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the PD-1 oncogenic signaling pathway

Danzhen Yao, Jinying Xia, Jianhui Li, Jun Xu

Department of Endocrinology, Ningbo No. 2 Hospital, Ningbo 315010, Zhejiang, China
Received November 5, 2018; Accepted November 26, 2018; Epub December 1, 2018; Published December 15, 2018

Abstract: Cluster of differentiation 47 (CD47) serves as an important negative indicator for phagocytic cells and has
been reported to be overexpressed in multiple human tumor cells. Increasing evidence has suggested that CD47
overexpression may contribute to the immune escape of tumor cells by avoiding phagocytosis. However, it is cur-
rently unclear whether CD47 participates in the tumorigenesis of thyroid cancer (TC). The aim of this study was to
explore the roles of CD47 in TC. In two TC cell lines, TPC-1 and K1, the CD47 expression was determined by Western
blot analysis, qRT-PCR, and flow cytometry assays. The CD47 shRNA expression vector was applied to specifically
decrease CD47 expression in TPC-1 and K1 cells, and the effects of CD47 knockdown on cell proliferation, apopto-
sis, cycle were evaluated by flow cytometry analysis. In addition, the effects of CD47 knockdown on the expression
of proteins involved in the programmed death-1 (PD-1) signaling pathway were assessed by Western blot analysis.
Our results indicated that when compared with normal human thyroid follicular epithelial Nthy-ori-3-1 cells, CD47
expression was significantly upregulated in both TPC-1 and K1 cells. In the functional assay, we revealed that the
knockdown of CD47 inhibited cell growth and promoted cell apoptosis. Mechanistically, the PD-L1 signaling pathway
was found to be activated in TPC-1 and K1 cells, and the knockdown of CD47 significantly suppressed the activation
of this pathway. In conclusion, CD47 was highly expressed in TC cells, and may serve as an oncogenic molecule to
promote TC progression by regulating PD-L1 signaling.
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Introduction

Worldwide, the incidence of thyroid cancer (TC),
specifically papillary TC, has increased over the
last decades [1, 2]. As one of the most common
endocrine malignancies, TC accounts for over
90 percent of all newly identified endocrine
cancers and roughly 60 percent of endocrine
cancer-related deaths [3, 4]. According to a
report of the American Cancer Society in 2017,
in the United States, 56,870 new TC cases
were estimated, including 2010 deaths that
were related to TC [5]. The discrepancy between
the total number of new TC cases and TC-related
deaths reflected the relatively inactive charac-
ter and outstanding long term survival rate of
TC. However, TC poses a serious threat to
human health and is a substantial economic
burden to both families of TC patients [6, 7].
Despite the rapid development in medical tech-
nology, TC remains one of the most challenging
diseases to treat [8]. Therefore, elucidating the

underlying pathogenesis of TC will significantly
contribute to identifying novel effective mea-
sures to help treat TC patients.

Although the exact underlying molecular mech-
anisms of TC initiation and development remain
largely unknown, recent evidence has revealed
that several genetic alterations may be involved
in the tumorigenesis of TC, including point
mutations in multiple proto-oncogenes (NRAS,
KRAS and HRAS), chromosomal rearrange-
ments (NTRK1, RET/PTC and PPARG), and gene
expression dysregulation [1]. For example, the
Cbp/p300-interacting transactivator contain-
ing glutamic acid (E) and aspartic acid (D)-rich
C-terminal domain 1 (CITED1) was identified as
a novel potential TC-associated gene. CITED1
upregulation was found in TC tissue, which
increases the risk of lymph node metastasis.
Moreover, the knockdown of CITED1 significant-
ly inhibits tumor growth of TC [9]. To the best of
our knowledge, up to now, in only a few studies
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have the roles of cluster of differentiation 47
(CD47) in TC been investigated. CD47, an
important subtype of the immunoglobulin
superfamily, is a ligand that recognizes the
extracellular domain of signal regulatory pro-
tein o (SIRPx) [10, 11]. Under normal physiolog-
ical circumstances, CD47 acts as a critical
marker of macrophages that protects cells
against phagocytosis [12, 13]. However, under
pathological conditions, tumor cells can avoid
the phagocytosis of infiltrating macrophages by
activating the CD47 and SIRP« signaling path-
ways. In previous studies, the overexpression
of CD47 has been reported in various human
cancers, such as breast cancer, lung cancer,
and oral cancer [10, 14, 15], thereby suggest-
ing that CD47 may serve as a therapeutic tar-
get for tumor development.

In the present study, we aimed to investigate
the effects of CD47 on the pathogenesis of TC.
Our findings show that when compared with the
normal Nthy-ori-3-1 human thyroid follicular
epithelial cells, CD47 expression was signifi-
cantly increased in two TC cell lines, TPC-1 and
K1. In addition, the knockdown of CD47 in TC
cells inhibited cell proliferation and promoted
cell apoptosis. In addition, we revealed that the
programmed death-1 (PD-1) signaling pathway
may play a role in the effects of CD47 on TC.

Materials and methods
Tissue samples

TC pathological tissues were extracted from
11 patients with thyroid papillary carcinoma
who were registered in the Ningbo No. 2
Hospital between July 2017 and November
2017. Healthy thyroid tissues were extracted
from 7 patients with benign thyroid nodules
who were registered concurrently in the Ningbo
No. 2 Hospital.

Cell lines and culture

The Nthy-ori-3-1 normal human thyroid follicu-
lar epithelial cell line as well as TPC-1 and K1
TC cell lines were all purchased from the type
Culture Collection of the Chinese Academy of
Sciences (Shanghai, China). Cells were main-
tained at 37°C, 5% CO, and 95% air in RPMI
1640 medium (Gibco) supplemented with 10%
fetal bovine serum (FBS) (Gibco), 100 U/ml pen-
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icillin, and 100 mg/ml streptomycin (Invitrogen,
Carlsbad, CA, USA).

CD47 and PD-L1 shRNA construction and
transfection

The CD47 (PD-L1) shRNA expression vector
was applied to specifically decrease CDA47-
expression in TPC-1 and K1 cells. In brief, to
generate recombinant plasmids, the shRNA
construct targeting CD47was cloned into the
lentiviral vector SMARTvector 2.0 (Dharmacon,
Inc., Lafayette, CO, USA). The CD47 shRNA and
PD-L1 shRNA were both designed and obtained
from Sangon (Shanghai, China). The sequences
were as follows: CD47 shRNA sequence: CCG
GCC TGG TGA TTA CCC AGA GAT ACT CGA GTA
TCT CTG GGT AAT CAC CAG GTT TTT. PD-L1
shRNA sequence: CCG GCG AAT TAC TGT GAA
AGT CAA TCT CGA GAT TGA CTT TCA CAG TAA
TTC GTT TTT G. For the transfection, the TC
cells were seeded in 6-well plates at a density
of 2 x 10° cells/well and cultured for 24 h.
Then, the TC cells were transfected with the
recombinant plasmid targeted CD47 using
Lipofectamine 2000 (Invitrogen, Carlsbad, CA,
USA).

RNA extraction and quantitative real-time PCR
assay

The total RNA of TPC-1, K1, and Nthy-ori-3-1
cellswas extracted by TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) according to the manufac-
turer’'s guidelines. Subsequently, 3 pg of RNA
was reverse transcribed into cDNA using a
BestarTM gPCR RT kit (#2220, DBI Bioscience,
China), and a qRT-PCR assay was conducted
using the ABI7500 with BestarTM qPCR
MasterMix (#2043, DBI Bioscience, China).
Primers were designed and obtained from
Sangon (Shanghai, China), and were as follows:
CD47 Forward, 5-AGA AGG TGA AAC GAT CAT
CGA GC-3’, CD45 Reverse, 5'-CTC ATC CAT ACC
ACC GGA TCT-3’; GAPDH: Forward, 5’-TGT TCG
TCA TGG GTG TGA AC-3,, GAPDH Reverse,
5-ATG GCA TGG ACT GTG GTC AT-3. CD47
MRNA expression was normalized to GAPDH
expression.

Western blot analysis

Proteins were extracted from TPC-1, K1, and
Nthy-ori-3-1 cells using a RIPA buffer (RO278,
Sigma, St. Louis, MO, USA). After centrifugation
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Figure 1. The expression of the CD47 protein and mRNA in thyroid cancer cell lines. A. The protein expression of
CD47 in normal Nthy-ori-3-1 human thyroid follicular epithelial cells and TPC-1 and K1 thyroid cancer (TC) cell lines
was evaluated by Western blot analysis. B. Relative mRNA expression of CD47 in Nthy-ori-3-1, TPC-1, and Klcells
was determined by qRT-PCR analysis. C. Flow cytometry analysis was performed to identify CD47 positive Nthy-

ori-3-1, TPC-1 ad K1 cells. *P < 0.05.

for 20 min at low temperature and at 12,000
rom/min, the supernatants were collected, and
the protein concentration was determined by a
BCA kit (Pierce, Rockford, IL, USA). Next, pro-
teins were separated by 10% SDS-PAGE, and
transferred to nitrocellulose membranes (Mil-
lipore, Bedford, MA, USA). The membranes
were blocked with 5% low fat dried milk for 2 h,
then incubated overnight at 4°C with corre-
sponding primary antibodies directed against
CD47 (Rabbit, 1:2000, ab175388, Abcam);
PD-L1 (Rabbit, 1:1000, ab213524, Abcam);
AKT (Rabbit, 1:1000, ab38449, Abcam); p-AKT
(1:500, ab38449, Abcam); SHP1 (Rabbit, 1:20-
00, ab124942, Abcam); p-SHP1 (1:1000, ab5-
1171, Abcam); SHP2 (Rabbit, 1:2000, ab32-
083, Abcam); p-SHP2 (1:50000, abh62322, Ab-
cam); ERK (Rabbit, 1:1000, ab17942, Abcam);
and p-ERK (1:1000, ab131438, Abcam). Sub-
sequently, the membranes were incubated with
horseradish peroxidase (HRP)-conjugated don-
key-anti-rabbit secondary antibody for 2 h at
room temperature. Finally, the protein bands
were visualized using an enhanced chemilumi-
nescent reagent and quantified.

Co-immunoprecipitation

For co-immunoprecipitation purposes, the fol-
lowing antibodies were used: rabbit anti-CD47
(@b175388, Abcam), rabbit anti-PD-L1 (ab21-
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3524, Abcam), goat anti-actin (ab6789, Ab-
cam), Pierce protein A/G agarose (Cat. #20333;
Thermo Scientific, Rockford, IL, USA). In brief,
the agarose beads were washed with 1% bovine
serum albumin (BSA) in phosphate-buffered
saline (PBS) and 10% SDS, then washed three
times in PBS to remove SDS, and a binding
solution was added. Then, a total of 4 pl
(1:1500~1:2000) of antibody was added to the
agarose beads, and the antibody was allowed
to bind to the resin for 4 hours at 4°C. Sub-
sequently, the agarose beads were washed
three times with cold PBS to remove excess
antibodies. Next, an overload of binding solu-
tion and 50 ug (for over loading conditions) or
20 ug (for standard conditions) of bait protein
and prey protein were added to the agarose
beads. After overnight incubation, the agarose
beads were washed three times with cold PBS,
and the 20 pl of 5% loading sample buffer
(Life Technologies, Inc., Carlsbad, CA, USA) was
added to each sample. Finally, SDS-PAGE and
Western blot analyses were employed to evalu-
ate the co-immunoprecipitated proteins.

Flow cytometry analysis

Cell apoptosis, the cell cycle, and the CD47
positive rate of treated TC cells were analyzed
by flow cytometry analysis. In brief, treated TC
cells were incubated with 20 nM docetaxel for
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TC tissues

48 h and then harvested. For the cell cycle
analysis, TC cells were washed with pre-chilled
PBS, then fixed with pre-chilled 70% ethanol at
-20°C for 2 h. Subsequently, the cells were re-
suspended and incubated in 500 ul PBS, con-
taining RNase A (2 ug/ml) and PI (20 ug/ml) for
30 min. Flow cytometry analysis was conduct-
ed by a FACScan instrument (Becton Dickinson,
Franklin Lakes, NJ, USA). For the cell apoptosis
analysis, treated TC cells were evaluated by
the Annexin V-FITC Apoptosis Detection Kit
(Oncogene Research Products, Boston, MA,
USA) and analyzed by flow cytometry.

Statistical analysis

The Data were expressed as the mean + SEM
and compared using a Student’s t test (for the
comparison of 2 groups) or one-way ANOVA
(when more than 2 groups were compared). P <
0.05 was considered significant.

Results

We used the Gene Expression Omnibus (GEO,
http://www.ncbi.nIm.nih.gov/geo) and searched
and compared data derived from TC tissue and
corresponding normal tissue and found that
CDA47 expression was significantly upregulated
in TC tissue when compared to the control tis-
sue. Moreover, to investigate the role of CD47
in TC, we first confirmed the upregulated CD47
expression by qRT-PCR and Western blot analy-
sis. Our results showed that in the TC TPC-1
and K1 cells the expression of both the CD47
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Figure 2. The expression of CD47 in
pathological thyroid cancer tissue
and healthy thyroid tissue. A. CD47
expression in healthy thyroid tissues,
x10. B. CD47 expression in healthy
thyroid tissues, x100. C. CD47 ex-
pression in TC pathological tissues,
x10. D. CD47 expression in TC patho-
logical tissues, x100. E. CD47 ex-
pression was assessed by Image-Pro
Plus 6.0. *P < 0.05.

Control

protein and mRNA was significantly higher
when compared to the levels in the Nthy-ori-3-1
cells (P < 0.05, Figure 1A and 1B). Next, flow
cytometry analysis was performed to deter-
mine the percentage of CD47 positive cells in
TPC-1, K1, and Nthy-ori-3-1 cells. Our results
indicated that the percentage of CD47 positive
cells was significantly increased in TPC-1 and
K1 cells when compared with Nthy-ori-3-1 cells
(P < 0.05, Figure 1C). In addition, we demon-
strated that the CD47 expression in pathologi-
cal TC tissues was higher when compared to
the expression in healthy thyroid tissue (P <
0.05, Figure 2). Taken together, these findings
suggest that the CD47 expression was upregu-
lated in both the TC tissues and cell lines.

Both CD47 knockdown and PD-L1 knockdown
in thyroid cancer cells significantly inhibited
cell proliferation, and promoted cell apoptosis

To explore the underlying roles of CD47 and
PD-L1 in TC, we silenced their expression by
transfecting TPC-1 and K1 cells with either
CDA47 or PD-L1 shRNA. Flow cytometry analysis
was employed to evaluate the effect of CD47/
PD-L1 knockdown on cell apoptosis and the
cell cycle phase of the TC cells. The silencing of
CDA47 in the TPC-1 and K1 cells resulted in a
significant induction of cell apoptosis (P < 0.05,
Figure 3A). In addition, cell cycle analysis
showed that the percentage of cells in the GO/
G1 phase was significantly higher, and the per-
centage of cells in the S and G2/M phases was
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Figure 3. The effects of CD47 knockdown on cell apoptosis and cell cycle in thyroid cancer cells. A. The cell apoptosis of thyroid cancer (TC) cells using CD47 knock-
down was evaluated by Annexin V/PI double staining, followed by flow cytometry analysis. B. The cell cycle of the CD47 knocked down TC cells was assessed by flow
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remarkably lower in the CD47-silenced TPC-1
and K1 cells when compared to the Nthy-ori-
3-1 cells (P < 0.05, Figure 3B). Similarly, the
silencing of PD-L1 in the TPC-1 and K1 cells
resulted in an induction of cell apoptosis (P <
0.05, Figure 4A), and cell cycle stagnation in
the GO/G1 phase (P < 0.05, Figure 4B). Thus,
these findings indicated that CD47 silencing in
TC cells suppressed cell proliferation and pro-
moted apoptosis.

PD-L1 and CD47co-immunoprecipitate in thy-
roid cancer cells but not in Nthy-ori-3-1 cells

To identify the interaction between CD47 and
PD-L1, we employed a co-immunoprecipitation
study to evaluate their co-expression in TPC-1,
K1, and Nthy-ori-3-1 cells. Our findings showed
that PD-L1 and CD47 co-precipitated in both
TPC-1 and K1 cells, but not Nthy-ori-3-1 cells
(Figure 5).

The PD-L1 signaling pathway was activated in
thyroid cancer cells

Because CD47 function mainly focused on the
mediation of the immune tolerance of T cells,
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and PD-L1, involved in T cell depletion, is
known as an important member of the immu-
noglobulin superfamily, we investigated wheth-
er PD-L1 was involved in the effects of CD47
on TC cells by evaluating the expression of
PD-L1 related proteins by Western blot analy-
sis. Results suggested that AKT protein expres-
sion was not significantly altered in the TPC-1
and K1 cells; however, the protein expression
levels of p-AKT, small heterodimer partner 1
(SHP1), p-SHP1, SHP2, p-SHP2, extracellular
signal-regulated kinase (ERK), p-ERK, and
PDL-1 were significantly upregulated in TPC-1
and K1 cells when compared to Nthy-ori-3-1
cells (P < 0.05, Figure 6). Combined, these
findings indicated that the PD-L1 signaling
pathway was activated in TC cells.

The activated PD-L1 signaling pathway in
thyroid cancer cells was abolished by CD47
silencing

Next, we confirmed involvement of the PD-L1
signaling pathway in CD47-silenced TPC-1 and
K1 cells by measuring the CD47-associated
protein expression via Western blots analysis.
Lur findings showed that the protein expres-
sion levels of p-AKT, p-ERK, p-SHP1, p-SHP2,
and PD-L1 were significantly downregulated in
TPC-1 and K1 cells when compared with Nthy-
ori-3-1 cells. However, no significant differenc-
es were observed in the protein expressions of
AKT, ERK, SHP1, and SHP2 (P < 0.05, Figure
7). Combined, these results indicated that the
activated PD-L1 signaling pathway in TC cells
was reversed by silencing the CD47 expre-
ssion.

Discussion

Worldwide, TC is considered one of the least
morbid types of human cancers, with patients
exhibiting better long-term survival than most
other cancers [16]. Increasing evidence has
not indicated a strong correlation between
regional lymph node metastasis and overall
survival in most cases [17, 18]. However,
patients are still dying from TC-related causes.
Therefore, it is of utmost importance to further
investigate the pathogenesis of TC to identify
novel effective therapeutic targets for the
treatment of TC patients. In the present study,
we demonstrated that CD47 may be involved
in the tumorigenesis of TC. We observed that
CD47 expression was significantly higher in

Int J Clin Exp Pathol 2018;11(12):5612-5621
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The survival and development
of cancer cells relies on multi-
ple factors, including the
escape from immune destruc-
tion, the enabling of replica-
tive immortality, and resisting
cell death [19]. Increasing evi-
dence has suggested that
various components of the
immune system are involved
in the immune surveillance of
tumor cells [20]. Both the
adaptive and innate immune
system have been shown to
play a critical role in anti-
tumor immunity [21]. Macro-
phages are important compo-
nents of the innate immune
system and are involved in
multiple functions, including
phagocytosis [22]. Recently, it
was demonstrated that tumor
cells may escape from macro-
phage phagocytosis by expre-
ssing several anti-phagocytic
markers, such as CD200 and
CDA47 [23, 24]. CD4T belongs
to the immunoglobulin super-
family, is expressed in almost
all cell types and has been
implicated in multiple physio-
logic processes [25, 26]. In a
previous study, it was demon-
strated that CD47 could func-
tion as a suppressor of phago-
cytosis by binding to the SIRPx
that was expressed on phago-
cytes [27]. Moreover, it was
revealed that CD47 was wide-
ly expressed on many tumor
cells, including those of leuke-
mia, breast cancer, and blad-
der cancer, thereby implying
thatits role in regulating tumor

TPC-1 and K1 TC cells when compared to Nthy-
ori-3-1 cells. Subsequently, a functional analy-
sis revealed that in CD47 silenced TC cells, cell
proliferation was significantly inhibited, and cell
apoptosis was markedly increased. In addition,
the PD-L1 signaling pathway-related proteins
were overexpressed in the TC cells, which were
abolished by the CD47 silencing. Taken togeth-
er, our findings suggest that CD47 promoted TC
cell growth by activating PD-L1 signaling.
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progression was widespread [28-30]. When
compared to normal counterpart tissues, the
tumor tissue exhibited higher levels of CD47
expression. It was therefore suggested that
CDA47 overexpression in tumor cells may con-
tribute to the evasion from phagocytosis.
Moreover, it has previously been reported that
hypoxia-inducible factor 1 (HIF-1) directly initi-
ates the transcription of CD47 in breast cancer
cells, and promotes the evasion of phagocyto-

Int J Clin Exp Pathol 2018;11(12):5612-5621
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sis of cancer cells [14], which is similar to our
findings in TC.

In general, PD-L1, a principal ligand of pro-
grammed death-1 (PD-1), acts as a critical “do
not find me” marker to the adaptive immune
system [31]. PD-L1 is widely expressed by cells
in the tumor microenvironment, and acts as an
inhibitor of T-cells by triggering suppressive sig-
naling pathways in various types of cancer [32].
In addition, PD-L1 is overexpressed in diverse
human tumors, and contributes to the initiation
and development of tumor cells [32]. Therefore,
we hypothesized that CD47 may exhibit its pro-
moted effects on TC via PD-L1 signaling.

In conclusion, although additional in vivo stud-
ies are required to confirm the role of CD47 on
TC, our results indicated that CD47 contributes
to the immune escape of TC cells by activating
PD-L1 signaling.
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