of podocyte after 
gradient cisplatin treatment by flow cytometry. B. Histogram analysis of the cell apoptosis level of podocyte after gradient cisplatin treatment. The images indicated 
that after gradient cisplatin treatment, MPC-5 cell apoptosis level was significantly increased (*: P < 0.05, **: P < 0.01).
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atin treatment (Figure 3, *: P < 0.05, **: P < 
0.01).

Sodium selenite was significantly increased 
the cell proliferation activity and GSH expres-
sion level, and was significantly decreased the 
MDA and GSH-pX expression level

When compared to control, the cell prolifera-
tion activity was significantly decreased after 
cisplatin treatment (Figure 4A, 4B, **: P < 
0.01), and was significantly increased after 
sodium selenite treatment (Figure 4A, 4B, **: 
P < 0.01). Similarly, after cisplatin treatment, 
both MDA and GSH-pX expression level was sig-
nificantly increased when compared to control 
(Figure 5A, 5B, **: P < 0.01), and significantly 
decreased after sodium selenite treatment 
(Figure 5A, 5B, **: P < 0.01), and synchronous-
ly the GSH expression level was significantly 
decreased (Figure 5C, **: P < 0.01), and 
increased after sodium selenite treatment 
(Figure 5C, **: P < 0.01).

Sodium selenite significantly decreased the 
cell apoptosis level

As exhibiting of Figure 6A, the cell apoptosis 
level was significantly increased after cisplatin 
treatment (**: P < 0.01), and then significantly 
decreased after sodium selenite treatment (**: 

Statistical analysis

All data expressed as the mean ± standard 
deviation (SD). Statistical analysis was per-
formed with one-way ANOVA using SPSS soft-
ware (version 21.0, http://spss.en.softonic.
com/; Chicago, IL, USA), and Student’s t-tests 
were performed in a group of two sample, and 
P < 0.05 and P < 0.01 were considered to indi-
cate significant differences and highly signifi-
cant differences, respectively.

Results

Cell proliferation activity was significantly 
decreased with the concentration increasing 
of cisplatin

When compared to control, MPC-5 cells prolif-
eration activity was decreased with the concen-
tration increasing of cisplatin, and had a signifi-
cant difference when cisplatin was increased 
to 7.5 μg/ml (*: P < 0.05, **: P < 0.01), and 
around 50% cells was survival after 15 μg/ml 
of cisplatin treatment (Figure 1).

MDA and GSH-pX expression level was signifi-
cantly increased after cisplatin treatment, and 
GSH was significantly decreased

With the concentration increasing of cisplatin 
in Figure 2, the MDA expression level was sig-

Figure 4. Cell proliferation assay of podocyte after sodium selenite treatment 
by MTT. The images indicated that after sodium selenite treatment, the cell 
proliferation activity was significantly increased when compared to cisplatin 
treatment group (**: P < 0.01). 

nificantly increased when cis-
platin was added to 7.5 μg/ml 
(*: P < 0.05, **: P < 0.01), 
similarly, the GSH-pX expres-
sion level was also significant-
ly increased in the group with 
cisplatin of 7.5 μg/ml (*: P < 
0.05, **: P < 0.01), and syn-
chronously the expression 
level of GSH was significantly 
decreased (*: P < 0.05, **: P 
< 0.01).

MPC-5 cells apoptosis level 
was significantly increased 
after gradient cisplatin treat-
ment

With the concentration incr- 
easing of cisplatin, MPC-5 cell 
apoptosis level was signifi-
cantly increased after gradi-
ent cisplatin treatment when 
compared to that of non-cispl-
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age on podocyte, and manifested as the 
decreasing of cell proliferation activity and GSH 
level, and the increasing of MDA and GSH-pX 
level, and cell apoptosis level, and 15 μg/ml 
cisplatin was selected as an optimal concentra-
tion. After treatment of SS, cell proliferation 
activity and GSH level was significantly 
increased, and MDA and GSH-pX level, and cell 
apoptosis level was significantly decreased, 
and the BCL-2 protein expression level was sig-
nificantly increased, and that of BAX and 
Caspase-3 was decreased, and these indicat-
ed that SS had a significant preventive role on 
cisplatin-induced podocyte damage via the 
decreasing of cell apoptosis level, and exhibit-
ed a promising treatment on the cisplatin-
induced nephrotoxicity.

Cisplatin, as one of the most important plati-
num-containing anti-cancer chemotherapy dr- 
ugs has been widely used in clinic recently [7, 
34], and also its side effects have been drew 
much more attention, especially nephrotoxicity 
[5, 11]. Here, to elucidate the optimal concen-
tration of cisplatin on podocyte, the gradient 

P < 0.01), and the histogram exhibited the 
trend which was examined by Flow Cytometry 
(Figure 6, **: P < 0.01).

Sodium selenite considerably increased the 
expression level of BCL-2, and significantly 
decreased the expression level of BAX and 
caspase-3

After cisplatin treatment, the protein expres-
sion level of BCL-2 was significantly decreased 
(**: P < 0.01), but increased after sodium sel-
enite treatment (**: P < 0.01), and similarly the 
protein expression level of BAX was significant-
ly increased (Figure 7C, **: P < 0.01), and sig-
nificantly decreased after sodium selenite 
treatment (Figure 7C, **: P < 0.01). In addition, 
the protein expression level of Caspase-3 was 
significantly increased after 15 μg/ml cisplatin 
treatment, and largely decreased after sodium 
selenite treatment (Figure 7D, **: P < 0.01).

Discussion 

In this study, cisplatin of gradient concentration 
was selected, and exhibited an obvious dam-

Figure 5. The MDA, GSH-pX and GSH expression 
assay after sodium selenite treatment by ELISA. A. 
The MDA expression assay by ELISA. B. The GSH-
pX expression assay by ELISA. C. The GSH expres-
sion assay by ELISA. The images indicated that 
after sodium selenite treatment, GSH expression 
level was significantly increased when compared 
to cisplatin treatment group, and that of MDA and 
GSH-pX was significantly decreased (*: P < 0.05, 
**: P < 0.01). 
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Figure 6. The apoptosis level of podocyte after sodium sel-
enite treatment by flow cytometry and histogram analysis. A. 
The apoptosis level assay of podocyte after sodium selenite 
treatment by flow cytometry. B. Histogram analysis of the cell 
apoptosis level of podocyte after sodium selenite treatment. 
The images indicated that after sodium selenite treatment, 
MPC-5 cell apoptosis level was significantly decreased when 
compared to cisplatin treatment group (**: P < 0.01). 

concentration cisplatin was selected, including 
7.5 μg/ml, 15 μg/ml, and 30 μg/ml. After 48 
hrs treatment of cisplatin, the cell proliferation 
activity of podocyte was significantly decreased 
with the concentration increasing of cisplatin, 
and indicated that cisplatin could inhibit the 
regeneration of podocytes. In addition, the oxi-
dative stress indexes, including MDA, GSH-pX 
and GSH, changed significantly, manifested as 
the significant increasing of MDA and GSH-pX, 

and the significantly decreasing of GSH, and 
also cell apoptosis level of podocyte was signifi-
cantly increased with the concentration incre- 
asing of cisplatin, and these indicated that cis-
platin could increase the oxidative stress in- 
dexes and further induced podocyte apo- 
ptosis.

Selenium (Se) is an essential trace element 
and micronutrient primarily discovered in sele-
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compared to control, after cisplatin treatment, 
the cell apoptosis level was significantly 
increased, and then significantly decreased 
with the treatment of SS. Randjelovic et al, 
showed that selenium attenuates oxidative-
stress-associated kidney injury by reducing oxy-
gen free radicals and lipid peroxidation in gen-
tamicin-treated rats [38]. In the study of adri- 
amycin-induced kidney damage in rats, Taskin 
et al, showed that selenium is protective in  
vivo against adriamycin-induced renal toxicity 
through the restoration of total antioxidant- oxi-
dant status [39, 40]. But in the above studies, 
the mechanisms in which selenium protected 
the kidney from injury still remain unknown. 
This study demonstrated that the cell apopto-
sis-associated protein of BCL-2 expression 

noproteins, and involves in the regulation of 
redox and antioxidant cytoprotection through 
the glutathione- and the thioredoxin-dependent 
redox [35-37], and therefore sodium selenite 
(SS) was selected to provide Se in this study. As 
expected, after SS treatment, the decreased 
cell proliferation activity of cisplatin-induced 
could be significantly increased close to nor-
mal, and exhibited a significant prevention  
on cisplatin-induced cytotoxicity. Furthermore, 
when compared to control, after cisplatin treat-
ment, the MDA and GSH-pX expression level 
was significantly increased, and GSH expres-
sion level was significantly decreased, and 
manifested as the significant decreasing of 
MDA and GSH-pX, and the significant increas-
ing of GSH after SS treatment. Similarly, when 

Figure 7. The BCL-2, BAX and Caspase-3 protein expression assay by Western blot and histogram analysis. A. West-
ern blot assay of the BCL-2, BAX and Caspase-3 protein expression level. B. Histogram analysis of the BCL-2 protein 
expression level. C. Histogram analysis of the BAX protein expression level. D. Histogram analysis of the Caspase-3 
protein expression level. The images indicated that after cisplatin treatment, the BCL-2 expression level was signifi-
cantly decreased, and then significantly increased after sodium selenite treatment, and synchronously the BAX and 
Caspase-3 protein expression level was significantly increased after cisplatin treatment, and significantly decreased 
after sodium selenite treatment (**: P < 0.01).
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to cisplatin in human lung adenocarcinoma 
A549 cells. Biomed Pharmacother 2016; 83: 
265-270.

[2] Xu S, Huang H, Chen YN, Deng YT, Zhang B, 
Xiong XD, Yuan Y, Zhu Y, Huang H, Xie L and Liu 
X. DNA damage responsive miR-33b-3p pro-
moted lung cancer cells survival and cisplatin 
resistance by targeting p21WAF1/CIP1. Cell 
Cycle 2016; 15: 2920-2930.

[3] Wang Y, Zhang L, Zheng X, Zhong W, Tian X, Yin 
B, Tian K and Zhang W. Long non-coding RNA 
LINC00161 sensitises osteosarcoma cells to 
cisplatin-induced apoptosis by regulating the 
miR-645-IFIT2 axis. Cancer Lett 2016; 382: 
137-146.

[4] Thoma C. Testicular cancer: genetic determi-
nants of cisplatin resistance. Nat Rev Urol 
2016; 13: 629.

[5] Zhang D, Pan J, Xiang X, Liu Y, Dong G, Livings-
ton MJ, Chen JK, Yin XM and Dong Z. Protein 
kinase Cdelta suppresses autophagy to induce 
kidney cell apoptosis in cisplatin nephrotoxici-
ty. J Am Soc Nephrol 2016; [Epub ahead of 
print].

[6] Saribas GS, Erdogan D, Goktas G, Akyol SN, 
Hirfanoglu IM, Gurgen SG, Coskun N and 
Ozogul C. Examining the protective effects of 
acetyl l-carnitine on cisplatin-induced uterine 
tube toxicity. J Obstet Gynaecol 2016; 36: 
1086-1092.

[7] Podratz JL, Lee H, Knorr P, Koehler S, Forsythe 
S, Lambrecht K, Arias S, Schmidt K, Steinhoff 
G, Yudintsev G, Yang A, Trushina E and Winde-
bank A. Cisplatin induces mitochondrial defi-
cits in Drosophila larval segmental nerve. Neu-
robiol Dis 2017; 97: 60-69.

[8] Malik S, Suchal K, Bhatia J, Khan SI, Vasisth S, 
Tomar A, Goyal S, Kumar R, Arya DS and Ojha 
SK. Therapeutic potential and molecular me- 
chanisms of emblica officinalis gaertn in coun-
tering nephrotoxicity in rats induced by the 
chemotherapeutic agent cisplatin. Front Phar-
macol 2016; 7: 350.

[9] ElNaggar AC, Saini U, Naidu S, Wanner R, Sud-
hakar M, Fowler J, Nagane M, Kuppusamy P, 
Cohn DE and Selvendiran K. Anticancer poten-
tial of diarylidenyl piperidone derivatives, HO-
4200 and H-4318, in cisplatin resistant pri-
mary ovarian cancer. Cancer Biol Ther 2016; 
17: 1107-1115.

[10] Jacobi J, Garcia-Barros M, Rao S, Rotolo JA, 
Thompson C, Mizrachi A, Feldman R, Manova 
K, Bielawska A, Bielawska J, Fuks Z, Kolesnick 
R and Haimovitz-Friedman A. Targeting acid 
sphingomyelinase with anti-angiogenic chemo-
therapy. Cell Signal 2017; 29: 52-61.

[11] Ojha S, Venkataraman B, Kurdi A, Mahgoub E, 
Sadek B and Rajesh M. Plant-derived agents 
for counteracting cisplatin-induced nephrotox-

level was significantly decreased with the treat-
ment of cisplatin, and then significantly 
increased after SS treatment, and synchro-
nously the protein expression level of both BAX 
and Caspase-3 was significantly decreased 
after cisplatin treatment, but significantly 
increased after SS treatment, and these indi-
cated that SS had a significant preventive role 
on cisplatin-induced podocyte damage via the 
decreasing of cell apoptosis. Bcl-2, Bax, and 
Caspase-3 are three important factors that 
involve in proapoptotic signaling of P53 MAPK 
in podocyte [41-43]. It has been demonstrated 
that the activation of P38 can regulate Bcl-2 
and Bax expression and induce dysfunction of 
mitochondria [43]. The dysfunction of mito-
chondria subsequently releases apoptogenic 
proteins and activates caspase-3, which finally 
result in cell apoptosis [41, 42]. 

Certainly, this study is a pilot study to explore 
the prevention of Se on cisplatin-induced podo-
cyte damage in vitro and future studies of 
investigating preventive roles of podocyte in 
vivo need to be further explored.

In summary, this study demonstrated that cis-
platin exerts injuries in podocytes through the 
inhibiting of cell proliferation, the increasing of 
oxidative stress indexes and cell apoptosis 
level, and supplementation of Se exhibited a 
significant preventive role on cisplatin-nephro-
toxicity via the increasing of cell proliferation, 
the decrease of oxidative stress index and cell 
apoptosis level, thus these exhibited a promis-
ing therapeutic strategy on cisplatin-induced 
nephrotoxicity.
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