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Abstract: Background: There are few studies that have identified the potential role of a high temperature require-
ment A1 (HtrA1) in intervertebral disc degeneration (IDD). This study was undertaken to investigate the regulatory 
role of HtrA1 in the pathogenesis of IDD. Material and Methods: The mRNA levels of HtrA1 and matrix metallopro-
teinases (MMPs) of human intervertebral disc degeneration tissues were measured by real-time quantitative PCR, 
and a correlation between the expression level of HtrA1 and MMPs was also investigated. Human nucleus pulposus 
cells (HNPCs) were challenged with rHtrA1, and expression of MMPs was measured by real-time quantitative PCR, 
Western blotting, and ELISA. Moreover, to analyze the mechanism by which HtrA1 up-regulates MMPs, ERK1/2/
ROCK signaling pathway inhibitors were also used. Results: We found significant increases in mRNA expression of 
HtrA1 and MMP1, 3, 9, and 13 in IDD tissues compared with control. HtrA1 expression level was associated with the 
levels of MMP1, 3, and 13. Expression of MMP1, 3, and 13 mRNA and protein were significantly increased in HNPCs 
treated by rHtrA1. Moreover, administration of the ERK1/2 signaling pathway inhibitor or ROCK signaling pathway 
inhibitor decreased rHtrA1-induced MMPs production. Therefore, changes in HtrA1 expression could be involved in 
the pathogenesis of IDD. Conclusion: Our findings indicate that HtrA1 can induce increases in MMPs in HNPCs via 
the ERK1/2/ROCK signaling pathway, thus providing new insights into the role of HtrA1 in the pathogenesis of IDD.
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Introduction

Low-back pain (LBP) is among the leading 
causes of the costliest musculoskeletal prob-
lems in adults worldwide, and causes severe 
social and economic burdens. Investigators 
have shown that intervertebral disc degenera-
tion (IDD) is one of the most common disorders 
reported in LBP [1]. The issue is intensified  
by the increasing elderly adult population. 
Advances in research on pathogenesis of IDD 
have been made and possible etiological fac-
tors in the pathogenesis of IDD have been iden-
tified as aberrant, cell-mediated, and age- and 
genetic-dependent molecular degeneration 
processes [2]. An intervertebral disc (IVD) con-
sists mainly of: (a) the highly hydrated nucleus 
pulposus (NP), composed mainly of proteogly-
can, hyaluronan, and type II collagen; and (b) 

the radially aligned type I collagen fibrils of the 
annulus fibrosus (AF) [3]. Partly because the 
IVD is the largest avascular tissue and has poor 
self-healing potential, tissue-regenerative ther-
apy for IDD has not been achieved [4]. Previous 
studies have demonstrated that expression of 
matrix metalloproteinases (MMPs) has essen-
tial roles in human IDD. During the pathogene-
sis of IDD, degradation of the extracellular 
matrix (ECM) is initiated by proteolytic enzymes, 
including MMP1, 3, 7, 9, and 13 [5-10]. 

HtrA1 (High temperature requirement A1) 
belongs to the HtrA family of serine proteases. 
In humans, HtrA1 was originally isolated from 
fibroblasts as a transformation-sensitive pro-
tein due to its downregulation by SV40 [11]. 
There is increasing evidence that HtrA1 regu-
lates several physiological and pathological 
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processes, including tumor development [12-
15], Alzheimer’s disease (AD) [16], placentation 
[17], age-related macular degeneration [18], 
and osteoarthritis [19]. HtrA1 can act on differ-
ent targets, including extracellular matrix pro-
teins [20]. Our previous study [21] found the 
HtrA1 plays an important role in the pathologi-
cal process of IDD. However, the mechanism(s) 
by which it regulates these processes that have 
not been fully elucidated in IDD. 

Drawing on this background, in this study we 
hypothesized that the serine protease HtrA1 
plays a critical role in IDD, involving modifica-
tions of the MMPs. Therefore, the present work 
was performed to determine whether HtrA1 
can contribute to IDD development via degrad-
ing numerous extracellular matrix proteins. Our 
results clearly demonstrate a critical role for 
HtrA1 in IDD that is based on its ability to stimu-
late MMPs production, associated with extra-
cellular signal-regulated kinase (ERK), and Rho-
associated protein kinase (ROCK) signaling 
pathways.

Material and methods

Human intervertebral disc tissues and patient 
information

The study included 30 IDD patients and 20 
healthy volunteers with spinal fractures as  
controls from the Affiliated Hospital of Jiangsu 
University. The median age of patients (11 male 
and 19 female) was 54.83 years (range, 52-67 
years). The average age of controls (11 males 
and 9 females) was 22.3 years, ranging from 
16 to 27 years. All the patients were untreated 
for their condition at the time of tissue collec-
tion and diagnosed based on commonly acce- 
pted clinical and laboratory criteria. The current 
study was approved by the Ethics Committee  
of the Affiliated Hospital of Jiangsu University 
(JDFYLL-2015016), and was conducted in acc- 

USA) with 10% fetal bovine serum supplement-
ed with antibiotics to enable the cells grow to 
80% confluence. After the cells reached conflu-
ence, 1 group of cells was challenged with 5 
μg/ml/10 μg/ml exogenous recombinant HtrA1 
(rHtrA1, Cloud-Clone Corp) with and without 
ERK signaling pathway inhibitor SCH772984 
(10 μmol/l) or ROCK signaling pathway inhibitor 
Y27632 (10 μmol/l), and untreated groups 
were used as a control. The cells were harvest-
ed at 1 time point (after 24 h) from HtrA1 chal-
lenge, as well as at different time points (0, 24, 
and 48 h) from HtrA1 challenge, and then 
stored at -80°C to observe the temporal expres-
sion pattern of mRNAs and proteins. In addi-
tion, the cell culture supernatant was collected 
for measurement of MMP1, MMP3, MMP7, 
MMP9, and MMP13 using specific ELISA kits. 

Quantitative RT-PCR (RT-qPCR)

HtrAl, MMP1, MMP3, MMP7, MMP9, and MMP- 
13 mRNA levels were assessed by RT-qPCR 
according to the method previously described. 
Briefly, mRNA was extracted from human inter-
vertebral tissues and cells. Cells were pooled 
from 3 wells to be able to collect sufficient 
mRNA for 1 sample. Total RNA was extracted 
from cells and tissues using Trizol (Life 
Technologies) reagent according to the manu-
facturer’s instructions. RNA was then reverse-
transcribed to cDNA with oligo (dT) primerfrom 
500 (ng) total RNA according to the manufac-
turer’s instructions by the use of aRT reagent 
kit (TaKaRa, Ohtsu, Japan). For quantitative 
real-time PCR, cDNA (1 µL) was amplified with 
the SYBR Green Premix EX Taq kit (TaKaRa, 
Ohtsu, Japan) by real-time PCR. Each sample 
was analyzed in triplicate with the CFXA96 
Cycler (Thermal) and the relative mRNA ex- 
pression quantification was calculated with the 
comparative threshold cycle (Ct) method. 
β-actin was used as an internal control. All 
primer sequences are shown in Table 1.

Table 1. Primer list
Gene Primer F Primer R
HtrA1 GACTACATCCAGACCGACGC GCTTTTCCTTTGGCCTGTCA
MMP1 TGACACCCAGCATGAACC GTTGTCCCGATGATCTCCCC
MMP3 TGACACCCAGCATGAACC ACTTCGGGATGACAGGAAAG
MMP7 GGAGCTCATGGGGACTCCTA TCCAGCGTTCATCCTCATCG
MMP9 CATCCGGCACCTCTCTATGGTA CATCGTCCACCGGACTCAAA
MMP13 CATGAGTTCGGCCACTCCTT CCTCGGAGACTGGTAATGGC

ordance with provisions of the De- 
claration of Helsinki, and written in- 
formed consent was obtained from 
all individuals.

Cell culture and treatment

Human NP cells (HNPCs) were ob- 
tained from ScienCell (USA), and cul-
tured in 6-well plates using nucleus 
pulposus cell medium (ScienCell, 
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Western blotting analysis

HNPCs were homogenized and lysed in RIPA 
buffer supplemented with proteinase inhibi-
tors. Equal amounts of total protein were load-
ed and separated on 12% SDS-polyacrylamide 
gel. Following electrophoresis, the proteins we- 
re transferred to a PVDF membrane (Millipore, 
USA), blocked in 5% (w/v) non-fat milk, and in- 
cubated with the primary antibodies. Mem- 
branes were incubated with monoclonal anti-
body against β-actin (CWBIO, CW0096), MMP1 
(Bioworld Technology, BS1229), MMP3 (Abcam, 
ab52915), MMP7 (Santa Cruz, sc-8832), MM- 
P9 (Abcam, ab58803), MMP13 (Abcam, ab- 

39012), p-ERK1/2 (Santa Cruz, sc-101760), 
and p-ROCK (Santa Cruz, sc-17794) at 4°C 
overnight. The membrane was washed 3 times 
with Tris-buffered saline/Tween (TBS/T). After 
washing, HRP-conjugated secondary antibody 
was added for 1 h at 37°C. Detection was per-
formed with enhanced chemiluminescence 
(ECL) and relevant blots were quantified by den-
sitometry by using the accompanying comput-
erized image analysis program.

Enzyme-linked immunosorbent assay (ELISA)

The concentrations of MMP1, MMP3, MMP7, 
MMP9, and MMP13 in the cell culture superna-

Figure 1. Elevation of MMP1, MMP3, and MMP13 was correlated with overexpression of HtrA1 in IDD patients. A-F. 
Representative diagrams of quantitative analysis the expression of HtrA1, MMP1, 3, 9, and 13 showing up-regula-
tion in IDD patients. D. Representative diagrams of quantitative analysis of MMP7. G, H, K. There were positive cor-
relations between expression of HtrA1 and MMP1, MMP3, and MMP13. I, J. No significant correlationwas observed 
between expression of HtrA1 and MMP7, or MMP9. (***P < 0.001, **P < 0.01, *P < 0.05, ns, no significant).
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tant from groups pre-treated with rHtrA1 and 
control at 24 h and 48 h time points were mea-
sured following the manufacturer’s protocols 
(eBioscience, San Diego, CA, USA) by ELISA. All 
samples were run in batches and in triplicate, 
and the optical density (OD) value was detected 
using an ELISA microplate reader (Labequip 
Ltd, Ontario; Canada) at 450 nm wavelengths 
using an ELISA microplate reader (Labequip 
Ltd, Ontario; Canada).

Statistical analysis

All statistical analyses were performed by using 
Prism 5 (Graph Pad Software, La Jolla, CA, 
USA). Comparisons between groups were per-
formed by using the unpaired t test. The asso-
ciation between 2 clinicopathological variables 
was tested using Spearman test. A p-value < 
0.05 was considered to indicate a statistically 
significant difference. 

Results

Elevation of MMP1, MMP3, and MMP13 were 
correlated with overexpression of HtrA1 in IDD 
patients

To determine whether HtrA1 participates in the 
progress of IDD, we performed a real-time PCR 
to determine the mRNA level of HtrA1 in degen-

erative NP tissues. As shown in Figure 1A, sig-
nificantly increased HtrA1 mRNA expression 
was found in degenerative NP tissues com-
pared with the control group. Real-time quanti-
tative PCR indicated a similar expression pat-
tern at the mRNA levels of MMP1, MMP3, 
MMP9, and MMP13 (Figure 1F). The correla-
tion between HtrA1 and MMP1, MMP3, MMP7, 
MMP9, and MMP13 in mRNA level was further 
analyzed. Our data show that the expression 
level of HtrA1 was associated with the expres-
sion levels of MMP1, MMP3, and MMP13.

HtrA1 up-regulated the gene expression of 
MMP1, 3, and 13

To determine the effects of HtrA1 on MMPs 
expression, HNPCs were treated with exoge-
nous rHtrA1 (5 μg/ml and 10 μg/ml) and cells 
were harvested at different time points (0, 24, 
and 48 h). The expression of MMPs was exam-
ined by real-time PCR. It is noteworthy that we 
found that expression of MMPs was induced by 
exogenous rHtrA1 and increased in a dose-
dependent manner in HNPCs. We observed 
that the mRNA levels peaked at 24 h after a 5 
μg/ml dose of exogenous rHtrA1 was used to 
challenge the cells (Figure 2). Intriguingly, 
MMP1, 3, and 13, but not MMP7, 9 were 
remarkably increased at 24 h in the presence 
of exogenous rHtrA1 (Figure 2), indicating effec-

Figure 2. rHtrA1 up-regulated the gene expression of MMP1, 3, and 13, but not MMP7 and MMP9. A, B, and E. 
Representative diagrams of quantitative analysis the expression of MMP1, 3, and 13 show up-regulation in HNPCs 
treated by exogenous rHtrA1. C, D. Representative diagrams of quantitative analysis the expression of MMP7 and 
9 show no change in HNPCs treated by exogenous rHtrA1. All samples were measured in triplicate. (***P < 0.001, 
**P < 0.01, ns, no significant).
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tive up-regulation of MMP1, 3, and 13 following 
challenge by exogenous rHtrA1 in HNPCs.

Protein levels of MMP1, 3, and 13 were in-
creased in HNPCs in response to exogenous 
rHtrA1

Because exogenous rHtrA1 treatment induced 
increased mRNA levels of MMP1, 3, and 13, we 
then used Western blotting and ELISA to assess 

Figure 3. Protein levels of MMP1, 3, and 13 were increased in human NP cells in response to exogenous rHtA1. (A) 
Western blot analyses the protein of MMP1, 3, 7, 9, and 13 expressed in exogenous rHtrA1-treated HNPCs. The 
protein levels of MMP1, 3, and 13 were all elevated and peaked at 24 h at a dose of 5 μg/ml, as well as the protein 
released in the cell culture supernatants (B-D). (***P < 0.001, **P < 0.01).

whether exogenous rHtrA1 would increase the 
protein level of MMP1, 3, and 13 as well. As 
expected, and in line with the mRNA expres-
sion, elevated levels of MMP1, 3, and 13 pro-
teins were observed in the post-treated HNPCs 
(Figure 3A), and similar data were also obtained 
in the cell culture supernatants (Figure 3B-D). 
Moreover, Western blotting analyses showed 
no detectable changes in MMP7 or MMP9 
expression.
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Increased levels of MMP1, 3, and 13 induced 
by rHtrA1 was ameliorated by ERK1/2 or 
ROCK signaling pathway inhibition

Challenging HNPCs with exogenous rHtrA1 
resulted in a transient increase in the phos-
phorylation of ERK1/2 and ROCK within HNPCs, 
peaking at 45-120 min and 45-90 min, respec-
tively (Figure 4), and resulted in an increase in 
MMP1, 3, and 13 within HNPCs, peaking at 24 
h (Figure 3). To further confirm that the tran-
sient increase was due to ERK1/2 signaling 
pathway or ROCK signaling pathway following 
exogenous rHtrA1 treatment, we used Y27632, 
a ROCK signaling pathway inhibitor and SCH- 
772984, a ERK1/2 signaling pathway inhibitor, 
respectively. We performed real-time PCR to 
examine expression of MMP1, 3, and 13 in 
HNPCs treated with exogenous rHtrA1. Our 
results showed the expression of these mRNA 
was significantly decreased after treatment 
with Y27632 or SCH772984 (Figure 6A-C). To 
further substantiate that ERK1/2 or ROCK sig-
naling was essential for promoting up-regula-
tion of MMP1, 3, and 13 by HtrA1 in HNPCs,  
we used Western blot analysis to compare  
the protein expression levels of Y27632 or 
SCH772984- HNPCs and control cells treated 
with exogenous HtrA1. HNPCs challenged with 
Y27632 or SCH772984 ameliorated the in- 
crease of these proteins induced by rHtrA1 
(Figures 5, 6D-F), which showed a similar res- 

ERK1/2/ROCK signaling pathway inhibitor. As 
Figure 6 shows, protein levels of MMP1, 3, and 
13 in the cell culture supernatants were obvi-
ously decreased. These results clearly demon-
strate that HtrA1 contributed to MMP1, 3, and 
13 deposition via ERK1/2/ROCK activation.

Discussion

During exploration of the etiology and patho-
physiology of IDD, many molecules have been 
identified as endogenous damage-associated 
molecules and may be responsible for the dis-
ease. Although the cause and pathophysiology 
of IDD remains unclear, it has been suggested 
that the degenerative process begins in the NP 
of the IVD and is associated with progressive 
loss of aggrecan (ACAN) and type II collagen 
(Col-2) from the ECM [22]. With aging, nucleus 
pulposus cells are subject to senescence and 
thereby lose their ability to proliferate and 
replace cells lost to necrosis or apoptosis [23], 
and decreased anabolism or increased catabo-
lism of senescent cells that result in accumula-
tion of ECM, which may facilitate IDD [24].

It is well accepted that MMPs have essential 
roles in the degradation of ECM [25]. HtrA1 can 
cleave numerous ECM, such as fibronectin, 
ecorin, fibromodulin, ACAN, Col-2, biglycan, 
clusterin, a disintegrin and metalloproteinase 
domain-containing 9 (ADAM9), vitronectin, α2 
macroglobulin, and the amyloid precursor pro-

Figure 4. Exogenous rHtrA1 activated the Erk1/2/ROCK pathway in HNPCs. 
(A) HNPCs were treated with 5 μg/ml rHtrA1. At the points indicated, HNPC 
were harvested and phosphorylated Erk1/2 and ROCK levels were assessed 
by Western blot analysis. There were transient increases in the phosphoryla-
tion of ERK1/2 and ROCK within HNPCs (B and C). (***P < 0.001, **P < 
0.01).

ult with mRNA. Taken togeth-
er, these results clearly dem-
onstrate that HtrA1 directly 
led to increased expression of 
MMP1, MMP3, and MMP13, 
which was associated with  
the ERK1/2/ROCK signaling 
pathway. 

Ameliorated protein level of 
MMP1, 3, and 13 in the cell 
culture supernatants

Our results have showed that 
exogenous rHtrA1 could up-
regulate the expression of 
MMP1, 3 and 13 within the 
HNPCs. We also analyzed the 
protein level of these factors 
in the cell culture superna-
tants. Exogenous rHtrA1-treat-
ed HNPCs were exposed to 
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tein fragment Aβ [26-30]. This has encouraged 
further research into the potential role of HtrA1 
in human diseases in which breakdown of the 
ECM is considered to be of significant impor-
tance. A mouse osteoarthritis model identified 
increased levels of HtrA1 in articular cartilage 
from diseased mice in association with both 
MMP13 and discoidin domain-containing 
receptor 2 (Ddr2) [31]. 

In the present study, we first showed a signifi-
cantly increased level of HtrA1 in patients with 
IDD, which was consistent with higher MMP1, 
MMP3, and MMP13 transcript levels, indicat-
ing that HtrA1 participates in the progression  
of IDD and HtrA1 elevation correlated with ele-
vation of MMP1, MMP3, and MMP13 in IDD 
patients. 

To further verify the potential role of HtrA1 in 
promoting the progression of IDD, we chose 
HNPCs as our research subject to elaborate the 
potential role of HtrA1 in the pathogenesis of 
IDD. We demonstrated that exogenous rHtrA1 
can up-regulate MMP1, MMP3, and MMP13 
mRNA and protein in HNPCs (Figure 2A, 2B, 
2E). Western blot analysis and ELISA data fur-
ther showed that exogenous rHtrA1 increased 
the protein level of these MMPs in HNPCs 

(Figure 3). We also found that transient increas-
es were dose- and time-dependent, peaking at 
24 h at a dose of 5 μg/ml. However, our results 
did not shown any change in MMP7 or MMP9  
in mRNA or protein level (Figures 2C, 2D, 3A), 
which suggests that other molecules might  
participate in this process, such as IL-1β, which 
has been proven to significantly increase 
MMP-9 expression in HNPCs in a NF-κB-
dependent pathway in a previous study [32]. 
Moreover, there were no detectable levels of 
MMP7 and MMP9 in the cell culture super- 
natants.

Lakka et al reported that the ERK1/2 signaling 
pathway may be involved in regulating the 
expression of MMPs [33-38], and it has been 
shown in vitro that the Rho/ROCK signaling 
pathway plays a central role in the inflammato-
ry response in nucleus pulposus cells [39-41]. 
Therefore, we postulated that ERK1/2 and RO- 
CK signaling pathways may play critical roles in 
disease progression of IDD. Indeed, our results 
showed that HtrA1 directly led to ECM deposi-
tion, which was associated with the ERK1/2/
ROCK signaling pathway, and inhibition of 
ERK1/2 or ROCK signaling pathway activation 
through the use of SCH772984 or Y27632  

Figure 5. Increased levels of MMP1, 3, and 13 induced by rHtrA1 were ameliorated by Y27632 or SCH772984. (A) 
Western blot analyses of MMP1, 3, and 13 levels in HNPCs challenged by exogenous rHtrA1 with or without signal-
ing pathway inhibitor. Representative blots are shown above and densitometric analyses, below (B-D). Blots were 
cropped from different gels, but all the gels had been run under the same experimental conditions. These data show 
that Y27632 and SCH772984 can ameliorate the transient increase caused by exogenous rHtrA1. All samples were 
measured in triplicate. (***P < 0.001, **P < 0.01).
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mitigated the increase of MMP1, MMP3, and 
MMP13, among which MMP1 and MMP3 were 
more sensitive when treated by SCH772984 
and MMP13 was more sensitive when treated 
by Y27632 (Figure 5). Furthermore, we showed 
that there were higher levels of MMP3 and 
MMP13 in the cell culture supernatants, which 
suggests more critical roles for MMP3 and 
MMP13 (Figure 6). Therefore, realizing the 
potential role of HtrA1 in regulating the expres-
sion of MMP1, MMP3, and MMP13 is crucial in 

the search for a promising therapeutic target of 
IDD in future studies.

Conclusions

Our data demonstrate that HtrA1 can up-regu-
late expression of MMP1, MMP3, and MMP13 
via the ERK1/2 or ROCK signaling pathway. 
Using inhibitors of ERK or ROCK signaling ame-
liorated the increasing trend. Our study illus-
trates the fact that aberrant HtrA1 activation 

Figure 6. Ameliorated protein level of MMP1, 3, and 13 in the cell culture supernatants. (A-C) Representative dia-
grams of quantitative analysis of MMP1, 3, and 13. Data show the same tendency in HNPCs after treatment. Protein 
levels of MMP1, 3, and 13 in the supernatants (D-F) showed results similar to those of Western-blot analysis data. 
All samples were measured in triplicate. (***P < 0.001, **P < 0.01, *P < 0.05).
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can contribute to the pathogenesis of IDD, and 
the suppression of HtrA1 activity may be a use-
ful target for treatment of IDD.
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