Original Article

Role of endothelial-mesenchymal transition in the tumorigenesis of infantile hemangioma

Wen-Ping Yang^{1*}, Yu Zhang^{2,3,4*}, Yue Su^{2,3,4*}, Zao-Hui Cao^{5*}, Jia-Shu He², Yuan Chen², Si-Yao Zhang², Zhen Li², Fei Tong², Hui Huang¹, Meng-Meng Wang^{3,4}, Hui Xu⁶, Wei Xu⁷, Yan-Juan Deng³, Jian Sun⁴, Xiao-Liang Lou⁴, Nan-Ping Chen⁴, Jin-Ping Hu³, Lv Zhou³, Hai-Bo Liu⁸, Yue-Yan Li⁹, Rong Wang¹⁰, Huan Deng^{3,4}

Departments of ¹Pathology, ¹General Surgery, Jiangxi Children's Hospital, Nanchang, China; ²Medical College, Nanchang University, Nanchang, China; ³Department of Pathology, ⁴Molecular Medicine and Genetics Center, The Fourth Affiliated Hospital of Nanchang University, Nanchang, China; ⁵Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; ⁶The First People's Hospital of Fu Zhou, Fu Zhou, China; ⁶Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Departments of ⁶Cardiology, ¹Oncology, The First Affiliated Hospital of University of South China, Hengyang, China. *Equal contributors.

Received March 23, 2017; Accepted April 23, 2017; Epub June 1, 2017; Published June 15, 2017

Abstract: The aim of this study was to investigate the relationship between endothelial-mesenchymal transition (EndoMT) and the progression of infantile hemangioma (IH) and to provide references for clinical. Sixty-five patients were enrolled in this study. Tissues obtained from these patients were analyzed by tissue microarray (TMA). Serial sections from TMA blocks underwent immunohistochemistry with the primary antibodies for EndoMT markers (Twist, Zeb1, Smad, N-cadherin, Vimentin, and α -SMA). Intensity and extent points were counted to quantitate the markers expression. All sixty-five patients were diagnosed as IH, which distributes all over the body from head to planta pedis. Progressive phases could be distinguished with H&E staining. The expressionof Twist, Zeb1, Smad, α -SMA, Vimentin and N-cadherin in the abnormal endothelial cells were significantly increased compared with normal controls (***P < 0.01). Average expression points (intensity + extent) in proliferating and involuting phases were 7.69 and 7.80 for Twist; 8 and 7.90 for Zeb1; 4.43 and 3.80 for N-cadherin; 6.72 and 6.85 for Smad; 7.31 and 6.87 for α -SMA, and 6.42 and 7.00 for Vimentin. EndoMT involves in the tumorigenesis of IH. The endothelial cells have the capacity to transdifferentiate into mesenchymal cells when IH proliferates and these mesenchymal cells may further transdifferentiate into adipocytes or fibroblasts in involuting phase.

Keywords: Endothelial-mesenchymal transition, infantile hemangioma, immunohistochemistry, tumorigenesis, proliferation

Introduction

Infantile hemangioma (IH) is one of the most common benign tumors of infancy that occurs in 5% to 10% Caucasian infants. Most of the patients exhibit significant clinical symptoms withintwo years, with the female-to-male ratio-of 3:1 approximately [1]. IH arises from areas close to head and neck skin and grows rapidly within two years after birth with characteristic capillary flame or "stretch-like" plaques [2, 3]. The tumorigenesis of IH can be divided into two consistent stages: proliferating and involuting phase. Although IH is self-limited, the minority of the lesion will grow largeand lead to serious

complications such as ulceration, bleeding, and infection [4, 5].

Clinical strategies for patients with IH are limited. Surgical resection always causes bleeding and postoperative disfiguration [6]. β -blocker propranolol serves as the preferred drug for IH with obvious side effects, including convulsions, decreased heart rate, and asthma [7, 8].

The molecular mechanisms of IH tumorigenesis are still under debate, in spite of recent advances in diagnosis. The characteristic immunophenotype features that distinguish IH from other vascular tumors include thepositivity for GLUT1,

The role of EndoMT in IH

Table 1. Clinical, biological characteristics and laboratory examination of patients with IH

Table 1. Clinical, biological characteristics and laboratory examination of patients with IH									
Case	Sex	Age (Year/Month/Day)	Tumor size (cm)	WBC (10 ⁹ /L)	NR (%)	LYMR (%)	RBC (10 ¹² /L)	PLT (10 ⁹ /L)	Hb (g/L)
1	M	8M15d	2×1×1	5.04	26.84	59.14	3.99	291	100
2	M	8M14D	2×1.3×0.7	11.12	40.34	49.64	4.26	310	98
3	F	2M20D	1.2×1×0.8	8.45	20	68	3.27	444	99
4	F	2M23D	3.5×23×1.5&2×1.2	1.9	28.8	62.1	3.87	438	107
5	F	2M12D	2.2×1.5×1&1.3×1.2×0.5	8.23	16.8	72.1	3.445	364	83
6	F	1M22D	1.4×1.2×0.6	10.48	22.4	71.6	3.39	547	104
7	F	ЗМ	1.2×0.8×0.4	7.58	16.1	74.3	4.31	314	123
8	F	8M9D	1.3×1.2×1.5	9.28	37.8	51.1	4.8	460	119
9	М	7M10D	1.8×1.2×0.7	11.4	22.2	68.4	4.82	465	128
10	F	1Y	3.3×2×1.2	12.58	36.3	56.3	4.44	422	121
11	F	2M12D	2.2×1.6×0.6	5.16	23.6	64	3.33	372	97
12	F	2M13D	2.1×1.6×1	7.48	33.2	59.1	3.32	723	95
13	М	8M18D	2.6×2.2×1.3	15.51	15.3	81.9	4.45	355	112
14	F	10M9D	3.5×2.3×1.2	11.24	22.5	68.6	3.9	474	103
15	F	1Y1M	2.1×1.5×0.7	8.37	33.74	57.74	4.1	247	111
16	F	1Y4M	3×2×1.5	14.04	25.9	64.8	4.37	239	118
17	F	8M25D	2.7×2.3×1.2	11.88	31.4	56.1	4.33	384	113
18	F	9M13D	5×3×1.2	9.07	40.1	49.4	4.36	329	110
19	F	1Y4M	4×3.3×2.4&2.5×2.2	6.46	30.5	57.7	4.36	338	108
20	М	9M	4×3×2&2.5×2	8.48	16	68.3	4.53	399	98
21	F	1Y9M	3×2×1.5&1.2×1.2×1.5	10.53	31.4	62.6	4.2	340	116
22	F	8M19D	2.5×2×1.5	8.11	25.6	65.1	4.51	275	112
23	F	7Y	2×1.2×1	8.03	48.4	34.2	4.47	302	121
24	F	5M27D	1.7×1.5×1	9.96	17.9	69.1	4.38	333	117
25	M	8M18D	3.4×1.5×1.2	7.61	30	51.2	4.25	281	105
26	F	1Y	2.3×1.8×0.8	14.03	24.5	62	4.39	441	114
27	F	1Y1M	2×1×1&2×1.5×0.5	4.42	28.6	53.8	4.34	237	111
28	M	8M26D	2×1.5×0.8	12.01	21.7	65.4	5.3	511	97
29	M	1Y4M	3.8×3.7×1.5	10.95	20.7	64.8	5.02	291	129
30	M	10M26D	5.5×4×1.3	8.28	24.2	63	4.35	361	109
31	F	11M2D	4×3×2	9.27	52.6	34.4	4.34	249	108
32	F	1Y11M	5×2.5×1.2	6.67	35.4	57.4	4.47	214	123
33	F	10M11D	2.5×1.3×0.7&2×1.3×0.8	10.09	27	59.6	4.63	252	113
34	F	11M13D	3×2×1.4	8.93	41.4	49	4.8	223	116
35	F	1Y	3×3×1.5	8.39	25.6	60.4	4.51	377	119
36	F	11M12D	1.3×1.2×1&3×2×1.5	10.66	42.6	41.8	4.28	361	109
37	F	1Y10M	2.3×1.8×0.8	7.92	39.1	46.6	4.11	327	115
38	F	9M22D	3.2×1×3	12.63	14.7	75.3	5	141	125
39	M	9M11D	3.5×2×0.9	8.22	37.9	51.6	4.9	239	116
40	M	1Y	1×0.8×0.5	7.06	24.3	59.1	4.6	298	100
41	M	1Y4M	2.2×1.8×0.8	10.03	15.5	73.5	4.38	432	108
42	F	1Y6M	3.5×2.5×1.5	10.49	31.9	62.1	4.26	362	121
43	' F	9M6D	4×3×1.5&2.5×2	9.54	14	79.2	4.25	487	119
44	М	1M	3×2.1×1.5	12.42	33.7	59.4	4.25	328	115
45	F	1Y	23×1.5×1.2	9.66	22.24	69.04	4.4	366	115
	F								
46		1Y8M	2.5×1.5×1	5.56	28.9	56.1	4.38	125	113
47	F	8M24D	0.9×0.6×0.7&2.5×2.1×0.5	12.25	32.5	49.6	4.47	495	109
48	F	1Y	2.4×1.5×1.4&1.7×1×1&1.5×1×0.8	10.79	28.7	60.2	4.78	303	119
49	M	7M14D	2×1.5×1.3	11.45	20.2	71.6	4.47	408	106

50	M	1Y	1.8×1.2×0.5	11.28	29.14	61.74	4.74	326	109
51	М	1Y5M	2.6×1.7×1	6.84	45.9	43.4	4.51	264	115
52	М	1Y6M	2.2×1.9×1	9.15	43.3	43.9	4.91	428	131
53	М	10M17D	1.4×0.7×1.2	7.18	38.9	41.2	4.24	255	109
54	F	8M26D	1.8×1×0.9	6.51	23.7	66.1	4.41	144	110
55	F	4M24D	2×1.2×1	9.52	26.8	64.3	3.91	374	96
56	М	6M8D	1.7×1×0.5	11.57	18	68	3.9	319	99
57	F	6M13D	2.8×1.5×0.9	15.78	21.2	57.2	5.08	547	120
58	М	1M20D	2.1×1×0.8&2×1×0.5&1.2×0.8×0.5	5.56	18.9	66.2	3.02	354	88
59	F	7M24D	2.3×1.5×1	15.53	19.9	72.1	4.59	370	111
60	М	4Y1M	1.2×0.8×0.5	6.9	48.4	34.5	4.36	237	121
61	М	1Y8M	1.7×1.3×0.5	9.04	21.9	71.6	4.29	278	116
62	М	2M24D	3.3×2×1	4.71	14.9	57.3	3.13	346	85
63	F	1M26D	3.5×2.5×1.5	8.95	17.42	65.81	3.72	285	115
64	F	4M12D	3×2×1	68.47	23.7	62	3.93	407	103
65	F	2M8D	3×2.2×0.4&1.7×1.9×0.3	9.16	25.54	59.34	3.39	296	106

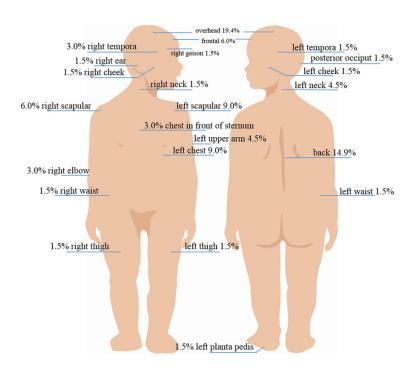
Table 2. Summary of primary antibodies used for immunohistochemistry

Antibody	Clone	Supplier	Dilution	
Twist	Twist2C1a	Abcam	1:50	
Zeb1	2A8A6	Santa Cruz	1:50	
Smad	H-2	Santa Cruz	1:50	
N-cadherin	6G11	Dako	1:100	
Vimentin	V9	Dako	1:100	
SMA	1A4	Dako	1:100	

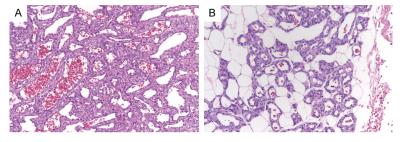
Lewis Y antigen, FcyRII, CD15, CCR6, indoleamine 2,3-deoxygenase, and IGF2 [9-14].

Endothelial-Mesenchymal Transition (EndoMT) contributes to the carcinogenesis of several vascular tumors. EndoMT and Epithelial-Mesenchymal Transition (EMT) exhibit similarities [15]. The cells undergoing EndoMT lose endothelial characteristics and acquire, at least in part, mesenchymal cell traits [16]. Previous studies have shown the close relationship between vascular support cells (pericytes or smooth muscle cells) and endothelial cells, indicating the involvement of EndoMT [17]. EndoMT-transforming cells are usually capable of enhanced motility and exhibit spindle-shaped morphology.

A set of biomarkers allow investigators to gain more insights into whether EndoMT contributes to the tumorigenesis of IH. High levels of transcription factors Twist and Zeb1 lead to the loss of cell-cell contacts and cell scattering, which are accompanied with decreased junction pro-


teins such as E-cadherin and β -catenin [18]. Vimentin and α -SMA are mesenchymal cell markers with expressionofa decline of E-cadherin. Downregulation of E-cadherin is often accompanied with increased N-cadherin, referred as "cadherin switch". Furthermore, transforming growth factor beta (TGF- β) can induce EndoMT through Smad pathway [19].

Although the results of several studies indicate that EndoMT may play an important role in the tumorigenesis of IH, the molecular characterization of IH is still suffered from the lack of direct evidence. In this study, we established tissue microarray tissue (TMA) from patients with different stage of IH. Immunohistochemistry (IHC) staining was used to investigate the relationship between EndoMT and the progression of IH. Our data provided preliminary evidence that EndoMT can promote the proliferation and transformation of abnormal endothelial cells.


Materials and methods

Patients and clinical data

Sixty-five IH patients (23 males and 42 females) were enrolled in this study. Age ranged from 1 month to 7 years old. The diagnosis was established based on the combination of macro features, H&E, IHC (GLUT1-positive cases) and color Doppler ultrasonography. Thirty normal skin samples from patient with lipoma were served as normal control. The clinical data were summarized in **Table 1**. As for ethical concerns,

Figure 1. Location of IH. IH mostly occurred in head, which represented 37.4% of the total cases, then scapular (15.0%), back (14.9%), chest (12.0%) and neck (6.0%), occasionally in upper arm, thigh. More than one lesion might exist in one patient.

Figure 2. H&E staining of IH. A. Proliferating phase of IH. IH tissue was composed of cellular masses of plump endothelial cells and pericytes which form capillaries. Diameters of capillaries varied significantly (original magnification ×200). B. Involuting phase of IH. Surrounding stroma was abundant with the appearance of adipocytes (original magnification ×200).

all patients gave written informed consent to participating in the study in accordance with the Helsinki Declaration. This study was approved by the Regional Ethics Committee (Medical Ethics Committee of Jiangxi Children's Hospital and The Fourth Affiliated Hospital of Nanchang University).

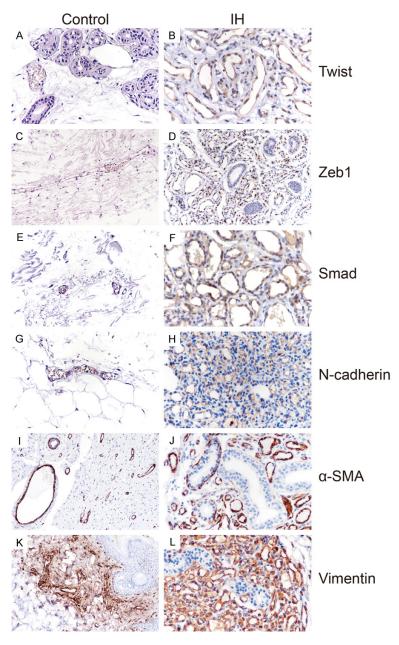
Histological examination and TMA

Formalin-fixed, paraffin-embedded tissues were arrayed by using the manual tissue arrayer TMAjr (Pathology Devices, USA). Histopatholo-

gical evaluation was performed by two independent researchers (L Zhou and Q Feng) who were blinded regarding patient details.

IHC staining

TMA blocks were cut into 4 um serial sections. Antigen retrieval was performed following the dewaxing and rehydration. The slides were incubated with primary antibodies for EndoMT (Table 2) overnight at 4°C and secondaryantibodies for 30 minutes at room temperature. The chromogenic reaction was developed by using DAB. Slides were analyzed and scored basing on the intensity: 1: none; 2: weak; 3: medium; 4: strong, and extent: 1: ≤25%; 2: 26%-50%; 3: 51%-75%; 4: ≥ 76%.


Statistical analysis

Wilcoxon rank sum tests were used to compare the EndoMT marker groups with the control groups for assessing whether the differences between the markers intensity and extent are pro pronounced. Results are considered to be significant at P< 0.05. Statistical analyses were carried out using SPSS 20 and GraphPad Prism 6.

Results

Analysis of clinical data

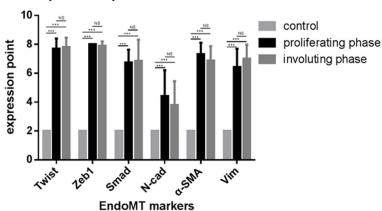
Hemangiomas mostly occurred at head (37.4%, including frontal, temporals, overhead, and facial area), scapular (15.0%), back (14.9%), chest (12.0%), and neck (6.0%), occasionally atupper arm and thigh (**Figure 1**). The slow progression discouraged most patients to submit to local hospitals after the presence of clinical symptoms. The majority (91.43%) of IH exhibited abundant blood flow signal in color Doppler

Figure 3. Immunohistochemical profile of IH. B, D, F, H, J, L. Disorderly endothelial cells in IH tissues exhibited positivity for all six EndoMT markers. A, C, E, G, I, K. The control groups were all negative in our cases. Primary antibodies annotations: A, B. Twist, original magnification ×400; C, D. Zeb1, original magnification ×400; E, F. Smad, original magnification ×400; G, H. N-cadherin, original magnification ×200; I, J. α-SMA, original magnification ×200; K, L. Vimentin, original magnification ×200.

ultrasonography. Laboratory studies were within normal limits.

Histological findings

The greatest diameters of lesions varied significantly (from 0.9 cm to 5.5 cm). Thirty-five patients were diagnosed asproliferating phase


IH and 30 cases as involuting phase. In proliferating phase, tumor tissues were mainly composed of pericytes and endothelial cells. The array of endothelial cells was disorderly but well encircled. While in involuting phase, it is always difficult to pinpoint endothelial cells. However, the surrounding stroma was abundant. The appearance of adipocytes was a landmark of involuting phase (Figure 2).

Immunophenotype of IH

Almost all of the tumorous endothelial cells exhibited nuclear positivity for Twist, and the average expression point (intensity + extent) was 7.69 in proliferating phase and 7.80 in involuting phase. The expression of Twist was undetectable in control groups (Figures 3A, 3B, 4). A strongly and diffusely positive staining for Zeb1 was obtained in IH cases rather than normal control. The average expression point was 8 in proliferating phase and 7.90 in involuting phase (Figures 3C, 3D, 4). The expression of Smad was seen bothin nuclei and cytoplasm. The positive rate was > 95%. The average expression point was 6.72 in proliferating phase and 6.85 in involuting phase (Figures 3E, 3F, 4). The membranous positivity for N-cadherin was detected in 67.7% of IH cases, and the average expression point was 4.43 in proliferating phase and 3.80 in involuting phase, respectively (Figures

3G, **3H**, **4**). α -SMA and Vimentin are the markers of mesenchymal cells. Although in normal controlgroup the surrounding mesenchymal cells showed positivity for α -SMA and Vimentin, endothelial cells were negative. The positive rates of α -SMA and Vimentin were > 95%. For α -SMA, the expression point in proliferating

The expression points of EndoMT markers

Figure 4. Expression points of each EndoMT markers (Twist, Zeb1, Smad, N-cadherin, α -SMA and Vimentin). All six markers were statistically significant compared to the control groups (P<0.001) and the expression points between proliferating and involuting phases in Twist, Zeb1, Smad, N-cadherin, α -SMA and Vimentin groups were similar (P>0.05).

and involuting phase was 7.31 and 6.87, respectively. While it was 6.42 and 7.00 in Vimentin (Figures 3I-L, 4).

Discussion

This is the first study focusing on the role of EndoMT in the progression of IH. IHC was employed to investigate the expression of EndoMT-related markers in endothelial cellsand surrounding cells of IH. The IHC results confirmed high levels of EndoMT markers in endothelial cells.

EndoMT occurs in endothelial cells associated with the microvasculature, which is vital for their differentiation to several lineages including fibroblasts, osteoblasts, and adipocytes [19]. IH non-destructively intermingled with adipocytes at the late stage of involuting phases, which is a feature to distinguish the phase of IH. The appearance of adipocytes indicates that IH is recovering. New studies showed that Mesenchymal Stem Cells (MSCs) resided in proliferating phase IH contributing to the adipocytes in involuting phase. However, these MSCs were not clonal, in some aspect indicating that MSCs might be formed by endothelial cells through EndoMT [20].

Process of EndoMT is accompanied with some drastically changes in EndoMT-related factors-like Smad, Twist, Zeb1, α -SMA, Vimentin, and N-cadherin.

Smad is a downstream effector of TGF-β signaling [21]. TGF-β induces EndoMT of capillary endothelial cells in its tissue culture models [16]. TGF-β binds to its receptor TβRI and TβRII. Then the activated TBRII sequentially phosphorylates TBRI, Smad2, and Smad3. After combining with Smad4, Smad2/3/4 tripolymer translocates into nuclear to induce the expression of Zeb1 and Twist through interaction with specific binding motifs in gene regulatory regions [22]. Previous studies have showed that DN-Smad4 (inhibitor of Smad4) sufficiently block TGF-β-induced EndoMT in endothelial cul-

tures, indicating the critical role of Smad in TGF-β signaling pathway [23]. In this study, the tumorous endothelial cells of both proliferating and involuting stages exhibited strong and diffuse positivity for Smad. EndoMT induced by Smad finally depends on transcription factors Zeb1 and Twist to orchestrate the cell-cell adhesion junctions. Twist expression has concerned with high-grade ductal carcinomas. Contrary to other Transcription Factors (TFs) like Zeb1, Twist has been shown to repress E-cadherin with an indirectly bound to the E-cadherin promoter [24]. More striking, Twist confers stem-like properties in epithelial cells. Nuclear positivity for Twist has been confirmed in endothelial cells of the lesion.

Zeb1 is also known to repress E-cadherin promoter. More recently, Zeb1 was described as a cofactor in Smad2/3/4 tripolymer [25]. The majority of the abnormal endothelial cells expressed high level of Zeb1. N-cadherin was first found in neuron, and then extended to other tissues. An E-cadherin to N-cadherin switch leads to disassembly of intercellular adhesion junctions thus leads EndoMT [26]. The classical membranous positivity for N-cadherin was observed in most of endothelial cells rather than surrounding mesenchymal cells.

The increased expression of mature mesenchymal markers such as α -SMA and Vimentin indi-

cates the end stage of EndoMT. However, none of abnormal endothelial cells displayed positivity for α -SMA and Vimentin. Noteworthy, the close spatial association between endothelial cells and α -SMA-positive/Vimentin-positive spindle cells raises the possibility that the mesenchymal cells may derive from endothelial cells. There are no substantial lineage-tracing data so far because of technical limitations.

Two hypotheses concerning the tumorigenesis of IH were proposed: angiogenesis and vasculogenesis. The main point of first hypothesisis the abnormal proliferation and migration of original blood vessels. Hemangioma-derived Endothelial Cells (HemECs) might be activated by gene mutation or some external factors such as hypoxia, cytokines, or chorionic villus sampling [27, 28]. Placental injury and aberrant angioblasts may increase the incidence of hemangiomas. Different from angiogenesis, vasculogenesis hypothesis focuses on Endothelial Progenitor Cell (EPC) rather than original blood vessels. The abnormally HemECs can derive from EPCs, which co-express endothelial cell marker and stem cell-progenitor cell marker [29]. However, both of the hypotheses cannot interpret the close relationship between endothelial cells and mesenchymal cells. Recently, a study reported that Hemangioma Explant-Derived Cells (HemEDCs) can differentiate into osteoblasts and adipocytes in vitro. However, the expression of predipocyte factor-1 (Pref-1), a mesenchymal differentiation inhibitor, may block the terminal stage [30]. This is supported by our IHC data that endothelial cells did not express two classical mature mesenchymal cells markers vimentin and α-SMA.

Taken together, our study provides preliminary evidence for the involvement of EndoMT in the tumorigenesis of IH. The tumor endothelial cells may transdifferentiate into mesenchymal cells through EndoMT. However, this study mainly focused on the immunophenotypes of IH. Further experiments on the subject, including in vitro and animal model studies, are required to clarify the precise relationship between endothelial cells and surrounding cells. Additionally, future studies should also consider the effect of microenvironment on the progression of IH also should be considered.

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (No. 81300347, 81302079), the Natural Science Foundation of Jiangxi Province, China (No. 20151BAB215008, 20151BBG70200), and Foundation of Health and Family Planning Commission of Jiangxi Province (No. 20155592, 20155103, 20161086, 20161093, 20171098), and Nature Science Fund of Hunan Province (2016jj2113), and Science Fund of Hunan Provincial Education Department (16A186).

Disclosure of conflict of interest

None.

Address correspondence to: Huan Deng, Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China. E-mail: beandeng@ncu.edu.cn

References

- [1] Haggstrom AN, Drolet BA, Baselga E, Chamlin SL, Garzon MC, Horii KA, Lucky AW, Mancini AJ, Metry DW, Newell B, Nopper AJ and Frieden IJ. Prospective study of infantile hemangiomas: demographic, prenatal, and perinatal characteristics. J Pediatr 2007; 150: 291-294.
- [2] Waner M, North PE, Scherer KA, Frieden IJ, Waner A and Mihm MC Jr. The nonrandom distribution of facial hemangiomas. Arch Dermatol 2003; 139: 869-875.
- [3] Chang LC, Haggstrom AN, Drolet BA, Baselga E, Chamlin SL, Garzon MC, Horii KA, Lucky AW, Mancini AJ, Metry DW, Nopper AJ and Frieden IJ. Growth characteristics of infantile hemangiomas: implications for management. Pediatrics 2008; 122: 360-367.
- [4] Chiller KG, Passaro D and Frieden IJ. Hemangiomas of infancy: clinical characteristics, morphologic subtypes, and their relationship to race, ethnicity, and sex. Arch Dermatol 2002; 138: 1567-1576.
- [5] Bruckner AL and Frieden IJ. Hemangiomas of infancy. J Am Acad Dermatol 2003; 48: 477-493; quiz 494-476.
- [6] Bulea R, Enescu DM, Giuvelea S, Stoicescu S, Alexandru R and Ioniță D. Surgical treatment of anogenital hemangiomas of infancy. Acta Medica Marisiensis 2014; 60.
- [7] Itinteang T, Withers AH, Davis PF and Tan ST. Biology of infantile hemangioma. Front Surg 2014: 1: 38.
- [8] Schiestl C, Neuhaus K, Zoller S, Subotic U, Forster-Kuebler I, Michels R, Balmer C and

- Weibel L. Efficacy and safety of propranolol as first-line treatment for infantile hemangiomas. Eur J Pediatr 2011; 170: 493-501.
- [9] North PE, Waner M, Buckmiller L, James CA and Mihm MC Jr. Vascular tumors of infancy and childhood: beyond capillary hemangioma. Cardiovasc Pathol 2006; 15: 303-317.
- [10] North PE. Vascular tumors and malformations of infancy and childhood. Pathology Case Reviews 2008; 13: 213-235.
- [11] North PE and Mihm MC Jr. Histopathological diagnosis of infantile hemangiomas and vascular malformations. Facial Plast Surg Clin North Am 2001; 9: 505-524.
- [12] North PE, Waner M, Mizeracki A and Mihm MC Jr. GLUT1: a newly discovered immunohistochemical marker for juvenile hemangiomas. Hum Pathol 2000; 31: 11-22.
- [13] North PE, Waner M, Mizeracki A, Mrak RE, Nicholas R, Kincannon J, Suen JY and Mihm MC Jr. A unique microvascular phenotype shared by juvenile hemangiomas and human placenta. Arch Dermatol 2001; 137: 559-570.
- [14] Ritter MR, Dorrell MI, Edmonds J, Friedlander SF and Friedlander M. Insulin-like growth factor 2 and potential regulators of hemangioma growth and involution identified by large-scale expression analysis. Proc Natl Acad Sci U S A 2002; 99: 7455-7460.
- [15] Potenta S, Zeisberg E and Kalluri R. The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer 2008; 99: 1375-1379.
- [16] Yu W, Liu Z, An S, Zhao J, Xiao L, Gou Y, Lin Y and Wang J. The endothelial-mesenchymal transition (EndMT) and tissue regeneration. Curr Stem Cell Res Ther 2014; 9: 196-204.
- [17] Armulik A, Abramsson A and Betsholtz C. Endothelial/pericyte interactions. Circ Res 2005; 97: 512-523.
- [18] Sanchez-Tillo E, Liu Y, de Barrios O, Siles L, Fanlo L, Cuatrecasas M, Darling DS, Dean DC, Castells A and Postigo A. EMT-activating transcription factors in cancer: beyond EMT and tumor invasiveness. Cell Mol Life Sci 2012; 69: 3429-3456.
- [19] Medici D and Kalluri R. Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype. Semin Cancer Biol 2012; 22: 379-384.

- [20] Frieden IJ, Haggstrom AN, Drolet BA, Mancini AJ, Friedlander SF, Boon L, Chamlin SL, Baselga E, Garzon MC, Nopper AJ, Siegel DH, Mathes EW, Goddard DS, Bischoff J, North PE and Esterly NB. Infantile hemangiomas: current knowledge, future directions. Proceedings of a research workshop on infantile hemangiomas, April 7-9, 2005, Bethesda, Maryland, USA. Pediatr Dermatol 2005; 22: 383-406.
- [21] Xu J, Lamouille S and Derynck R. TGF-beta-induced epithelial to mesenchymal transition. Cell Res 2009; 19: 156-172.
- [22] Fuxe J, Vincent T and Garcia de Herreros A. Transcriptional crosstalk between TGF-beta and stem cell pathways in tumor cell invasion: role of EMT promoting Smad complexes. Cell Cycle 2010; 9: 2363-2374.
- [23] Medici D, Potenta S and Kalluri R. Transforming growth factor-beta2 promotes Snail-mediated endothelial-mesenchymal transition through convergence of Smad-dependent and Smad-independent signalling. Biochem J 2011: 437: 515-520.
- [24] Yang J and Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 2008; 14: 818-829.
- [25] Postigo AA. Opposing functions of ZEB proteins in the regulation of the TGFbeta/BMP signaling pathway. EMBO J 2003; 22: 2443-2452.
- [26] Przybyla L, Muncie JM and Weaver VM. Mechanical control of epithelial-to-mesenchymal transitions in development and cancer. Annu Rev Cell Dev Biol 2016; 32: 527-554.
- [27] Barnes CM, Christison-Lagay EA and Folkman J. The placenta theory and the origin of infantile hemangioma. Lymphat Res Biol 2007; 5: 245-255.
- [28] Itinteang T, Tan ST, Brasch HD, Steel R, Best HA, Vishvanath A, Jia J and Day DJ. Infantile haemangioma expresses embryonic stem cell markers. J Clin Pathol 2012; 65: 394-398.
- [29] Yu Y, Flint AF, Mulliken JB, Wu JK and Bischoff J. Endothelial progenitor cells in infantile hemangioma. Blood 2004; 103: 1373-1375.
- [30] Itinteang T, Vishvanath A, Day DJ and Tan ST. Mesenchymal stem cells in infantile haemangioma. J Clin Pathol 2011; 64: 232-236.