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Transforming growth factor β/Smad pathway  
participates in lumbar ligamentum flavum hypertrophy
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Abstract: Aims: Hypertrophy of ligamentum flavum (LF) contributes to lumbar spinal stenosis (LSS) and is caused 
mainly by fibrosis. This study aimed to investigate the involvement of TGFβ/Smad pathway in human lumbar LF 
hypertrophy. Methods: Six patients with LSS were enrolled in this study. The control group included six patients with 
lumbar disc herniation (LDH). LF samples were collected during surgery for immunohistochemistry, real-time PCR 
and Western blot analysis. Human LF cells were cultured and treated with TGFβ1, and type I collagen and Smad 
expression were detected. Results: Hypertrophic LF was characterized by a considerable distortion of the elastic ma-
trix and fibrotic transformation by extracellular collagen deposition. Immunohistochemical analysis detected TGFβ1, 
p-Smad 2/3, Smad 4 and Smad 7 in all LF samples. TGFβ1, p-Smad 2/3 and Smad 4 levels were significantly higher 
in LSS group than in LDH group, while Smad 7 level was lower in LSS group than in LDH group. The levels of Smad 2, 
3 and 4 were slightly upregulated 1 h after treatment with TGFβ1. However, Smad 2/3 levels significantly decreased 
24 h after TGFβ1 treatment. In contrast, Smad 7 showed dynamic change: expression was markedly increased 1 h 
after TGFβ1 stimulation but decreased at 24 h. The expression of type I collagen was increased at both 1 h and 24 
h after TGFβ1 stimulation. Conclusion: During LF hypertrophy, the expression of TGFβ/Smad pathway components 
is changed. TGFβ/Smad pathway may contribute to LF hypertrophy.
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Introduction

Lumbar spinal stenosis (LSS) is a common con-
dition in elderly patients and can be caused by 
various factors related to the thickened liga-
mentum flavum (LF) [1, 2]. Also known as LF 
hypertrophy, LF thickness is a typical degen- 
erative process that involves a decrease in  
the elastin-to-collagen ratio, resulting in decre- 
ased elasticity and increased stiffness or fibro-
sis [3-8]. The pathogenesis of LF thickness 
remains unclear.

Transforming growth factor β (TGFβ) plays 
diverse role in regulating growth, differentia-
tion, immune response and tissue fibrosis 
[9-14]. It has been reported that TGFβ enhanc-
es wound healing and induces scar formation 
and tissue remodeling [15, 16]. TGFβ contrib-
utes to LF hypertrophy by enhancing matrix syn-
thesis, especially collagen production [17-20]. A 
number of genes that are associated with tis-
sue growth and fibrosis have been shown to be 

directly regulated by TGFβ/SMAD pathway [21, 
22]. 

In this study we aimed to investigate the invo- 
lvement of TGFβ/Smad pathway in LF hypertro-
phy. We compared TGFβ1, p-Smad 2/3, Smad 
4, 7 and collagen levels in hypertrophied LF tis-
sues and control tissues. In addition, we ana-
lyzed temporal changes of p-Smad 2/3 and 
Smad 4, 7 levels in LF cells after treatment with 
TGFβ1.

Material and methods

Specimen collection

LF samples were obtained from 12 patients (7 
males, 5 females, and average 68.7 years old, 
range 63-73 years) who underwent decompres-
sive laminectomy due to symptomatic degener-
ative lumber spinal stenosis. As the control, LF 
samples were obtained from 12 patients (8 
males, 4 females, and average 32.5 years old, 
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seconds) using SYBR green dye on a thermal 
cycler. The following primers were used: β-Actin  
forward 5’-ATCTGGCACCACACCTTCTACAATGA- 
GCTGCG-3’, reverse 5’-CGTCATACTCCTGCTTG- 
CTGATCCACATCTGC-3’, TGF-β1 forward 5’-CAA- 
CAATTCCTGGCGATACCTCA-3’, reverse 5’-GGT- 
AGTGAACCCGTTGATGTCCA-3’, Smad 2 forward: 
5’-TTGATGGCCGTCTTCAGGTT-3’, reverse: 5’-AG- 
AGCCGGCAATATATAACATGTG-3’, Smad 3 forwa- 
rd: 5’-TGGGCCTACTGTCCAATGTCA-3’, reverse: 
5’-TCCCAATGTGTCGCCTTGTA-3’, Smad 4 for-
ward: 5’-TGGTGTTCCATTGCTTACTTTG-3’, rever- 
se: 5’-TTCACCTTTACACTCCAACTGC-3’, Smad 7 
forward: 5’-CCATCAAGGCTTTTGACTATGAGA-3’ 
reverse: 5’-CCATGGTTGCTGCATGAACT-3’. All 
the primers were synthesized by Shenggong, 
Inc. ΔΔCT method was used to calculate the dif-
ference between the threshold cycle (CT) val-
ues of the target and reference gene of each 
sample.

Primary culture of LF fibroblast cells

LF samples were obtained aseptically from six 
young patients undergoing spinal surgery. The 
dissected specimens were minced into small 
pieces and digested in serum-free medium 
(Gibco) containing 250 U/ml type I collagenase 
(Sigma) at 37°C in an atmosphere containing 
5% CO2. The digested specimens were washed 
with serum-containing medium to inhibit colla-

range 15-38 years) with lumbar disc herniation 
who were operatively treated for this disorder. 
LF samples were from L4/5 and subjected to 
histological staining, immunohistochemical an- 
alysis and biological evaluation. The study was 
approved by the institutional ethics review 
board with written informed consent obtained 
from each patient. 

Histological and immunohistochemical analy-
sis

Specimens were cut sagittally, fixed in 10% for-
malin for 48 h and embedded in a paraffin 
block. Thin-sliced sections (4 μm) were pre-
pared and stained by hematoxylin and eosin 
(H&E) staining by an experienced pathologist. 
For immunohistochemistry, sections were incu-
bated with rabbit polyclonal antibody specific to 
p-Smad 2/3, Smad 4 (Abcam), rat polyclonal 
antibody specific to Smad-7 (Abcam) and rab- 
bit polyclonal antibody to TGF-β (Abcam), and 
then incubated with secondary antibody and 
3,3-diaminobenzidine tetrahydrochloride. 

Real-time PCR

Total RNA was isolated by standard techniques 
using TRIzol (Invitrogen Corp., Carlsbad, CA). 
RNA was converted into cDNA and subjected to 
standard PCR analysis (40 cycles, 94°C for 30 
seconds, 60°C for 20 seconds, 72°C for 15 

Figure 1. Histological analysis of LF samples. (A) LF of LDH group (×40). (B) Amplification of the area in rectangle 
shown in (A) (×100). (C) Amplification of the area in rectangle shown in (B) (×200). (D) LF of LSS group (×40). (E) Am-
plification of the area in rectangle shown in (D) (×100). (F) Amplification of the area in rectangle shown in (E) (×200).
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ternational, Rochester, NY, USA) at 1×104 cells/
slide in RPMI-1640 medium. Serum-starved 
subconfluent cells were treated with or without 
TGFβ1 and then fixed with 4% paraformalde-
hyde in PBS. Immunostaining was performed 
with similar procedures to those used for immu-
nohistochemical staining. Slides were viewed 
under a fluorescent microscope and the data 
were analyzed with ImageJ 1.42.

Statistical analysis

Data were evaluated by a one-way ANOVA test. 
A P value of less than 0.05 was considered sta-
tistically significant.

genase activity and then placed in 35-mm dish-
es filled with Dulbecco’s Modified Eagle’s 
Medium and Ham’s F-12 medium (DMEM/F12, 
Gibco) supplemented with 10% heat-inactivat-
ed fetal bovine serum (FBS, Gibco-BRL). The 
cultures were incubated at 37°C in a humidified 
atmosphere containing 5% CO2. The medium 
was changed every two days. After two weeks, 
cells began to migrate from the ligament chips 
and formed a monolayer. The cells were main-
tained for two to three weeks in DMEM/F12 
containing 10% FBS, 1% penicillin and strepto-
mycin (Sigma) in an incubator with a humidified 
atmosphere containing 5% CO2. Cells were 

Figure 2. Immunohistochemical analysis of LF samples. (A) TGFβ1 staining 
(×40). (B) Amplification of the area in rectangle shown in (A) (×200). (C) p-
Smad 2/3 staining (×40). (D) Amplification of the area in rectangle shown in 
(C) (×200). (E) Smad 4 staining (×40). (F) Amplification of the area in rect-
angle shown in (E) (×200). (G) Smad 7 staining (×40). (H) Amplification of the 
area in rectangle shown in (G) (×200). Positively stained cells were indicated 
by the arrows.

serum-starved overnight be- 
fore treatment with human 
TGFβ1. The concentration of 
TGFβ1 was 10 ng/mL based 
on previous studies [23, 24]. 
To inhibit de novo RNA syn- 
thesis, cells were incubated 
with actinomycin D (2.5 μg/
mL) for 24 h before stimula-
tion with TGFβ1. 

Western blot analysis

Tissue specimens or cells in 
culture were lysed in RIPA buf-
fer supplemented with prote-
ase inhibitor cocktail. Equiva- 
lent amounts of protein were 
electrophoresed and transf- 
erred onto Immobilon-P mem-
branes (Millipore). The mem-
branes were blocked with 5% 
non-fat milk in Tris-buffered 
saline and then incubated 
with p-Smad 2/3, Smad 4, 
Smad 7, TGFβ1 and β-actin 
monoclonal antibody (Abcam, 
USA), followed by incubation 
with horseradish peroxidase-
conjugated secondary anti-
body (Abcam, USA). The sig-
nals were detected with an 
Immobilon Western chemilu-
minescent HRP substrate. 

Immunocytochemical stain-
ing

Cells were seeded on 8-well 
chamber slides (Lab-Tek Ch- 
amber Slide, Nalge Nunc In- 
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with a greater percentage of cells expressing 
type I collagen (Figure 4C). The percentages of 
cells positive for type I collagen in the untreat-
ed group and 1 hour and 24 hours after treat-
ment groups were 15%, 25% and 33%, respec-
tively, showing a significant increase following 
TGF-β1 stimulation.

Double immunostaining for type I collagen and 
p-Smad 2/3 showed, a large number of cells 
with nuclear reactivity for p-Smad 2/3 1 h after 
TGFβ1 stimulation. However, less than 10% of 
p-Smad 2/3 positive cells were positive for type 
I collagen (Figure 5A). Twenty-four hours after 
TGF-β1 stimulation, the percentage of cells 
with nuclear reactivity for p-Smad 2/3 was 
markedly decreased and more than 50% of 
stimulated cells were positive for type I colla-
gen (Figure 5B).

Expression of Smad 2/3 and 4, 7 in LF fibro-
blast cells stimulated by TGFβ1

Real-time PCR showed that mRNA levels of 
Smad 2, 3 and Smad 4 were slightly upregulat-
ed 1 hour after treatment with TGFβ1. However, 
at 24 hours after TGFβ1 treatment, Smad 2/3 
expression was significantly inhibited. In con-
trast, Smad 7 mRNA level showed a dynamic 
change: markedly increased 1 hour after TGFβ1 
treatment but then significantly decreased at 
24 hours after treatment. The mRNA expres-

Results

Histologic findings in hypertrophied ligamenta 
flava

Histological analysis showed that the elastic 
fiber area decreased, and the collagen area 
increased in LF from LSS group compared to 
LDH group. In LDH group, rich elastic fibers 
were arrayed in a regular pattern, and the fibers 
were oriented parallel to the major axis of the 
ligamenta flava (Figure 1A-C). However, in LSS 
group, the elastic fibers were fragmented, dis-
organized, and focally lost. In areas with marked 
degeneration, the elastic fibers frequently 
showed disorganization of the fiber bundle 
arrangement, thinning of the elastic fibers, 
accompanied by the proliferation of collagen 
fibers in the matrix (Figure 1D-F).

Expression of TGFβ1, p-Smad 2/3, Smad 4 
and 7 in LF tissues

Immunohistochemical analysis demonstrated 
that TGFβ1, p-Smad 2/3, Smad 4 and 7 were 
positively stained on LF fibroblasts of the 
patients with spinal stenosis and disc hernia-
tion (Figure 2).

Western blot analysis showed that the expres-
sion of p-Smad 2/3, Smad 4 and TGFβ1 in LF 
samples of LSS group was significantly higher 

Figure 3. Western blot analysis of p-Smad 2/3, Smad 4, Smad 7 and TGFβ1 
in LF samples of LSS and LDH group. A. Representative blots. Actin was load-
ing control. B. Densitometry analysis of p-Smad 2/3, Smad 4, Smad 7 and 
TGFβ1 levels. *P<0.05, **P<0.01 (n=3).

than in LDH group. However, 
the expression of Smad 7 in 
LF samples of LSS group was 
lower than that of LDH group 
(Figure 3A, 3B). 

Morphological changes of LF 
fibroblast cells stimulated by 
TGFβ 

Next we examined the asso-
ciation between LF fibroblast 
cell differentiation and the 
activation of TGFβ1/Smad in 
human LF fibroblast cells. 
Compared with unstimulated 
cells (Figure 4A), TGFβ1 sti- 
mulated cells showed high- 
er percentages of elongated 
and spindle-shaped cells 
after 1 h of treatment (Figure 
4B). Twenty-four hours after 
TGF-β1 stimulation, cultured 
cells showed hypertrophy 
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Nakatani et al. showed that TGFβ1 induced  
collagen synthesis, especially type I collagen 
[26]. TGFβ1 has been widely implicated in the 
fibrotic process and has been shown to upregu-
late the production of several ECM proteins.

Smad 2 and 3 are well-known downstream sig-
naling molecules of TGFβ signaling and medi-
ate transcriptional activation of collagen [9-12]. 
Because the phosphorylation of Smad 2/3 is a 
major step in the initiation of TGFβ signal trans-
duction, changes in the phosphorylation of 
Smad 2/3 in the lumbar ligamentum flavum 
were investigated in this study. While normal 
ligamentum flavum showed the accumulation 
of phosphorylated Smad 2/3, the phosphoryla-
tion of Smad 2/3 was significantly increased in 
hypertrophic ligamentum flavum. These data 
suggest that p-Smad 2/3 levels change during 
inflammation and hypertrophy of the ligamen-
tum flavum.

In present study, we detected the activation of 
TGFβ/Smad pathway in LF cells. TGFβ1 stimula-
tion increased p-Smad 2/3 levels in LF cells at 
1 hour after treatment and further increased 
p-Smad 2/3 levels at 24 hours after treatment. 

sion of type I collagen increased at 1 hour after 
TGFβ1 treatment and further increased at 24 
hours after TGFβ1 treatment (Figure 6A).

Western blot analysis showed that type I colla-
gen, p-Smad 2/3 and Smad 4 protein levels 
increased at 1 hour and further increased at  
24 hours after TGFβ1 treatment. In contrast, 
Smad 7 protein level markedly increased 1 
hour after TGFβ1 treatment but then signifi-
cantly decreased at 24 hours after treatment 
(Figure 6B, 6C).

Discussion

Hypertrophy of LF is a significant cause of lum-
bar spine stenosis, which is a common cause  
of low back and lower extremity pain, particu-
larly in elderly patients [1, 2]. However, the 
molecular mechanisms underlying hypertro-
phic process remain unclear. Recent studies 
suggest that t high expression of TGFβ1 by 
fibroblasts might be related to the development 
of LF hypertrophy [19, 21, 25-28]. In this study, 
we investigated the expression of TGFβ1 and 
agonistic (Smad 2, Smad 3, and Smad 4) and 
antagonistic (Smad 7) Smad proteins in LF 

Figure 4. Florescent microscope analysis of LF fibroblasts. A. Untreated cells. B. 1 hour after TGFβ1 treatment (10 
ng/mL). C. 24 hours after TGF-β1 treatment (10 ng/mL). The nuclei were stained blue (×100).

Figure 5. Double immunostaining for type I collagen and p-Smad 2/3 in LF 
fibroblasts. A. 1 hour after TGFβ1 treatment (10 ng/mL). B. 24 hours after 
TGF-β1 treatment (10 ng/mL). p-Smad 2/3 was stained green while type I 
collagen was stained red. Yellow indicated co-staining of p-Smad 2/3 and 
type I collagen (×100).

samples from patients with 
lumbar spinal stenosis and 
disc herniation.

Some studies demonstrated 
that macrophages, fibroblasts 
and endothelial cells consid-
erably contributed to TGFβ1 
expression during the adva- 
nced stage of ligamentum fla-
vum degeneration and may 
stimulate subsequent fibrosis 
and hypertrophy [25]. TGFβ1 
increases collagen synthesis 
by fibroblasts in vitro [29-31]. 
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have an impact on the status of TGFβ/Smad 
pathway. Second, we only used 10 ng/mL con-
centration of TGFβ1 to treat LF fibroblast cells 
and observed the changes at 1 hour and 24 
hours. Further investigations using a range of 
stimulation responses over a range of time 
points are needed.

In conclusion, we reported the expression of 
Smad in hypertrophic LF samples and changes 
in Smad expression in cultured LF cells after 
TGFβ1 stimulation of. Our results provide strong 
evidence that TGFβ/Smad pathway participate 
in the hypertrophy of LF.
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Notably, increased p-Smad 2/3 levels were cor-
related with increased expression of type I col-
lagen. These findings suggest that collagen 
deposition in the ligamentum flavum is depen-
dent on TGFβ/Smad pathway [32]. In addition, 
our results showed that Smad 4 levels in- 
creased during inflammatory and hypertrophic 
phases of ligamentum flavum injury. These 
observations suggest that Smad 4 may play an 
important role in the induction of ECM compo-
nents, such as collagen I, and thus contribute 
to the hypertrophy of ligamentum flavum tis-
sue. As previously reported, increased Smad 4 
expression and accumulation have been shown 
in various fibrotic tissues [33-36]. 

TGFβ/Smad signaling is well-known for an auto-
inhibitory loop that involves Smad 7 [11, 18]. In 
this study we found that Smad 7 protein levels 

Figure 6. Expression of Smad 2, 3, 4, 7 and type I collagen in LF fibroblast 
cells stimulated by TGFβ1. A. Real-time PCR analysis of mRNA levels of Smad 
2, 3, 4, 7 and type I collagen in LF fibroblasts untreated, 1 hour after TGFβ1 
treatment, and 24 hours after TGF-β1 treatment. *P<0.05, **P<0.01 vs. 
Control (untreated). (n=3). B. Representative blots. Actin was loading control. 
C. Densitometry analysis of p-Smad 2/3, Smad 4, Smad 7 and and type I 
collagen in LF fibroblasts untreated, 1 hour after TGFβ1 treatment, and 24 
hours after TGF-β1 treatment. *P<0.05, **P<0.01 vs. Control (untreated) 
(n=3).

decreased in LSS group com-
pared with control tissues, 
consistent with a causal rela-
tionship between decreased 
Smad 7 and fibrosis [37-39]. 
Nakao et al. demonstrated 
that Smad 7 suppressed type 
I collagen mRNA in lung fi- 
brotic lesions [40]. Moreover, 
inhibition of endogenous Sm- 
ad 7 function in normal fi- 
broblasts resulted in enhan- 
ced collagen synthesis [41]. 
These observations strength-
en the emerging paradigm 
that decreased Smad 7 ex- 
pression may be an import- 
ant mechanism underlying 
enhanced TGF-β activity in 
the hypertrophy of the liga-
mentum flavum.

There are several limitations 
to our present study. First, our 
sample size was limited by 
the ethics review board, and 
we could not collect normal 
LF. Therefore, we used con- 
trol specimens from patients 
with disc herniation whose 
average age was significan- 
tly younger than that of the 
patients with spinal stenosis. 
Therefore, we cannot exclude 
the possibility that aging may 
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